UNITED STATES DEPARTMENT OF THE INTERIOR, Stewart L. U̇dall, Secretary FISH AND WILDLIFE SERVICE, Clarence F: Pautzke, Commissioner BUREAU OF COMMERCIAL FISHERIES, Donald L. McKernan, Director
 GROWTH OF THE ADULT MALE KING CRAB PARALITHODES CAMTSCHATICA (TILESIUS)

By DOUGLAS D. WEBER and TAKASHI MIYAHARA

FISHERY BULLETIN 200

From Fishery Bulletin of the Fish and Wildlife Service
VOLUME 62

[^0]The series, Fishery Bulletin of the Fish anid Wildlife Service, is cataloged as follows:
U.S. Fish and Wildlife Service.

Fishery bulletin, v. 1-
Washington, U.S. Govt. Print. Off., 1881-19
v. in illus., maps (part fold.) $23-28 \mathrm{~cm}$.

Some vols. issued in the congressional series as Senate or House documents.

Bulletins composing v. 47- also numbered 1-
Title varies: v. 1-49, Bulletin.
Vols. 1-49 issued by Bureau of Fisheries (called Fish Commission, v. 1-23)

1. Fisheries-U.S. 2. Fish-culture-U.S. 1. Title.

SH11.A25 639.206173 9—35239*

Library of Congress [59r55b1]

CONTENTS

PageBackground information53Sources of data 56
Adequacy of data 57
Growth by size frequencies 58
Growth increment per molt 61
Average annual growth increment of the population 62
Average growth rates. 62
Discussion 68
Summary 69
Literature cited 70
Appendix tables 71

Abstract

Estimates of the average growth rates of the eastern Bering Sea adult male king crab, Paralithodes camtschatica, are presented. Through examining the advancement of modal groups in size-frequency distributions collected in 5 successive years, the growth rate of the smaller adult male crabs is described. For the larger sizes the growth per molt observed in tagged individuals and the proportion of molting crabs observed in each year are combined in a theoretical model which represents the progression of a year class through time. The resulting growth curves calculated from the 1956, 1958, and 1959 data are strikingly similar and show that male crabs 80 mm . in carapace length will attain an average length of 168 mm . after 8 years of growth. Crabs growing at the rate depicted for 1957 would be 153 mm . in length at the end of an equal period.

GROWTH OF THE ADULT MALE KING GRAB PARALITHODES CAMTSCHATICA (TILESIUS)

By Douglas D. Weber and Takashy Miyahara
Fishery Research Biologists, BUREAU OF COMMERCIAL FISHERIES

A request for study of the southeastern Bering Sea king crab (Paralithodes oamtschatica (Tilesius)) stock was made to the International North Pacific Fisheries Commission by the United States Government in February 1954 in accordance with Article III, Section 1, (c), (i) of the International Convention for the High Seas Fisheries of the North Pacific Ocean, for the purpose of ". . . determining need for joint conservation measures of the Contracting Parties conducting substantial exploitation of that stock." (The Contracting Parties in this instance are Tapan and the United States.)

The Burenu of Commercial Fisheries Biological Laboratory in Seattle, Washingtoin (then Pacific Salmon Investigations) was assigned this study for the United States. Investigations began in 1954, with emphasis on factors governing yield, e.g., growth recruitment, mortality, and abundance.

In compliance with part of the request, this report presents an estimate of growth of adult male king crabs of the eastern Bering Sea and describes methods employed. Although growth of all king crabs is being studied, that of adult males has been given priority, because the commercial fisheries are concentrated on them and need for their conservation must, therefore, be determined first.

The authors are indebted to many individuals who contributed toward this study. The Nippon Suisan Company, J. E. Shields Company, and Wakefield's Deep Sea Trawlers, Inc. cooperated in recovering tagged crabs; Seiwa Kawasaki, biologist of the Japan Fisheries Agency, recorded very complete tag recovery information, a major contribution ; F. C. Cleaver and R. A. Fredin, advised and aided us throughout the study, and T.H. Butler, A. E. Peterson, and W. F. Thompson pro-

[^1]vided helpful comments concerning the treatment of data.

BACKGROUND INFORMATION

The king crab, being a decapod crustacean, has a typical rigid exoskeleton which prevents a change in carapace dimensions except at molting. Consequently the growth of an individual consists of a series of steps, the frequency of which decreases as the animal increases in age or size. An exception is the mature female king crab, which molts annually prior to egg extrusion; often without appreciable increase in carapace dimensions.

At molting the entire exoskeleton is cast along with the mouth and stomach parts, gills, tendons, and other structures of ectodermal origin. Since all hard parts of the body are lost, determination of growth must be achieved by means other than those applicable to animal forms which have permanent records of seasonal growth such as may be found on the scales of fish.

Several methods have been used to study growth of king crabs. Most of the studies were made by Japanese scientists and depend upon one or combinations of three basic types of data: Growth increment per molt and frequency of molt; sizefrequency distributions from 1 year which show modes that are indicative of year classes; and sizefrequency distribution data taken in successive years to observe the progression of weak or dominant year groups through the years.

Wang (1937) described growth rates for young crabs, as interpreted from an examination of modes in size-frequency distribution and for the older crabs by following the progression of modes in size-frequency data collected in 3 successive years. Marukawa (1933) studied live tankreared crabs and observed growth per molt and frequency of molt in conjunction with size-

Figure 1.-King crab growth curves from published results. Curves W_{1} and W_{2} derived from Wang (1937) for crabs from Northern Hokkaido and Sakhalin, respectively; curve N derived from Nakazawa (1912); and curve M from Marukawa (1933).
frequency distributions. Nakazawa (1912) estimated growth of king crabs by combining data from his studies on king crab with published information on the frequency of molt and growth rate of Homarus americanus and Cancer pagurus. The growth curves described by the above investigators are presented in figure 1. ${ }^{1}$

Wide differences in growth rates are indicated, and though the difference may in part be due to geographic separation, it appears that there may be some errors in interpretation.

Wang (1937), graphically presents a sizefrequency distribution which shows a mode at 45 mm ., a second at 85 mm ., and others centered at 115 mm ., 135 mm ., and 155 mm . From other sizefrequency distribution data collected in 3 successive years, he observes weak and dominant groups progressing from 135 mm . to 160 or 165 mm .

[^2]and then to 185 mm . Wang combines the two sets of data and interprets the first two modes in the size-frequency distribution to be indicative of sizes at ages 1 and 2 , and then from the modal progression, the sizes at ages 3,4 , and 5 , to be 135 mm ., 165 mm ., and 185 mm. , respectively. Wang apparently does not interpret the increased frequency of $115-\mathrm{mm}$. crabs as representing a year class. Unfortunately, sufficient data are not presented to permit examination of his frequency distribution, and reasons tre not given for excluding the 115mm . group which is quite evident in the sizefrequency distribution presented.

Wang's assignment of age 1 to the first mode in his sample (45 mm .) is not consistent with the findings of other researchers. Marukawa and Nakazawa both describe 1-year-old crabs to be of about 7 and 8 mm ., respectively. Also, the Fisheries Agency of Japan (1958) reports that 3,08t juvenile crabs, ranging in size from 6 to 15 mm . in carapace length with a mean size of 9 mm . (carapace width, 8 mm .), were collected in the eastern Bering Sea in late May and early June of 1957. Since hatching in the eastern Bering Sea occurs in April and May and it is generally agreed that there is about a 10 -week period of larval life be-
fore the adult form occurs at 2 mm ., it is unlikely that these 9 mm . crabs are of 0 -age class, but are probably 1 year old.

Further, it is our belief that another year group between 8 mm . and 45 mm . is to be expected. In a study ${ }^{2}$ of the growth of small crabs in Unalaska Bay, Alaski, we sampled at. 4 -month intervals from May 1958 through May 1959. By observing the progression of modes in these samples, we concluded that crabs sampled in May of 1958 were in their second year at a carapace width of 11 to 12 mm . and were in their third year at a carapace width of 37 mm . According to our data, a crab near the end of its third year of life would be approximately 45 mm . or larger. If geographic variation in growth is not great, it seems reasonable to expect that if crabs near Japan are about 8 mm . at age 1 , then at age 2 they would be less than 37 mm ., and $45-\mathrm{mm}$. crabs may be 3 years of age rather than 1 -year-old as postulated by Wang. It would then appear that Wang's curve may be shifted 2 years to the right. Also the inclusion of another year group at 115 mm ., as noted in Wang's size-frequency distribution, would tend to decrease the slope beyond 85 mm .

Marukawa (1933), in his comprehensive and informative paper on Paralithodes, presents a discussion on growth, including the curve shown in figure 1, in which males reach a maximum carapace width of 216 mm . in 31 years. A review of Marukawa's methods and results is presented by McKay and Weymouth (1935), who point out that the early modes in Marukawa's size-frequency data probably represent instars rather than year classes, and that later modes most likely indicate chance irregularities. We generally agree with the reviewers. Marukawa's size-frequency distributions of smaller crabs show modes at 7, 17, 25, 34,42 , and 53 mm ., which he interprets as being year classes. As discussed in the previous paragraph, progression of modes in a series of size frequencies taken throughout a year indicates greater spacing between year classes than are shown in Marukawa's size distribution. Sato (1958), also points out that the 17,34 , and 42 mm . modes in Marukawa's frequency curve can be con-

[^3]sidered as instars. That modes in the larger sizes are due to chance irregularities is suspected, since our observations of growth increments resulting from one molt would span from 3 to 6 modes. Thus, if some of the early modes were considered instars rather than year classes, the lower portion of Marukawa's curve would be steeper and would shift the remainder of the curve to the left. Consideration of fewer age classes in the larger sizes would also steepen the curve, and it would approach maximum size more rapidly.

Nakazawa (1912) presented information that enabled construction of the curve shown in figure 1 , but unfortunately he did not include the data upon which his annual growth increments were based. His curve, however, is intermediate between Wang's (1937), whose growth rate appears too rapid, and that of Marukawa's (1933) which appears too slow. Other investigator's results of growth studies have been examined but were not included, since sufficient data were not presented to enable constructing curves.

The reports examined and the curves presented in figure 1 show wide differences that, as stated earlier, seem to be mainly due to errors in interpretation, but may, in part, be due to actual differences in growth demonstrating the difficulties in estimating growth of king crabs.

The growth studies to be discussed in the remainder of this report pertain to the eastern Bering Sea king crab. Although sexual maturity appears to be attained from $85-95 \mathrm{~mm}$., the term adult used in this report includes all crabs larger than 80 mm . in carapace length. Determination of growth for the smaller sizes is based on modal progressions in size-frequency distributions, since modes are fairly well defined and little is known of growth per molt and molting frequency in these sizes. In the larger sizes, year classes tend to overlap due to nonmolting crabs, and modes when evident are probably made up of various year classes. For this situation a method was developed which is dependent upon a composite of the amount of growth observed in tagged crabs and the proportions observed to molt in any particular year. The resulting growth curve for the larger sizes, therefore, takes into consideration both molting and nonmolting crabs.

SOURCES OF DATA

Each summer since 1955, a commercial fishing vessel has been chartered to otter trawl for samples at predesignated stations 20 miles apart. The stations sampled by year are represented in figure 2.

The gear used each year was similar to that described by Greenwood (1958). This trawl is commonly called a "400 eastern type."

At each station all crabs caught were measured to the nearest millimeter, shell conditions were noted, and males were tagged and released. Two measurements were taken. Length of carapace was measured from the posterior margin of the orbit of the right eye to the midpoint of the posterior margin of the carapace. Greatest width of the carapace between spines was also measured as a check on accuracy of length measurement since a definite relationship exists between length and width.

We recorded four shell conditions, soft, new, old, and very old, which are subjective classifications of the length of time since molt. The principal basis of classification are scratches and discolorations of the ventral basal segments of the appendages. A soft exoskeleton is indicative of a crab which has just molted, since after approximately 1 week the shell becomes firm and resists flexing. New-shell crabs have hard exoskeletons, the ventral surfaces of which are white and unscratched, and are presumed to have molted during the winter or spring immediately preceding the sampling period. Crabs with yellowish ventral exoskeletons and multiple darkly stained scratches are classified as old-shells and are judged not to have molted for one or more years. The very-old-shell condition is an extension of the oldshell and is characterized by an almost black ventral exoskeleton and dense growth of fouling organisms. The time since last molting is not well

Fiaure 2.-King crab sampling stations for the years 1955 through 1959.
defined for the very-old-shell condition, but is believed to be noticeable in the second year after last molt. Individual fouling organisms which settle on the shell have not been considered as a mpasure of time since molting because the life cycle, such as time of setting and growth of these organisms in the Bering Sen is not known and would demand a separate study.
Shell conditions are the basis of determining molting frequency, and for the purpose of growth we are interested in those that molted in the current year and those that did not. In the remainder of this report soft and new-shell conclitions are grouped as new-shell and refer to crabs that have molted in the current year, while old- and very-old-shell conditions are grouped as old-shell and refer to crabs which have not molted during the current year.

Since initiation of investigations in 1054 , crabs have been tagged with either a Petersen disc-type tag on a leg or through the carapace, or with a spaghetti-type tag through the muscular isthmus between the posterior margin of the carapace and the abdonimal region. Since Petersen disc-type tags are probably lost at molting, analysis of growth from tagged crab data has been restricted to recoveries of spaghetti-type tags which remain attached through molt.

Of 23,826 male crabs released with spaghettitype tags in years 1955 through 1959, 1,103 have been recovered, of which 1,017 were returned with complete measurement data. Changes in sizes indicating growth were observed in 325 recoveries.

ADEQUACY OF DATA

Two population properties are assumed in this report. They are: (1) the growth of tagged individuals and the size frequency distribution samples are representative of the population, and (2) the same population is sampled each year. Support for these assumptions is provided from examination of our field observations which show: tagged crabs mix uniformly with the untagged crabs throughout the fishing area; repetitive sampling performed in 1956 and again in 1958 resulted in similar size-frequency distributions and percentages of shell conditions within each year; tagged crabs continue to be taken in successive years after release, and only in the Bering Sea. In addition, the sampling areas, particularly since

1957, are believed to include the major distribution of this population, since explorations by the United States Fish and Wildlife Service in 1949 (Ellson, Powell, and Hildebrand, 1950) and by the Japanese in 1957. (Fisheries Agency of Japan, 1958) revealed very few Paralithodes camtschaticu in adjacent areas of the eastern Bering Sea.

In subsequent discussions, it will be evident that. the 1957 data are anomolous with other years. The samples included fewer molters in the population, thus reducing the proportion of molting to nonmolting crabs. Examination of this feature shows that the 1957 data were collected later in the summer than in any of the other yeurs. It is therefore possible that changes in distribution associated with this time period may affect the availability of new-shell crabs. That only new-shell crabs are affected is suspected by examination of all data which shows that the abundance of oldshell crabs appear relatively unchanged regardless of the time of sampling.

There is general agreement in published reports that male crabs larger than 110 mm . in carapace length, molt no more than once annually. From a study of shell conditions, Vinogradov (1945) established that the majority of the larger males molt once every 2 years. Also our records show that several tagged crabs were returned after 3 years with no evidence of molting.

The Fishery Market News (1942), Wallace, Pertuit, and Hvatum (1949) and discussions with fishermen indicate that the adult male king crab molting period and growth occur in late winter or early spring in the eastern Bering Sea. Our observations aboard chartered vessels show that . soft-shell male crabs were caught only in May, and these have numbered one-tenth of 1 percent of the total number of males sampled. No male crabs in the molting or postmolting stages have been found in the summer and late fall surveys. Since growth takes place before our sampling periods, and there is no noticeable change in sizefrequency distribution or shell-condition proportions during the sampling season, the crabs taken may be considered as representing an instantaneous sample.

The relation between time of molting and our period of sampling is an important part in differentiating, through the use of shell condition, the
crabs that molted during the current year from those that did not molt. The crabs that molted in the winter and early spring have had their shells no more than 6 months at the time of summer sampling, whereas those not molting have had their shells not less than 1 year. Although shell condition is a subjective classification, the difference in discoloration and marking of the exoskeleton is distinet.

Confidence in the ability to distinguish between the current year molters and those that molted in the previous year may be shown by an examination of shell-condition classifications of tagged crabs, recorded at release and again at recovery. The bulk of the recoveries and the classifications, were made aboard the Japanese mothership by a biologist following, for the most part, our written description of the various shell conditions. Excluding all tagged crab recoveries showing changes in length measurements, and therefore indicative of having molted, there were 595 tag returns with shell-condition data available for study. Table 1 shows the shell conditions recorded at release and recovery of the crabs and their periods of freedom.

Of the 417 recoveries of new-shell releases, one recovered after a year of freedom was classified as new-shell, and by our criteria of shell conditions is considered in error. An additional six were classified as new-old, indicating some doubt. The six doubtful cases were recorded in 1956, and after the 1957 season the definitions of the shell conditions were made more explicit. Of the old-shell releases, two recoveries within the year of release were classified as new shells on recovery and are considered misclassified. The amount of error in classification appears to be no more than 1.5 percent and may be as low as 0.5 percent if the six doubtful cases are not included.

Table 1.-Shell condition classification at recovery of nonmolting tagged crabs

Shell condition at release	Shell condition at recovery	Periods of freedom			
		Within year	After 1 year	After 2 years	After 3 years
New-shell.------	New.	125	1	0	
Old-shell	Old.	0	306	76	3
	New---------	2.	0	0	
		72	82	22	

${ }^{1}$ Sis additional crabs were recovered but classified as new-old and are not included.

The amount of growth per molt is determined by an examination of the tagged crab measurement data that were taken at release and again at recovery. Preliminary analysis of the relation of width and length of tagged crabs indicated some measurement error. Therefore, width on length regression and a 99 percent confidence interval around this regression were calculated from a random sample of 744 crabs. All tag recoveries where measurements fell beyond the interval were not considered in the analysis. A few recoveries were also discarded due to illogical length to shell condition relations, for example, an increase in carapace length inconsistent with a logical change in shell condition.

In order to determine the range of measurement error, we examined 128 within-season tag recovery measurements (appendix table 2) reasoning that variations in measurements for this group must result from error or bias. Plotting the deviations of recovery from release measurements shows that 99 percent of the deviations lie between plus and minus 4.4 mm . This is shown graphically by the shaded histogram in figure 3 .

All tagged crabs, that measured 5 mm . or more larger when recovered, and which had a corresponding increase in width, are considered to represent crabs that grew during their periods of freedom. The deviations of the lengths at recovery from the lengths at release for 325 male crabs depicting growth are shown by the unshaded histogram in figure 3. Considering the shell condition and the length of time at liberty, 15 crabs with length increments greater than 23 mm . were considered to have molted at least twice, and therefore are not used in the analysis.

GROWTH BY SIZE FREQUENCIES

Length measurements of all male king crabs taken during station pattern sampling each year since 1955 (Appendix table 1) were smoothed by a moving average of three; the resulting numbers at each millimeter of length were expressed as percentages of each year's total. Percentages were used to compensate for varying numbers between years. To emphasize the dominant size groups and their progressions, the percentage deviation of each year's size frequency distribution from the 1955 through 1959 mean distribution was calculated. The resulting yearly positive and negative deviations are plotted on figure 4. Examination

Figure 3.-Deviations of carapace length recovery measurements from release measurements. The shaded histogram represents 128 within-year tag recoveries. The unshaded histogram represents 325 tag recoveries showing growth.
of these deviations shows the presence and progression of at least two dominant size groups and one deficient size group. Since the juvenile crab studies have not progressed sufficiently to allow assignments of ages to the size groups represented, we have considered the size increase in relation to the time of entry into the sample of each dominant and weak group. These groups are designated for reference as A, B, and C.

Table 2.-Range and mean size by year for size groups A, B, and O in figure 4

Year	Size (mm.)					
	Group A		Group B		Group C	
	Range	Mean	Range	Mean	Range	Mean
1955---	$\begin{gathered} 74-100 \\ 90-111 \\ 101-121 \\ 122(121 \\ 134-174 \end{gathered}$	84.7101.6111.7131.7152.5	$\begin{gathered} -60-80 \\ 90-100 \\ 101-121 \\ 111-129 \end{gathered}$	$\begin{array}{r} 80.0 \\ 94.2 \\ 111.3 \\ 119.5 \end{array}$		
${ }_{1957}^{1956}$-----					64-89	77.4
1958------					84-100	92.3
1959----					106-108	107.3

Dominant group A, shown first in the 1955 distribution, advances through the successive years to 1959 where it appears to include a rather wide range of sizes. Group B, which is characterized by a scarcity of crabs, is observed to progress from 1956 through 1959. Dominant size group C first became evident in 1957 and appears to be reduced after 2 years' progression. The reduction of group C is, in part, due to the method of using deviations from a mean, in which the strength of one size group, such as indicated by A in 1956 and 1957, may affect the plotted strength of another.

In order to present more clearly the progressions of these groups, the range and mean lengths were calculated, and are listed in table 2. In figure 5, the progressions of mean values of each group are plotted on years after first entry in the samples. Also included is the mean progression

Figure 4.-Annual deviation from the 1955 through 1959 average size frequency expressed in percentage and smoothed.

Figure 5.-Progressions of the mean values of stze groups A, B, and $C . \bar{x}$ denotes the progression of the mean of the size group means.
of these means which shows a relatively constant increase of approximately 15 mm . per year.

Although modes other than those discussed were evident, ouly the more prominent ones in the smaller sizes were considered. This selection was guided by the suspicion that due to the lesser frequency of molting in the larger sizes, an overlapping of year classes occurred, and the modes or means of individual classes became unidentifiable. To alleviate the problem of attempting to define annual growth in the large adult male king crabs by following the progressions of distinctively weak or dominant modes, another method was developed, which involves the determination of growth in length per molt and the proportions molting.

GROWTH INCREMENT PER MOLT

Three hundred and ten tagged and recaptured crabs representing growth from one molt (appendix table 3) range in size from 98 to 169 mm . before molting. The carapace length at release
and the observed growth increments for these crabs are shown in figure 6.

The straight line shown in figure 6, fitted by the method of least squares, represents the regression of growth increment on size for the size ralge of our data. It is recognized that a second degree polynomial ($\hat{Y}=-62.989+1.1410 \mathrm{X}-0.0041 \mathrm{X}^{2}$) better fits the data, significantly reducing the mean square from 8.994 to 8.233 . However, growth curves based on linear and curvilinear regressions were compared and it was found that the maximum difference at any one point between the curves did not exceed 2 mm . Since the use of a straight line regression simplifies subsequent discussions, and results are not appreciably affected, we have considered the growth increment for one molt as being represented by the straight line regression in figure 6. This line is expressed by the equation $\hat{Y}=13.14+0.018 X$. The mean expected growth increment, $\hat{\Gamma}$, varies from 15.1 mm . for a carapace length of 110 mm . to 16.0 mm . for carapace length 160 mm ., a difference of only 0.9 mm . Thus the growth increment of crabs of these

Figure 6.-Carapace length increment for one molt of 310 tagged crabs. The line represents the linear regression of growth increment on size as determined by the method of least squares.
sizes is essentially constant and for the purpose of this discussion we regard the growth increment per molt as being 16 mm . for all male crabs 110 mm . in carapace length and larger. Extrapolation of the regression line beyond 170 mm . may introduce error, but the results are not appreciably affected as only a small proportion of the crabs of these larger sizes molt.

AVERAGE ANNUAL GROWTH INCREMENT OF THE POPULATION

If all adult male crabs molted once annually, their growth would be described as an accumulation at the rate of 16 mm . per year. However, the small adults molt amually, but as they increase in size, molting occurs less frequently. Since we do not yet know the molting frequency of individual crabs, we cannot describe their growth rate. We can, however, determine the average annual growth of the population by adjusting the growth increase determined from tagged individuals by the proportions of molting crabs observed.

The numbers of non-molters (old-shell crabs) and molters (new-shell crabs) by size, observed in samples for the years 1956 through 1959, are shown in figure 7. Shell condition was not recorded in 1955.

Since all sizes of adult male crabs greater than 110 mm . in carapace length were shown to increase by approximately 16 mm . per molt, the new-shell distribution for each year was shifted 16 mm . to the left. This has the effect of returning the new-shells to their size prior to molting. We then smoothed both distributions by a moving average of 7 mm . and calculated the proportion of new-shell to old-shell crabs for each millimeter size class. The result of the transformation, using the 1958 data as an example, is shown in figure 8. By multiplying the proportions molting by 16 mm., the average annual growth increment of crabs greater than 110 mm . was calculated for each year's data and shown in figure 9.

AVERAGE GROWTH RATES

In any growth study it is highly desirable to define growth in terms such as the growth of individuals or of an age class. Until permanent records of growth are found in crabs, or tagged individuals are returned after prolonged periods of freedom, it is unlikely that the growth rate of individuals can be described. It appears possible, however, to estimate the average growth rate of a year class.

Figure 7.-Size-frequency distribution by shell condition for the jears 1956 through 1959.

Figure 8.-Proportion of crabs molting, by size, as calculated from the 1958 sampling data.

Figure 9.-Average annual growth increments for the years 1956-59.

The simplest method of estimating the average growth rate would appear to be a stepwise accumulation of the average annual growth increments. For example, using the 1958 data (fig. 9) and assuming that the growth increments represent growth potential in terms of length, crabs 110 mm . in length at some single age N would, on the average, increase in size by 15.4 mm ., resulting at age $N+1$ in an average size of 125.4 mm . The average annual increment for 125.4 mm . crabs can then be added to determine the size at. age $N+2$, etc. It can be seen that the average annual increment is the average amount of growth for all crabs of a size, and that the proportions used are made up of crabs that have, and those that have not, molted. The resulting relation of size with time by this accumulating process is, therefore, in terms of average size against average age.

To avoid the use of double averages, a method was developed to express the growth rate in terms of average size at a particular age. The method utilizes a model which we believe represents the growth of the eastern Bering Sea king crab stock, and depicts the advancement of a size group through 6 years.

We will examine a hypothetical group of 10,000 male crabs under the assumption that the attained sizes of several year classes in one year are representative of the growth of one year class from year to year. Basic inferences derived earlier in the report from tagging and from the sampling data for 1958 are utilized in a hypothetical model. These are: (1) when male king crabs 110 mm . and larger molt, the carapace length increases by 16 mm ., and (2) the proportion molting by 16 mm . intervals (fig. 8) are: at 110 mm . carapace length, the proportion molting, P is 0.96 ; at 126 mm . $P=0.87$; at $142 \mathrm{~mm} . P=0.65$; at $158 \mathrm{~mm} . P=0.37$;
and at $174 \mathrm{~mm} . P=0.03$. Since there were no crabs larger than 195 mm . taken in 1958, we assume P at 190 mm . to be 0.02 , allowing for a slight decrease in molting frequency.

The smallest size considered in the model is 110 mm ., a size generally common to the progressions of modes described previously. Since most, if not all, crabs less than 110 mm . molt at least annually, and the modes in size frequency distributions of these sizes are quite definite, we assume that 110 mm . crabs in the model are all of one age class at N years of age. The sizes, numbers, and average size present in each of the successive years from age N to age $N+5$ are calculated and shown in table 3. At the end of the first year, since 96 percent of the $110-\mathrm{mm}$. crabs molt and 4 percent do not molt, the age group has been segregated into two size classes with an average length of 125.4 mm . The following year the crabs are of age $N+1$, and the $110-\mathrm{mm}$. crabs ($N=400$) and the 126 mm . crabs ($N=9,600$) are calculated to be distributed in varying numbers in three size classes consisting of 16 crabs remaining at 110 mm ., 1,632 crabs at 126 mm ., and the remaining 8,352 advancing to 142 mm . In this manner, at the end of the year of age $N+5$, five size classes are represented, the average length of the year class being 167.8 mm .

The 1956, 1957, and 1959 data are treated in the same manner, and the average lengths for each age for all years are tabulated in table 4. The growth curves based on the average sizes for each age are shown in figure 10. Both the table and the figure include an extension below 110 mm . to ages $N-1$ and $N-2$. The extension is the mean of the means of the progression of modes in the size frequency distribution discussed earlier.

Table 3.-A model representing the advancement of one size group of crabs following the growth trend as abserved from the 1958 sampling data
[Explanation of symbols: N, age in years; P, proportion molting; q, old shell]

Beginning of year					End of year							A veragesize in mm .
Age in years\boldsymbol{N}	Number of crabs	Carapace length in mm.	Proportion molting ${ }^{\prime}$ P	$\begin{gathered} (1-P) \\ q \end{gathered}$	Number of crabs by carapace length (mm.) and shell condition							
					110	126	142	158	174	190	206	
N---------.-.-------	10,000	110	0.96	0.04	1400	9,600						
					400	9, 800						125.4
$N+1$.	$\begin{array}{r} 400 \\ 9,600 \end{array}$	$\begin{aligned} & 110 \\ & 126 \end{aligned}$. 96	$\begin{aligned} & .04 \\ & .13 \end{aligned}$	116 384 11.248		8, 352					
Total					16	1,632	8,352					139.3
N+2...	$\begin{array}{r} 16 \\ 384 \\ 1,248 \\ 8,352 \end{array}$	$\begin{aligned} & 110 \\ & 126 \\ & 126 \\ & 142 \end{aligned}$	$\begin{aligned} & .96 \\ & .87 \\ & .87 \\ & .65 \end{aligned}$	$\begin{aligned} & .04 \\ & .13 \\ & .13 \\ & .35 \end{aligned}$	${ }^{11}$	$\begin{array}{r} 15 \\ 150 \\ 1162 \end{array}$	$\begin{gathered} 334 \\ 12,086 \\ 12.623 \end{gathered}$					
									----	----		---------
								5, 429				
Total					1	227	4,343	5, 429				150.3
$N+3$	$\begin{array}{r} 1 \\ 15 \\ 50 \\ 182 \\ 334 \\ 1,086 \\ 2,023 \\ 2.923 \\ 5.429 \end{array}$	$\begin{aligned} & 110 \\ & 126 \\ & 126 \\ & 126 \\ & 142 \\ & 142 \\ & 142 \\ & 158 \end{aligned}$	$\begin{aligned} & .96 \\ & .87 \\ & .87 \\ & .87 \\ & .65 \\ & .65 \\ & .65 \\ & .37 \end{aligned}$	$\begin{array}{r} .04 \\ .13 \\ .13 \\ .13 \\ .35 \\ .35 \\ .63 \end{array}$		$\begin{array}{r} 12 \\ 12 \\ 16 \\ 121 \\ 121 \end{array}$	-	------------				
					-----------		$\begin{array}{r} 13 \\ 44 \\ 141 \\ 1117 \\ 1380 \\ 11,023 \end{array}$	---------------	\cdots	--------		---------
					------...-			$\begin{array}{r} 217 \\ 106 \\ 1,900 \\ 13,20 \end{array}$	-------			------
					----	--------			2.009			-------
Total.					0	30	1,718	6, 243	2,009			158.4
N+4.-.		$\begin{aligned} & 126 \\ & 126 \end{aligned}$	$.87$		------		1					
				$\begin{aligned} & .13 \\ & .13 \end{aligned}$	------		2	-	-----------			---
		126	. 87	.13	--	${ }^{13}$	18	--	-		-------	-
		142 142	. 65	. 35	-		18 115 115	$\stackrel{8}{89}$	-	-------	-	-------
		142	. 65	. 35			${ }^{1} 49$	92	---------			
		$\stackrel{142}{142}$. 65	- 35			141 1133 1	${ }_{24}{ }^{76}$	--			---------
		142	. 65	. 35	---------	------	1358	665	--------	--------		---------
		158 158	.37 .37	-63	-	------------	------	1 1448	${ }_{361}^{80}$	----		---------
		158	. 37	-63	---	-----		${ }^{1} 11.107$	${ }^{703}$	-------		------------
			.03	. 97	------------				11,949	60		
Total.					0	4	627	5.051	4, 258	60		164.0
$N+5 \ldots \ldots-\cdots$		128		$\begin{aligned} & 0.13 \\ & 0.13 \end{aligned}$								
	$\stackrel{3}{3}$	${ }_{142}^{126}$				-	3	-----	------	俉		-----
	1	${ }_{142}^{142}$.65		-		${ }_{1}$		--------	-----------	--------	-------
	5	142	:65	$\begin{array}{r} .35 \\ .35 \\ .35 \end{array}$	-	--mor	12	3	-			-
	$\begin{array}{r}18 \\ 5 \\ \hline\end{array}$	142			-----------	-......-	12	${ }_{3}$	----	------	-----.-.-	---------
	15	142	$\begin{aligned} & .65 \\ & .65 \end{aligned}$. 35	-		${ }^{1} 5$	10	--..---			
	41	142 142	($\begin{array}{r}.65 \\ .65 \\ .65 \\ \hline 65\end{array}$.35 .35 .35	-		114	${ }_{27}$	-------			
	133			. 35	-		${ }^{147}$	86	-	--		------
	$\begin{array}{r}358 \\ 8 \\ \hline 8\end{array}$	142 158 158	. 65	. 35	---......	------	${ }^{1} 125$	28	${ }^{-}$	--		--....--
	29	(158	.37 .37 .37 .37	$\begin{aligned} & .85 \\ & .63 \\ & .63 \end{aligned}$	-			118	11	-------		
	$\stackrel{92}{78}$. 37	. 63				158	34	-------		
	247	158 158 158 158	.37.37.37.37	$\begin{aligned} & .63 \\ & .63 \\ & 83 \end{aligned}$	--...-.	兂	---.-.-.---	1156	${ }_{91}^{28}$	---------	-.	-----------
	-685	158 158 158 1		$\begin{gathered} 63 \\ .83 \\ .83 \end{gathered}$.	-.--	---------	1419 188 188	246			
	445	158	.37 .37 .37	$\begin{aligned} & .63 \\ & .63 \\ & .63 \end{aligned}$	-.			1280	165	-	-	
	1,197			. 83	---------				443		-	
	80	(158	. 03	$\begin{aligned} & .97 \\ & .97 \end{aligned}$					${ }_{1} 78$		-	
	${ }_{703}^{2081}$	174 174 17			---------						--	------
	1.265	$\begin{aligned} & 174 \\ & 174 \\ & 190 \end{aligned}$.03	. 97					${ }^{1} 1.227$	38	-	--.--------
	${ }^{1,949}$		$\begin{aligned} & .08 \\ & .02 \end{aligned}$						1 1,891	+ 58	1	
					0	0	223	3,690	6,000	186	1	167.8

: Old shell.

Figure 10.-Average growth curves of adult male king crabs for each of the years 1956 through 1959 as determined from population models (solid lines). The broken line extension represents the average progression of modes in the size frequency distributions. N represents an age in years at which crabs are 110 mm . in carapace length.

Table 4.--Average size at each age of the southeastern Bering Sea population of adult male hing crabs as determined from modal progression in size-frequency distribution and from growth per molt multiplied by the molting proportions in each size

Age	A verage sizes present by year			
	1956	1957	1958	1959
N-2	80.7	80.7	80.7	80.7
$\boldsymbol{N}-1$	96.0	96.0	96.0	96.0
\boldsymbol{N}	110.1	110.1	110.1	110. 1
$\boldsymbol{N}+1$	125.5	120.1	125.4	125. 4
$\mathrm{N}+2$	140.6	128.7	139.3	140.9
$\mathrm{N}+3$	152.0	136.1	150.3	154.6
$\boldsymbol{N}+4$	159.0	142.5	158.4	161.4
$\boldsymbol{N}+5$	163.7	148.1	164.0	165. 4
N+6.	167.2	153.0	167.8	168.4

It would be unrealistic to extend the growth model beyond $N+6$, because very few crabs greater than 200 mm . in carapace length are taken in the eastern Bering Sea. In addition, from the curves presented, it appears that in most years the average length is approaching an asymptote, and any further increase in age will not greatly affect the average size of the year class.

DISCUSSION

The growth rates calculated from the 1956, 1958, and 1959 data show general agreement, but 1957 data suggests an appreciably lower rate. This is due primarily to the apparent lower proportion of molters in the 110 - to $150-\mathrm{mm}$. carapace length range. In view of the discrepancy of the 1957 data, and because of the few years for which we have data, no attempt has been made to develop a single growth curve.

The model assumes that molting rate is a function of size. It might be questionable that crabs of any one size, which did not molt, will exhibit the same molting rate the following year. The molting proportion, P, used in the model are the proportions observed in the entire sample (population), and in the larger sizes undoubtedly includes several year classes with crabs of various shell conditions. The assumption that crabs of a common size, with varying time since the last molt, have equal molting rates is guided by the fact that the P 's are averages of all molting rates that occur in the eastern Bering Sea; that is, the molting rates of new-shell and old-shell and, to a lesser degree, very-old-shell crabs make up P.

If molting rates of the various shell conditions differ widely, they must differ around P; that is,
any large deviation of the molting rate of one shell type from P must be accompanied by a compensating deviation of one or both of the other. For example, if the molting rate of old-shell crabs is high, the molting rate of new-shell crabs would be low, and in any particular year of the age-class progression where old-shell crabs predominate, the average size would be greater than that indicated in the model. However, in the following year the increased number of new-shell crabs resulting from the high-molting rate of the old-shell crabs would be subject to the low molting rate of crabs having new shells. The result would be a lower average size of the year class for that year. The growth rate under such a condition would be step-like, and smoothing would result in a curve that would approximate that developed by considering P constant for size, as we have done.

Observed molting proportions may also be affected by other factors: (1) varying environmental conditions, (2) varying year class strength, (3) differential natural mortalities by shell conditions, and size. Our studies with respect to the above factors have not progressed sufficiently to measure their effect on molting proportions.

The model does not consider mortality. Although this may be unrealistic, mortality was not included since our measures of mortality rates are not yet definitive, and constant loss would not change the results.

There is no reason to expect appreciable differential natural mortality by size or age for the range of size and age being discussed here. It might be expected, however, that there would be a higher death rate of crabs that molt than those that do not. The effect of molting mortality is negated by the fact that molting proportions are based on numbers surviving; therefore, after the effect of molting mortality. Although there is some differential mortality due to fishing, since the fishery continually strives to catch the larger old-shell male crabs, this mortality is not evaluated in the model. The fishery operates concurrently with our sampling efforts, and at present there is no way to assess its effects. In addition, preliminary examination shows that the fishery, through 1959, takes a relatively small proportion of the king crab population as a whole.

For use in calculation of yield, it would be expedient to express our growth curves as mathe-
matical functions. At present, however, the complexity of interdependence of growth, mortality, and recruitment precludes the mathematical formulation of a growth parameter which is suitable for analytical purposes. Either elimination or determination of the interaction of mortality and recruitment on our data must be resolved first; for prediction of yield under varying conditions requires that each parameter be independent or in terms of coefficients which represent the magnitude of their integrated effect. Also, the growth rate presented represents the average growth of the population by lengths and would, for the purpose of calculating yields, be more meaningful if presented in terms of weights. The king crab's live weight is, however, not very significant, since meat-weight is subject to wide variation for any one size, while body-weight remains essentially constant. Therefore, it seems more appropriate to discuss growth by weights and resulting yield in a study of productivity.

It would be desirable to compare the growth curves developed in this paper with those of Marukawa (1933), Nakazawa (1912), and Wang (1937), presented earlier. The Marukawa and Wang growth curves are based on size intervals between modes and progression of modes in sizefrequency distributions which would tend to reflect the growth of only molting crabs. Nakazawa bases his curve on growth increment per molt and frequency of molt which he assumes occurs at least once a year. Thus, his curve would also reflect primarily the growth of only molting crabs. The curves developed in our paper, on the other hand, are weighted by the proportion of each size that does not molt and for the larger sizes particularly will show a slower growth rate. Therefore, the curves developed by the authors cited and those described in this report are not directly comparable.

Considering the rate of growth concerning juvenile crabs, as shown by the data of the above investigations and our observations in Unalaska Bay, we speculate that an $80-\mathrm{mm}$. crab ($N-2$) in the eastern Bering Sea may be about 4 years old. We hesitate, however, to place a precise estimate of size and corresponding age on our N values until the present juvenile crab studies are further advanced.

SUMMARY

During the 6 years (1954-59) the U.S. Fish and Wildlife Service has carried on a study of the southeastern Bering Sea king crab Paralithodes camtschatica. One phase of the investigations has been to estimate the rate of growth of the adult male king crab.

Estimating the growth rate required the use of three factors: (1) group progression in size-frequency distribution; (2) growth increment per molt; and (3) the proportion of each size molting in any given year.

Observations of size group advancement through 5 years of size-frequency distribution samples afforded an estimate of the growth rate for the smaller adult crabs. Results show that a size group of crabs averaging 81 mm . in carapace length attains a length of 126 mm . after three years-an annual growth increment of 15 mm .

Tagged crabs measured at release and again at recovery provided data indicating that the growth per molt is approximately 16 mm . for all crabs more than 110 mm . in length. The proportion molting for each size was calculated from observations on shell condition reported during each year of the station-pattern sampling program. By combining growth per molt and the proportion molting, the average annual growth increment of crabs greater than $110-\mathrm{mm}$. carapace length is calculated. The resulting curves for each year of sampling exhibited a rapidly decreasing average annual growth increment as the crabs increase in size.

The growth rate of crabs, greater than 110 mm . in length, was estimated by employing a model which represents the progression of a year class through time for each of the years 1956-59.

The growth rates as estimated from size-group progression and the model method were combined. The resulting growth curves calculated from the 1956,1958 , and 1959 data were quite similar, and showed that on the average, male crabs 80 mm . in carapace length will attain a length of 168 mm . after 8 years of growth. Crabs growing at the rate depicted for 1957 would be 153 mm . in length at the end of an equal period. The reduced growth rate for 1957 was due primarily to the lower frequency of molting recorded in the 110 to 150 mm . sizes.

LITERATURE CITED

Ellson, J. O., Donald E. Powell, and Henky H. Hildebrand.
1950. Exploratory fish expedition to the northern Bering Sea in June and July, 1949. U.S. Fish and Wildlife Service, Fishery Leaflet 369, 56 p.
Fisheries Agenct of Japan.
1958. Report of the king crab study in the eastern Bering Sea. Annual Report for the year 1957, International North Pacific Fisheries Commission, Vancouver, Canada, p. 49-53.
Fishery Market News.
1942. The Alaskan king crab. U.S. Fish and Wildife Service, Fishery Market News, vol. 4, no. 5a, May 1942-Supplement. 107 p.
Greenwood, Melvin R.
1958. Bottom trawling explorations off southeastern Alaska, 1956-57. Commercial Fisheries Review, vol. 20, no. 12, p. 9-21.
MacKay, Donald C. G., and Frank W. Weymouth.
1935. The growth of the Pacifle edible crab, Cancer mayister Dana. Journal of the Biological Board of Canada, vol. 1, no. 3, p. 191-212.
Marukawa, Hisatoshi.
1933. Biological and fishery research on Japanese king crab Paralithodes camtschatica (Tilesius). Journal of the Imperial Fisheries Experimental Station, Tokyo, no. 4, Paper no. 37, 152 p. [In Japanese with English abstract.]

Nakazawa, Kitchi.
1912. A study on the Hokkaido king crab. (Hokkaidosan tarabagani no kenkyu). Tokyo, Dobutsugaku Zasshi (Zoological magazine), vol. 24, no. 279, p. 1-13. [In Japanese.]
Sato, Sakae.

- 1958. Studies on larval development and fishery biology of king crab, Paralithodes camtschatica (Tilesius). Bulletin of the Hokkaido Regional Fisheries Research Laboratory (Yoichi), no. 17, p. 1-102. [In Japanese with English summary.]
Finogradov, L. G.

1945. Godichnyi tsikl zhizni i migratsii kraba v severnoi chasti zapadnokamchatskogo shel'fa. (The annual life cycle and migrations of the crab in the northern part of the west Kamchatka shelf.) Vladivostok, Izvestiia Tikhookeanskii Nauchnoissledovatelskii Institut Rybnogo Khoziaistva i Okeanografi, vol. 19, p. 3-54.
Wallace, W. Marvin, Camile J. Pertuit, and Arifur R. Hvatum.
1946. Contribution to the biology of the king crab (Paralithodes camtschatica Thesius). U.S. Fish and Wildife Service, Fishery Leafiet no. 340, 50 p.
Wang, Ir-Kuan.
1947. On the stock of the crab, Paralithodes camtschatica (Tilesius), in the seas of Hokkaido and Saghalin. Bulletin of the Japanese Society of Scientific Fisheries, vol. 5, no. 5, p. 291-294. [In Japanese with English synopsis.]

APPENDIX

The following tables of data on the king crab are those on which the figures and calculations in the text are based.

Appendix Table 1.-Size frequency distribution and size frequency by shell conditions of male hing erabs from sampling data taken in each of the years 1955-59

Carapace length in mm .	$\begin{gathered} 1955{ }_{\text {total }} \end{gathered}$	1956			1957			1958			1959							
		Shell condition		Total														
		New	Old															
50.																		
51-----------------					1		1	2		2								
54-----------------								10		10								
58.-----------------------		1		1				6		6								
59-----------------------				1				4										
								1		1								
								4			1							
72--.--------------------					5		5	3			1							
74--------------------------							8				$\stackrel{3}{2}$							
76----------------------	5			3	5		${ }_{6}$	9			1	---1.-						
88-...-.-.-------------------	5 3	${ }_{5}^{6}$	----------	${ }^{6}$	${ }_{9}^{5}$	1	${ }_{1}^{6}$		----									
			1															
	9	26	1	${ }^{2} 28$	15		23	55	3	58	27							
1190...-.-.		$\begin{aligned} & 19 \\ & 24 \end{aligned}$		$\begin{aligned} & 20 \\ & 2020 \end{aligned}$			$\begin{aligned} & 13 \\ & 22 \end{aligned}$	$\begin{aligned} & 39 \\ & 43 \end{aligned}$		844		1						
i See footnotes at end of table.																		

Appendix Table 1.-Size frequency distribution and size frequency by shell comditions of male hing erabs from sampling data taken in each of the years 1955-59-Continued

[^4]Appendix Table 2．—One hundred twenty－eight within－year taj recoveries

	迷浐
	嗗浐
	违浐

Appendix Table 2．－One hundred twenty－eight within－ year tag recoveries－Continued

Year released	Release		Recovery		Deviation from release measure－ ment at recovery
	Carapacelength	Carapace width	Carapacelength	Carapacewidth	
					Carapace length
1958－－－－－	${ }^{\text {mm．}} 157$	$m m$ ． 191	${ }^{m m}{ }_{156}$	$m m$ ． 192	mm．
1958．－－－－	149	171	148	169	－1
1958．．．－－	168	203	168	201	
1958．－－－	172	204	171	207	－1
1958－－－－－－－	158	191	159	193	
1958－－－－－－－－	161	197	163	196	2
1958－－－－－－	164	185	162	190	－2
1958－．－－－－	144	170	143	173	－1
1958－－－－－－－	164	193	163	198	1
1958－－．－－－－	157	185 213	157 185	189 220	－1
1958－－－－－－－	161	187	161	190	－1
1958	158	184	157	187	－1
1958	170	206	170	210	0
1958．	184	217	183	226	－1
1958．－－	181	210	181	213	
1958．	176	209	176	210	
1958－．－	175	208	175	209	
1958．－．．．－	173	205	173	212	0
1958．．－－－－－－	144	166	143	168	－1
1958－－－－－	165	200	165	202	
1958－－．．－	172	202	170	206	－2
1958－－．	158	183	158	185	
1958．－－－－－	164	196	164	197	0
1958－－－－－－－	180	208	179	213	－1
1958－－－－－－	140	168	140	171	0
1958	160	183	1.58	188	－2
1958－	152	173	151	175	－
1958－－－－－－－	162	196	161	195	－1
1958－－－－－－－	137	163	138	163	
1958－－－－－－－－	175	202	175	212	0
1958－－－－－－	166	193	167	196	1
1958－－－	164	193	163	198	-1
1955－－－－－	175	202	175	208	0
1959－．－－－．．．	143	167	142	170	－1
1959．－．－．	166	195	165	196	－1
1959．－．－－－	152	182	151	185	－1
1959－－－－－－－	175 162	208 186	173 162	214	－2
1959－－－－－－－－	162 145	188 167	162 145	171	0
1959．	171	203	170	207	－1
1959－－－－－－－	167	187	167	199	0
1959	144	164	143	164	－1
1959－－－－	151	171	150	174	－1
1959－－－－－－	163	192	162	197	－1
1959．．．－－．	162	192	161	194	－1
1959．－－－－－	147	174	146	178	－1
1959－－－－－－	157	179	156	182	－1
1959－－－－－－	171	202	171	206	0
1959－－－－－－－	164	194	163	199	－1
1959－－－－－－	162	188	162	191	0
1959－－－－－－－－	168 167	193 190	167	195 196	－1
1950．－－－－－－－－	153	176	153	177	－1
1959．．．	148	169	147	173	－1
1959－．．．－．	194	223	193	226	－1
1959．	171	202	169	205	－2
1959－－－	167	200	166	202	－1
1959－－－－－	161	192	160	193	－1
1959．－．．－－	154	182	154	182	0
1959－－－－－－	148	172	149	175	1
1959－－－－－	188	198	167 162	201	－
1959－－－－－－－	168	194	162	191	－6

${ }^{1}$ Carapace measurements of the 1057 within－year recoveries were not re－ corded．

Appendix Table 3.-Spaghetti-type tag recoveries showing growth

Appendix Table 3.-Spaghetti-type tag recoveries, showing growth-Continued

Year	Release data		Shell condltion	Year	Recovery data		Shell condition	Growth increment		Year	Release data		Shell condition	Year	$\begin{gathered} \text { Recovery } \\ \text { data } \end{gathered}$		Shell condi-tion	Growth increment	
	mm.				166	198		7	m		mm.	mm.			m.	m.		m.	
$\begin{aligned} & 1955 . \\ & 1955 . \end{aligned}$	159	187	Unknown	1956	166	182	Unknown..-	7		1956	151	172	Old	--do--	163	190	Id	12	18
1955.	131	144	do	1956	146	164	New	15	12	1956 1956	124	141	New	do--	134	157		10	13
1955	147	169	do	1956	165	195	do	18	26.	1956	118	137	Ne-do	1959-	134	157		19	25 20
1955	109	124	do	1956	129	150	--do	20	26	1956	145	164		1969	163	189		18	2
1955.	136	156	New	1957	151	179	Old	15	23	1956	143	167	do	1959	160	194		17	25
1955.	119	130		1957	139	158	-	20	26	1956	118	131		1959	154	181	Very	36	1270
1955.	135	155		1957	149	176	do	14	25	1956	155	181		1959	173	209	Old.	18	- 28
1955	135	153		1957	153	176	do	18	23	1956	148	170	-d	1959	167	192	Ol.-d	19	22
1955.	149	173	do	1957	166	201	d	17	28	1956	152	173	-do	1959	170	197	do	18	24
1965.	135	156	do	1957	163	181		18	25	1956	150	178	Very	1959	162	193	--.do	12	15
1955.	149	174		1957	163	195	do	14	21	1956	117	119	New.	1959	136	156	New	${ }_{29}^{12}$	${ }^{1} 15$
1955.	160	193	d	1957	176	217		16	24	1956	156	185	Old.	1959	168	202	Very	12	137 17
1955.	137	153	do	1957	153	174	Now	16	21	1956	166	196	----do	1959	177	210	Old.	11	14
${ }_{1955}^{1955}$	141	180	do	1957	178	179 210	New	10	19	1956	161	188	do	1959	174	204	very 0	13	16
1065	148	170	d	1957	176	196	Old.-do	18	25	1956	147	174	New	1959	171	196 205	old do.--.--	14	22
1055.	120	133	do	1957	134	153	do	14	20	1956	141	166	Ne-do	1959	156	187	Old	15	29 21
1955	141	160	do	1957	169	184	do	18	24	1956	157	181	--do	1959	175	204	Very oid----	18	21 23
1955.	133	158		1957	149	186		16	28	1956	144	164	do	1959	163	195	old----------	19	31
${ }_{1955}^{1955}$	153	173	do	1957	167	178	do	14	22	1956	143	168	-d	1959	160	186	O	17	18
$\begin{aligned} & 1955 . \\ & 1965 . \end{aligned}$	143	149		1957	154	176 190	----	20	27	1956	142 148	167	do	1959	150	181		8	14
1955	138	159	do	1957	153	180	do	15	21	1956	148	179	do	1959	166	208		18	29
1855.	128	149	do	1957	146	175		18	26	1956	156	181	do	1959	170	199	d	14	27 18
1955.	126	144	do	1957	142	170	do	16	26	1956	128	153	do	1959	146	177		18	24
1955	127	143	do	1957	145	186	do	18	23	1956	157	187	-d	1959	172	203	do	15	16
${ }^{1955} 1955$	141	162	Undo	1957	160 157	187	do	19	25	1956	160	193	do	1959	178	220	-do	18	27
1955	149	178	Unknow	1958	163	189	---do	13	19	1956	131	156	d	1959	148	182	-do	17	26
1955.	152	178	Unknov	1958	164	194	---.do	12	16	1956	128	147	-	1959	150	176		22	29
1955.	146	164	do	1958	164	191	--do.----	18	27	1956	147	169	d	1959	168	196		21	30
1955	117	135	dor	1958	147	174	New	30	${ }^{1} 39$	1956	131	146	do	1059	146	165		15	27 19
1955.	122	143	do	1958	151	181	Old	29	${ }^{1} 38$	1956	136	159	d	1959	152	182		16	19 23
1055.	142	163		1958	161	192	--.-do	19	29	1956	133	156	do	1059	153	187		20	31
${ }_{1}^{1955}$	138	157		1958	158	183 194	----do	17	26 18	1956	132	157	do	1859	152	187	do	20	30
1955	139	165		1958	150	184	-----d	11	18	1956	146	176	da	1959	153	185	d	7	9
1955.	142	161		1958	159	190	do	17	29	1956	147	178	old.	1959	155	${ }_{205}^{181}$		18	24 27
1965	149	179	do	1958	163	200	do	14	21	1956	138	164	New	1959	154	186	Very old.---	18	$\stackrel{27}{22}$
1955	146	171	do	1958	162	178	Very old....-	16	24	1956	133	155	----d	1959	151	177	Old	18	22
${ }_{1955}^{1955}$	134	158	do	1958	147	178	Old	13 37	- 20	1956	139	156	--d	1959	154	175		15	21
1955	159	176	New.	1958	173	202	Old.	14	26	1956	145	173	da	1959	167	192do	22	32
1955	143	161	Unknow	1959	162	192	Very old	19	31	1956	160	182	do	1959	182	212		22	39
1955	128	145	-.-do.	1959	163	195	old.	35	i 50	1956	137	169	do	1959	153	183		16	$\stackrel{30}{28}$
1955	144	166	-do	1859	176	211	-do	32	145	1956	136	154	New	1959	159	180	Oold	${ }_{23}$	28
1955	125	139	do	1959	154	186	-do	29	147	1956	154	176	--.-do	1959	174	204	-10	20	28
1955	123	138		1959	157	186	---do	34	148	1956	154	179	--do	1959	166	109	. d	12	20
1955	111	129	do	1959	148	180	-do	37	${ }^{1} 51$	1956	153	178	do	1959	168	201	-	15	23
1955 1955	163	186	do	1959	175	$\underline{309}$		14		1956	153			1959	171	197		18	24
1955 1955	133	175	do	1959	169 147	178	Very	16	23	11956	141 145	169	Old	1959	151	183	Very old.---	10	14
1955	125	141	do	1959	153	181	--do	28	40	1956	140	160	- ${ }^{-1}$	1959	155	181	Old.	10	13 20
1955	143	171	do	1959	160	197	Very old...--	17	26	1956	143	161	old.	1959	153	176	- Very 0	10	15
1955	164	191	do	1959	177	211	--do-.-----	13	20	1956	147	166	New	1959	167	195	Old-..-------	20	29
1956	155	180 170	Old.	1957	${ }_{161} 17$	203	New	16	23	1956	146	173	-d	1959	164	200	.-.do	18	27
1956 1958	145	170	New.	1957	135	196	Old	13	26 18	1956	154	179	-	1959	174	207	-do	20	28
1956	125	146	-	-do.-	142	169	----do	17	18	1958	134 128	158	Old	1959	152	178		18	18
1856	150	175	Old	-do--	181	189	.do	11	14	1957	133	147	New	1958	148	171	New-	15	18
1956	130	153	do	--do-	139	164	- do	9	11	1957	107	121	----do	1958	117	137	----	10	16
1956	139	155	-d	--do	156	175	-_do	17	20	1957	113	127		1958	127	151	do	14	24
1956	153	174		--do.	170	193	-do	17	19	1957	125	144	-do	1958	139	162	do	14	18
1956	159	183	do	--do-	167	207	do	15	24	1957	112	129	- do	1958	126	151	----do	14	22
1956	148	177	d	--do	166	202	do	18	25	1957	106	119		1958	113	126	--.-do	7	7
1956 1956	163	196	do	--do-	177	215	----do	14	19	1957	1110	125	-do	1958	120	140	-	10	15
1956	151	174	do	-.do.--	160	187	-d	14	18	1957	1119	123	Old.	1958	124	144	--.-do	${ }^{5}$	11
1956	149	175	do	-do--	164	189	-do	15	14	1957	1128	147	New-	1958	134	170	do	16	20 23
1956	138	161	New	-do	150	180	----do------	12	19	1957	126	142	d	1958	145	168		19	24
1956	132	151	d	-do	151	177	d	19	26	1957	107	117		1958	122	141	-do	15	24
1956	129	142	d	..do.	141	159	-do	12	17	1957	118	134	d	1958	134	156	do.	16	22
1956	125	147	--do	. do	139	167	----do	14	20	1957	116	134	do	1958	132	154	do	16	20
1956	140	164	Old	-do	155	183		15	19	1957	112	123	-do	1958	126	141		14	18
1956	164	195	New	--do.-	178	217	do	14	22	1957	127	142	Old	1959	135	175	Old	14	19
1956	141	164	Old.	.do.-	154	186	do	13	22	1957	153	182	Very	1959	167	205	do	14	28
1956	149	174	..do	-do. -	185	201	do	18	25	1957	122	142	Old	1959	137	167	-do	15	25
1956	137	155	--	.-do--	152	178	do	15	$\stackrel{23}{ }$	1957	153	178	-do	1959	166	200	Very old..--	13	22
1956	149	177	New	--do--	164	199	do	15	22	1957	115	128	New	1959	128	150	New--..---	13	22
1956	122	139	-do	-do--	137	158	-do	15	19	1957	142	168	Old	1959	158	190	Very old	16	22
1956 1956	130	147	--1	--do--	145	168	do	15	18	1957	140	156	-...do	1959	156	178	-do	16	22
1956	148	176	Old	_-do	165	194		17	18	1957	138	159	-...-do	1959	157	186	...--do.-----	19	27

Appendix Table 3．－Spaghetti－type tag recoveries，show－ ing growth－Continued

	管
	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \end{array}$
 	咢
	管
	$\begin{gathered} \text { Carapace } \\ \text { lengtath } \\ \hline \end{gathered}$
	$\begin{gathered} \text { Carapace } \\ \text { with } \end{gathered}$
毋\％	

Appendix Table 3．－Spaghetti－type tag recoveries，show－ ing growth－Continued

	$\begin{gathered} \text { Carapace } \\ \text { length } \end{gathered}$	骨苞
	width Carapace	碽
 	品	
	$\begin{gathered} \text { Carapace } \\ \text { length } \end{gathered}$	－
	$\begin{aligned} & \text { Carapace } \\ & \text { wdoth } \end{aligned}$	边产
	$\begin{gathered} \text { Carapace } \\ \text { length } \end{gathered}$	茑응
	$\begin{gathered} \text { Carapace } \\ \text { width } \end{gathered}$	曾忥

[^5]
[^0]: PUBLISHED BY THE U.S. FISH AND WILDLIFE SERVICE - WASHINGTON - 1962
 Printed by the U.S. Government Printing Office, Washington

[^1]: Note.-Fishery Bulletin 200. Approved for publication, May 23. 1961.

[^2]: ${ }^{1}$ Marukawa, Nakazawa, and Wang's results were presented in terms of carapace width, and are so shown in figure 1. However, most if not all king crab investigators are presently using carapace length measurements, since this dimension is more definite and the points of measurement are more resistant to flexing when measuring callpers are applied. The conversion from width to length for male king crabs may be made by the formula : carapace length $=.14+0.925$ (carapace width), for sizes less than 95 mm. In carupace width ; and for slzes greater than 95 mm . the formula is: carapace length $=1.84+0.744$ (carapace width). These relations were calculated from length-width measurements of eastern Bering Sea ling crabs.

[^3]: ${ }^{2}$ The results of this study are described briefly in a paper submilted to the International North Pacific Fisheries Commission for inclusion in the 1959 Annual Report.

[^4]: 1 Shell condition not recorded in 1955.
 2 One crab of unknown shell conditions.
 ${ }^{2}$ Eight additional crabs under 50 millimeters.

[^5]: Considered as two molts．

