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Abstract—Mark-recapture studies 
using data collected at rotary screw 
traps (RSTs) are used to estimate 
abundances of migrating juvenile 
salmonids exiting natal rearing hab-
itats. Frequently, environmental con-
ditions and mechanical failures de-
crease RST efficiencies, or complete-
ly halt operations, leading to sparse 
and missing data. In this study, we 
show how a time-stratified hierar-
chical Bayesian model framework 
can incorporate prior information to 
increase the accuracy and precision 
of estimates made with sparse and 
missing data. To do this, we incor-
porated annually recurring salmonid 
emigration characteristics into the 
model using multiple years of data. 
We compared abundance estimates 
of the hierarchical multiyear model 
with 3 single-year Bayesian models, 
using simulated and real RST data. 
The hierarchical multiyear model 
was as accurate and precise as the 
best model when data were complete 
and abundant, but outperformed 
other models when data were sparse 
and missing for multiweek blocks. 
For species with low abundances or 
low detection efficiencies, the hier-
archical multiyear model used data 
from all years and recurring emigra-
tion characteristics to increase the 
accuracy and precision of estimates. 
This model is a valuable tool for fish 
and wildlife biologists who repeat 
mark-recapture studies annually 
and encounter sparse and missing 
data.

To effectively manage free-ranging 
animals, information on survival 
rate, population growth rate, and 
recruitment are needed to under-
stand factors influencing popula-
tions (Fryxell et al., 2014). It is of-
ten necessary to know abundances 
during various life stages to calcu-
late this information but obtaining 
censuses of natural populations is 
difficult (Seber, 2002). Studies struc-
tured around sighting, capturing, or 
counting individuals and expanding 
these counts based on detection or 
sampling efficiencies are regularly 
implemented to estimate abundances 
when a census is not feasible (Nich-
ols, 1992; Mill, 2007). These types of 
mark-recapture studies have broad 
application and have been used to 
estimate abundances of blue whales 
(Balaenoptera musculus) and hump-
back whales (Megaptera novaeangli-
ae) (Calambokidis and Barlow, 2004), 
grizzly bears (Ursus arctos) (Mowat 
and Strobeck, 2000), herbivorous in-
sects (Kareiva, 1983), and numerous 
other species so that marked indi-

viduals in the population can be de-
tected during later sampling periods. 

The Lincoln-Petersen model is 
foundational for estimating abun-
dances using mark-recapture data 
where unmarked abundance, U, 
is estimated using the number of 
marked individuals in the popula-
tion, n, the number of unmarked 
individuals counted or captured at 
a sampling event, u, and the num-
ber of marked individuals counted or 
captured at a sampling event, m:

 U = n.u.m−1. (1)

Lincoln–Petersen model assumptions 
can be difficult to satisfy, primar-
ily the assumption of equal capture 
probability throughout a sampling 
period, necessitating modifications 
to the model. Commonly, mark-re-
capture studies occur continuously 
over time where individuals are 
marked, captured, and recaptured 
for several weeks or months. The 
accuracy of an abundance estimate 
obtained from pooling data relies on 
the assumption that capture prob-
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abilities are homogenous throughout the sampling 
period. Changes in the environment, species behav-
ior, or sampling equipment can alter capture efficien-
cies, violating the assumption of homogenous capture 
probabilities and lead to biased abundance estimates. 
Sampling periods are often stratified temporally into 
smaller, more homogenous stratum for computation 
and later summed to minimize the violation of the 
capture probability assumption (Otis et al., 1978; 
Schwarz and Taylor, 1998). This stratification ap-
proach can be effective when sufficient data are avail-
able, but stratifying sparse data can lead to wide con-
fidence intervals or estimation failure resulting from 
division by zero when individuals are not recaptured 
during a stratum (Seber, 2002). 

When mark-recapture data are sparse or miss-
ing, hierarchical Bayesian models have proven to be 
an effective approach for obtaining abundance esti-
mates (Mackey et al., 2008; Royle et al., 2011; Sethi 
and Tanner, 2013). The Bayesian paradigm provides 
a framework to incorporate prior biological knowledge 
into models by using hierarchal structures between 
parameters and by specifying informative prior dis-
tributions (Ellison, 2004). When prior biological infor-
mation is available, structuring models to incorporate 
this information can produce more accurate and pre-
cise estimates (Royle and Dorazio, 2008). Mäntyniemi 
and Romakkaniemi (2002) implemented a hierarchical 
Bayesian model to estimate Atlantic salmon (Salmo 
salar) smolt abundances in the Conne River, Canada, 
and River Tornionjoki, in northern Scandinavia, while 
accounting for overdispersion associated with the spe-
cies schooling behavior. Bonner and Schwarz (2011) 
increased the precision and accuracy of abundance 
estimates of Conne River Atlantic salmon smolts by 
parameterizing the expected abundances of smolts 
as a smooth function of time, using penalized Bayes-
ian splines (P-splines) to address sparse data. These 
single-year models are effective with sparse data and 
short periods of missing data but fail to use or incorpo-
rate all the information available in long term monitor-
ing data sets. 

The goal of our study was to illustrate how a time-
stratified hierarchical Bayesian model framework can 
incorporate prior years of information to increase the 
accuracy and precision of estimates made using sparse 
and missing data. To achieve this goal, we took a 
2-step approach. First, we compared the performance 
of 3 Bayesian models that had within-year structures 
and 1 Bayesian model with a between-year hierarchi-
cal structure by using a simplified data set exhibit-
ing various degrees of sparse and missing information 
roughly similar to real data. By using a simplified data 
set constructed from known parameters, we were able 
to quantify model performance by comparing the ap-
proximate posterior distributions produced by each 
model to the known parameters used to create the sim-
plified data set. To illustrate how the concept works 
with real data, we then compare abundance estimates 
of the 4 models to 2 data sets, one set with complete 

and abundant data and another set with sparse and 
missing data. Covariates that were suspected to influ-
ence migration characteristics and juvenile abundances 
between years, e.g., seasonal hydrographic fluctuations 
and previous year counts of redds (nests dug by salmon 
in river beds), were excluded from both the data sets 
and model formulas in order to illustrate the basic con-
cept and functionality of the competing models. After 
we compared the use and functionality of competing 
models, we discuss the various ways covariates could 
be included and how models could be extended to ad-
dress more specific scenarios.

The model that used multiple years of data via the 
between-year hierarchical structure was able to bridge 
large periods of missing data (upwards of several weeks 
in some years) and sparse data by using the annually 
recurring emigration characteristics expressed by the 
species in the study, juvenile Chinook salmon (On-
corhynchus tshawytscha) in Idaho, to produce the most 
accurate and precise estimates. To our knowledge, this 
is the first time multiple years of data have been used 
to increase the robustness of abundance estimates cal-
culated from sparse and missing mark-recapture data 
based on annually recurring behavioral characteristics.

Materials and methods

There are 2 primary components to our study. First, we 
compare estimates produced from 3 single-year Bayes-
ian models and 1 hierarchical multiyear Bayesian mod-
el, using simulated scenarios reflective of missing and 
sparse data typical for monitoring with rotary screw 
traps (RSTs) in Idaho. To illustrate a proof of concept 
on how the structures of the Bayesian models function, 
models where simple (e.g., did not include environ-
mental covariates or individual movement parameters) 
and data for simulated scenarios were not stochastic. 
Parameter estimates produced for the simplistic simu-
lated data scenarios were compared with the known 
parameters used to create the simulated data to evalu-
ate bias and precision for each of the models. Next, we 
demonstrate how models performed with real juvenile 
Chinook salmon data collected at Marsh Creek and Big 
Creek, Idaho, which reflect good and poor quality data 
sets. We used the full data record from the initial year 
of trap operation to 2014 to inform the estimates for 
the 2014 emigration.

Field sampling and data collections

Mark-recapture studies have been widely implemented 
to calculate anadromous juvenile salmonid abundances 
at RSTs (Zabel et al., 2005; Venditti et al.1; Copeland 

1 Venditti, D. A., J. Flinders, R. Kinzer, C. Bretz, M. Corsi, 
B. Barnett, K. A. Apperson, and A. Teton. 2012. Idaho 
supplementation studies: brood year 2009 synthesis report, 
August 1, 2009–July 31, 2011. Idaho Dep. Fish Game Rep. 
12-13, 24 p. [Available from website.]

https://collaboration.idfg.idaho.gov/FisheriesTechnicalReports/Res12-13VendittiBY2009 ISS Synthesis Report Final.pdf
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et al.2). Since 1990, over 150 RSTs have been deployed 
in the Columbia River basin. Many RSTs operating 
for more than 20 years (Pacific States Marine Fish-
eries Commission, Columbia Basin PIT Tag Informa-
tion System, database available from website, accessed 
July 2015). Abundance estimates obtained from RST 
data are used to assess population productivity from 
the freshwater habitat and as the foundation for other 
life-cycle performance metrics (e.g., Venditti et al.1; 
Copeland et al., 2014). This demographic information 
is central for monitoring salmonid populations and is 
often used to inform conservation actions (Venditti et 
al.1; Copeland et al.2).

Rotary screw traps are passively operating traps 
constructed of a partially submerged cone mounted to 
2 pontoons (Johnson et al., 2007). The pontoons enable 
a RST to float while the cone funnels fish into a hold-
ing box located at the stern of the RST. Once fish are 
in the holding box, a helical twist within the cone pre-
vents individuals from swimming upstream and out of 
the trap. When a RST is in operation, a trap tender 
removes captured fish from the holding box. Targeted 
individuals are anesthetized, inspected for tags, and 
length and weight data are recorded (Johnson et al., 
2007). An allotted number of individuals are marked 
and released upstream of the RST (for a single trap 
design) or downstream (for a double-trap design) to be 
recaptured during proceeding days. 

Rotary screw traps in Idaho typically operate from 
early March until freezing temperatures and frazil ice 
make them inoperable in November. The exact dates of 
RST installation and removal are dependent on yearly 
environmental conditions and sampling duration can 
vary by 1 or 2 weeks among years. Unexpected ice, 
high water, and RST mechanical failures can reduce 
trap efficiency or halt RST operations for several days 
to several weeks within a year. During these outages, 
it is assumed fish continue to pass the RST because 
this migratory behavior was observed during previous 
years. Most stream-type Chinook salmon in Idaho fol-
low a recurring bimodal migratory pattern where the 
majority of a cohort begins emigration out of headwa-
ter rearing habitat in the fall and the remainder of the 
cohort emigrates in the spring (Bjornn, 1971, 1978). 

Parameterization of time-stratified mark-recapture models 

Data collection at RSTs consists of the daily number 
of unmarked and marked fish captured, and the num-
ber of marked fish released the day prior. Schwarz 
and Bonner3 found that weekly stratification of RST 

2 Copeland, T., R. V. Roberts, B. N. Oldemeyer, and K. A. Ap-
person. 2013. Idaho steelhead monitoring and evaluation 
studies: annual progress report, January 1, 2012–December 
31, 2012. Idaho Dep. Fish Game Rep. 13-07, 47 p. [Avail-
able from website.]

3 Schwarz, C. J., and S. J. Bonner. 2012. An application of a Bayes-
ian stratified-Petersen model to estimate the number of outgoing fish 
on the Cheakamus River, British Columbia. Simon Fraser Univ. Rep. 
2012-02-22  . [Available from website.] 

mark-recapture data provided a sufficient balance be-
tween maintaining run characteristics while avoiding 
unnecessary data sparsity issues under the assumption 
that daily capture probabilities were similar within the 
week. Therefore, we opted to stratify year (j=1,…,t) by 
ordinal week (i=1,…,s). If capture probabilities were 
subject to high variability within a weekly stratum, 
stratum size could be decreased. For our model that 
used multiple years of data, the weekly stratification 
of the number of unmarked fish captured in the ith 
stratum in the jth year was denoted as uij, the number 
of marked fish released in the ith stratum in the jth 
year as nij, and the number of recaptured fish captured 
in the ith stratum in the jth year as mij. For the 3 
models that used data from 1 year, symbol designation 
remained the same but the subscript denoting year, j, 
was removed.

The likelihood function of time-stratified mark-re-
capture models implemented in the Bayesian frame-
work consisted of 2 primary components: the prob-
ability an individual was captured at the RST and the 
estimated number of unmarked individuals passing the 
RST. The numbers of individuals recaptured in a stra-
tum, mij, were assumed to be binomially distributed by 
the number of marked individuals released upstream 
of the RST within the stratum, nij, and the probability 
that an individual passing the RST was captured, pij:

 mij ~ Binomial(nij, pij). (2)

Previous studies have modeled mij as a multinomial 
distribution incorporating an additional parameter 
describing the process of an individual’s probability of 
being available for recapture during a later stratum 
(Mäntyniemi and Romakkaniemi, 2002; Bonner and 
Schwarz, 2011). We chose to exclude this parameter to 
simplify our models because >96% of juvenile Chinook 
salmon recaptured at RSTs in our study did so within 
the proceeding day of release. The likelihood of the 
model is complete when the number of unmarked indi-
viduals captured within a stratum, uij, is incorporated 
by using the binomial distribution:

 uij ~ Binomial(Uij, pij), (3)

where Uij = the estimated number of unmarked fish 
passing the RST during the stratum. 

The assumptions of the time-stratified Lincoln–Peters-
en model are (Otis et al., 1978) as follows:
1 Individuals do not emigrate or die between marking 

and recapture;
2 Marks or tags are not shed;
3 Marks or tags are detected if present at recapture;
4 Marked and unmarked individuals within a stratum 

have the same probability of capture;
5 Individual movements within a stratum are inde-

pendent; and
6 Individuals passing or being released below the RST 

are emigrating downstream and remain below the 
RST.

https://www.ptagis.org/
https://collaboration.idfg.idaho.gov/FisheriesTechnicalReports/Res13-07Copeland2012 ISMES.pdf
http://people.stat.sfu.ca/~cschwarz/Consulting/BCHydro-2012-04-04/OldReports/Report-2012-02-22.docx
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Model set

We compared 4 models by using the constructed like-
lihood components outlined above with different pa-
rameter structures. The most basic model, MPS (pooled 
capture probability and simple abundance parameters), 
analyzed 1 year of data with a simple prior for U 
where log(Ui) shared identical normal priors with fixed 
mean and variance and where capture probability (p) 
was pooled, pi=p for i=1,…,s across all strata. The MPS 
model structures are functionally similar to a pooled 
Lincoln-Petersen model in that p are structured to be 
pooled and constant across strata within the year and 
U is independent between strata.

The second model was similar to models used by 
Mäntyniemi and Romakkaniemi (2002), which al-
lowed information about U and p to be shared among 
strata within the year, and is denoted MHW (hierarchi-
cal within-year parameter structure). This model con-
tained a hierarchical structure that assigned both U 
and p, log(Ui) and logit(pi), normal priors with common 
mean and variance within the year. The MHW hierar-
chical structures allow information about U and p to be 
shared across all strata within a single year.

The third model is structured from Bonner and 
Schwarz (2011) and uses the P-spline hierarchical pri-
or for U to smooth estimates between adjacent strata, 
localizing the sharing of information between adjacent 
strata within the year, and is denoted MSPLINE. A hier-
archical structure for p assigned logit(pi) normal priors, 
with common but unknown mean and variance within 
the year, was used for the MSPLINE model. The MSPLINE 
hierarchical structures allows information about p to 
be shared among strata throughout the year but uses 
the temporal ordering of strata within the year to give 
greater weight to adjacent strata for sharing informa-
tion in regards to U. Following the recommendations 
of Lang and Brezger (2004) and Schwarz and Bonner,3 
we placed knot points evenly across strata at 4-week 
intervals. These authors found that this spacing was 
a suitable compromise between spline overfitting and 
sharing information among strata. We chose to exclude 
the additional parameter used to model the probability 
that an individual is available for recapture in proceed-
ing strata as explained above. 

The hierarchical multiyear (between-year) model, 
MHB, allows information from the same temporal peri-
od among years to be shared in regard to p and U. MHB 
contains a hierarchical structure for U and p, where 
log(Uij) and logit(pij) have a common mean within stra-
ta of the same ordinal time period between years. By 
structuring the hierarchy between years, recurring run 
characteristics specific to each stratum (ordinal week 
for this study) were integrated into the model. 

Selection of prior distributions for the highest level 
of the model hierarchies was chosen to be vague and 
weakly informative in regard to their parameters and 
to be identical to prior distributions used in previous re-
search when applicable. Prior distributions selected also 
aligned with expert knowledge of and experience with 

RSTs. For instance, capture probabilities at RSTs rarely 
exceed 0.5 and often average 0.1–0.2 depending on the 
trap location and time of year. The prior distributions 
selected for the hyperparameters of each capture prob-
ability for each model had a median of roughly 0.1 and 
95th percentiles from 0.0 to 0.5. Additionally, prior dis-
tributions for the hyperparameters of each abundance 
parameter have a median abundance of roughly 22,000 
with 95th percentiles from 814 to 583,381, with the ex-
ception of the MSPLINE model that uses hyperparameters 
implemented by Bonner and Schwarz (2011). Complete 
structures for all models can be found in Supplementary 
Table 1 and Supplementary Figures 1–4.

Test data sets

A simplified data set roughly similar to RST data found 
in Idaho was created with known U and p parameters. 
The simulated data set used for the scenarios spanned 
10 years (j=10) with 35 strata per year (i=35). This 
scheme roughly corresponds to the early spring transi-
tion in mid-March and the late fall transition in mid-
November. The migration of juvenile Chinook salmon 
in Idaho typically has 2 pulses, one in the spring and 
one in the fall; therefore, parameters Uij followed a 
smooth bimodal run with a small peak at strata 6 
(mid-May) and the majority of the individuals centered 
on a peak at stratum 29 (late September). Parameters 
pij were constant at 0.333 for strata 1–4 and 13–35, 
and constant at 0.111 for strata 5–12. As discharge 
increases in the spring, RSTs are often relocated out 
of the thalweg to slower portions of the river transect 
to avoid woody debris and decrease mechanical stress 
on the sampling equipment. In addition, as discharge 
increases, the relative amount of water sampled by 
RSTs decreases. These conditions often decrease trap 
efficiencies and are the justification for the decreased 
capture efficiencies for strata 5–12 in our simulated 
data. The number of marked individuals, nij, released 
in each stratum was equivalent to the number of un-
marked individuals captured, uij, up to 50 individuals. 
The restriction to 50 individual was implemented to 
mimic tag and handling permit constraints that are 
common when dealing with threatened or fragile spe-
cies at RSTs. Total yearly abundance summed over all 
35 stratum was 23,477.

This data set was modified to simulate realistic oc-
currence of sparse and missing data. The scenario us-
ing data produced from the parameters listed above 
was denoted as “full” owing to the completeness across 
strata and years and was the initial scenario in our 
simulation study used for subsequent modification. 
The second scenario is identical to the full scenario 
with the exception of information from strata 5–8 in 
the first year being removed. This 4-stratum exclusion 
mimicked RST conditions when spring flows halt RST 
operations for several weeks. The third scenario had 
information from strata 5–8 removed from the first 
year in addition to reducing the number of marked 
and recaptured individuals by 60% across all strata 

https://dx.doi.org/10.7755/FB.116.3.4s1
https://dx.doi.org/10.7755/FB.116.3.4s1
https://dx.doi.org/10.7755/FB.116.3.4s2
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and years. The 60% reduction typifies data for several 
RSTs that have low numbers of marked and recaptured 
fish because of site limitations or low abundances. The 
fourth scenario had information from 8 strata, strata 
12–19, removed from the first year of the data set and 
had a 60% reduction across all marked and recaptured 
individuals across all strata and years. This modifica-
tion emulates several RSTs that did not operate dur-
ing summer months initially because it was thought 
that salmonid migration had ceased during this time 
period (see history of the Marsh Creek data set below). 
It was later realized that small, but significant, num-
bers of individuals did migrate throughout the summer 
and RSTs now operate during this time period. Simu-
lated scenarios and known parameters used to create 
the data are presented in Supplementary Table 2 and 
Supplementary Figures 5–8. Each model was tested 
with these 4 scenarios.

We illustrate the relative performance of the 4 com-
peting models, using 2 RST data sets. Marsh Creek 
and Big Creek are tributaries to the Middle Fork of 
the Salmon River located in central Idaho, have com-
parable salmon populations, but have “good” and “poor” 
quality data sets, respectively. 

Marsh Creek is a third-order tributary with a RST 
located at a river transect that has geographic and hy-
drographic features conducive to continuous operation 
throughout the majority of the migratory season with 
high capture efficiencies (Venditti et al.1). In addition, 
the RST has been operating for 21 years. Median day 
of installation is March 20 and removal is November 
3. Within this period, the RST operates a median of 
97% of the days. Gaps in operations are typically short 
for reasons such as icing and passing thunderstorms. 
During the first few years of operations, the RST was 
removed during the summer for 2.5 months until it 
was discovered that fish emigrated in that time period, 
too. This gap in the record motivated the fourth sce-
nario in the simulations described above. Annual total 
catch of Chinook salmon has fluctuated more than 2 
orders of magnitude from 846 to 91,719 fish. The high 
capture efficiencies, abundant amount of juvenile sal-
monids captured, and longevity of RST operation pres-
ent a nearly ideal RST mark-recapture data set (Suppl. 
Fig. 9). 

Big Creek, in comparison, is a fourth-order tribu-
tary located in the Frank Church River of No Return 
Wilderness. The RST was first installed in 2007 in a 
reach with widths from 30 to 40 m, resulting in low 
capture efficiencies (Copeland et al.2). Trap efficiencies 
are much lower than those seen in Marsh Creek and 
can be quite variable (Suppl. Fig. 10). Annual total 
catch of Chinook salmon has fluctuated from 5167 to 
33,308 fish. Median day of installation is March 11 and 
removal is November 10. Within this period, the RST 
operates a median of 80% of the days. There are fre-
quent short gaps in operations for reasons such as icing 
and thunderstorms that produce concomitant turbidity 
and debris. In addition, there are substantial gaps in 
operations during snowmelt. For example, adding up 

gaps in service >7 days, the RST missed a median of 55 
days in mid to late spring, ranging from 20 to 75 days. 
The exception was 2007, the first year of operation, 
but the RST was not installed until May 21. The Big 
Creek RST data exemplifies nearly all potential pitfalls 
possible at RSTs in terms of sparse and missing data. 
Scenarios like those at the Big Creek RST are what 
motivated this study.

We focused on the results for the 2014 emigration 
year. During 2014, the Marsh Creek RST was deployed 
on March 22, 1 week later than the earliest date the 
trap had been deployed in its 21 years of operation. 
In 2014, the Marsh Creek RST ran continuously with 
high capture and recapture efficiencies throughout the 
trapping season and was removed on October 31 when 
snow and ice prevented operation. In total during 2014, 
the Marsh Creek RST missed 3 weeks of the trapping 
season at the tail ends when few fish were suspected 
to be migrating. In 2014, the Big Creek RST was de-
ployed on March 13 and operated for roughly 5 weeks 
before high water prevented the RST from operating 
from April 11 to June 13. On June 14, the trap was re-
deployed and ran continuously until snow and ice pre-
vented operation on November 9. During the 8-week 
outage, it was known that age-1 Chinook salmon over-
wintering in upper portions of Big Creek migrated out 
of the system during this time because this behavior 
had been observed in past years and at other RSTs in 
Idaho. In addition, when the Big Creek RST was op-
erating, RST capture and recapture efficiencies where 
low owing to the site limitations described above. The 
Marsh Creek and Big Creek RST operations in 2014 ex-
emplify the 1) complete and abundant mark-recapture 
data and 2) sparse and missing mark-recapture data. 

Model implementation

All models were implemented with the statistical pro-
gram JAGS (vers. 4.0.0; Plummer, 2003) run through 
the program R interface,  vers. 3.2.2 (R Core Team, 
2015) with the R2jags package vers. 0.5-7 (Su and Ya-
jima, 2015). The complexity of the models inhibited 
calculating an exact posterior distribution. As such, 
Markov chain Monte Carlo (MCMC) simulations were 
implemented in JAGS to sample from the joint poste-
rior distributions of all parameters to approximate a 
posterior distribution. Three parallel chains initiated 
at random values were run for each model. Chains 
were run for a total of 500,000 iterations and the first 
100,000 iterations were discarded and the remaining 
iterations were thinned by a factor of 100. The final 
sample size for each chain comprised 4000 values. 
MCMC posterior distributions were visually inspected 
for multiple peaks and Gelman–Rubin test statistics 
were calculated to ensure chain convergence. Multiple 
peaks in the posterior distribution or Gelman–Rubin 
test statistics >1.1 were subject to nonconvergence 
and chains were run for additional iterations to try to 
achieve convergence.

Model performance was evaluated by comparing the 

https://dx.doi.org/10.7755/FB.116.3.4s3
https://dx.doi.org/10.7755/FB.116.3.4s4
https://dx.doi.org/10.7755/FB.116.3.4s5
https://dx.doi.org/10.7755/FB.116.3.4s5
https://dx.doi.org/10.7755/FB.116.3.4s6
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median parameter estimates produced for the first year 
of each scenario to the known parameters used to sim-
ulate the data. Estimated median values and credible 
interval characteristics of posterior parameter distribu-
tions were examined to assess strata-specific and total 
yearly abundance estimates. Total yearly abundance 
estimates and corresponding credible intervals were 
calculated by randomly sampling one value from the 
posterior abundance distribution each unique stratum 
for the first year of the scenario. The number of unique 
values is dependent on how many strata are in the 
year—35 for this simulation. Summing these values 
and reiterating the random sampling procedure 50,000 
times creates a total yearly abundance distribution, 
U {Tot. Yearly model bias was measured by the difference 
of U {Tot from the known UTot. Strata-specific accuracy 
was judged on the number of strata that included the 
known abundance parameter within the predicted 95% 
credible intervals. For abundance estimates produced 
for the 2 real data sets, point estimates and credible 
interval widths were used to evaluate relative perfor-
mance among the models. To imitate a naive Lincoln–
Peterson estimator, the MPS posterior parameter dis-
tributions had portions removed that corresponded to 
strata missing data.

Results

Simulation and scenarios

Markov chains converged for all models and produced 
representative posterior distributions for parameters 
with the exception of the MPS model. The MPS model 
had Gelman-Rubin test statistics >1.1 and density plots 
with multiple peaks for posterior distributions when 
strata were missing data. The MPS model relied pri-
marily on the vague prior U parameter distributions to 
construct posterior distributions when data were miss-
ing and MCMC required additional iterations (100,000) 
to converge around the highest density sample space 
and achieve Gelman–Rubin test statistics <1.1. The 
posterior U distributions obtained from missing strata 
by using the MPS model were largely the product of the 
prior U distribution and added little relevant biologi-
cal information to the study, and therefore these strata 
were removed from the analysis. This exclusion of stra-
ta is also illustrative of typical Lincoln–Petersen model 
performance in that strata without data are excluded 
from total abundance estimates even if fish are known 
to be migrating. 

The pooled probability model, MPS, produced the 
most precise yearly abundance estimates from the 
simulated scenarios with credible interval widths be-
tween 5–9% of the U {Tot (Table 1). The MPS precision 
is misleading in that the uncertainty associated with 
the stratum missing data was excluded from the total 
yearly abundance estimate. In addition, the precision 
of the MPS model is dependent on the assumption that 
capture probabilities are constant across all strata, 

which was not true. The inflated precision of the MPS 
model also caused known parameters to be excluded 
from strata-specific 95% credible intervals and to re-
sult in MPS having the worst strata-specific coverage. 
The MPS model overestimated U {Tot by 2467 individuals 
(10.4%) for the full scenario. In subsequent scenari-
os, total yearly abundance estimates became less bi-
ased as strata were removed and data were reduced. 
By removing strata missing data, the MPS model U {Tot 
should theoretically become negatively biased by 2093 
individuals (8.9%) when missing 4 strata in the spring 
and by 1200 individuals (5.1%) when missing 8 strata 
in the summer. In these scenarios, the nature of the 
pooled capture probabilities overestimating U {Tot offset 
the negative bias incurred from removing strata with 
missing data. 

The MHW and MSPLINE models performed better than 
MPS when addressing sparse and missing data (Table 
1). The MHW model had a credible interval width of 13% 
for the full data scenario with a bias of 543 individu-
als (2.3%). As data were reduced and removed, bias in-
creased up to 7064 individuals (30.0%) and the percent 
credible interval width increased up to 63%. The hier-
archical structure of the MHW model integrated infor-
mation from the entirety of the year, causing additional 
variability to be incorporated into the posterior distri-
butions, particularly for strata missing data. Similar 
to the MHW model, the MSPLINE model used information 
from throughout the year to inform strata with sparse 
and missing data but implemented a P-spline function 
to localize interpolation of abundance estimates to ad-
jacent strata. This process reduced the variability of 
posterior parameter distributions for strata with sparse 
and missing data and produced abundance estimates 
that were biased from −818 individuals (−3.5%) to 516 
individuals (2.2%) with credible interval widths that 
were 18–23% that of U {Tot. The predetermined spline 
characteristics prevented the MSPLINE model from pro-
ducing estimates for periods missing >4 consecutive 
strata. The MHW and MSPLINE model had comparable 
numbers of strata-specific 95% credible interval bounds 
that included known abundance parameters but the 
credible interval bounds with the MSPLINE model were 
more precise.

The MHB model had the most accurate ÛTot esti-
mates in 3 scenarios and the second smallest credible 
interval widths (Table 1). Strata-specific credible inter-
vals produced by the MHB model where the only cred-
ible intervals to encompass the known parameters for 
each strata in every scenario. As the quality of simu-
lated data sets decreased, the hierarchical multiyear 
structure was able to draw inferences from previous 
years to supplement the missing and sparse data. This 
procedure allowed model MHB to produce the most ac-
curate estimates with missing data.

Application of models to Marsh Creek and Big Creek data

Total population estimates for Marsh Creek during 
2014 were similar among the models, although confi-
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Table 1

For the simulated data scenario produced by 4 competing models, total yearly abundance estimates (U [
Tot) 

for juvenile Chinook salmon (Oncorhynchus tshawytscha) in Idaho, bias from true UTot (23,527 individuals), 
95% credible intervals (CIs), credible interval width in relation to the total yearly abundance estimate as a 
percentage (% CI width), and the percentages of temporal strata with 95% CI bounds that covered the true 
value of unmarked abundance (Strata coverage %). The MPS model structure includes pooled capture prob-
ability and simple abundance parameters, the MHW model has a hierarchical within-year parameter struc-
ture, and the MSPLINE model uses a P-spline hierarchical prior for unmarked abundance. The hierarchical 
multiyear MHB model allows information about capture probability and abundance parameters during the 
same temporal period to be shared among years. Data scenarios may have excluded data for 4 or 8 temporal 
strata and may have reduced the number of marked and recaptured individuals by 60% across all strata. 
Because of predetermined P-spline knot characteristics, the MSPLINE model was not able to produce estimates 
for data missing 8 strata.  

     % CI % coverage  
Models Data scenario U [

Tot Bias 95% CI width of strata

MPS Full 25,944 2467 (25,214, 26,685) 6 34.3
 4 strata1 23,059 −418 (22,455, 23,682) 5 77.1
 4 strata 60% reduction† 24,205  728 (23,351, 25,163) 7 85.7
 8 strata 60% reduction† 26,640 3163 (25,528, 27,841) 9 31.4
MHW Full 24,020  543 (22,484, 25,717) 13 0.8
 4 strata 24,492 1015 (22,412, 35,035) 52 88.6
 4 strata 60% reduction 23,934  457 (21,771, 34,895) 55 88.6
 8 strata 60% reduction 30,541 7064 (25,780, 45,167) 63 82.9
MSPLINE Full 23,993   516 (21,939, 26,298) 18 82.9
 4 strata 22,659 −818 (20,955, 24,586) 16 77.1
 4 strata 60% reduction 22,697 −780 (20,401, 25,606) 23 77.1
 8 strata 60% reduction – – – – –
MHB Full 23,245 −232 (22,538, 23,976) 6 100
 4 strata 23,216 −261 (22,517, 23,968) 6 100
 4 strata 60% reduction 22,509 −968 (21,536, 23,594) 9 100
 8 strata 60% reduction 22,552 −925 (21,534, 23,698) 10 100

1Posterior parameter distributions for strata that were missing data were removed from the analysis to simu-
late a naive Lincoln–Peterson estimator.

Table 2

Total abundance estimate (U [
Tot), 95% credible intervals (CIs), absolute CI width, and percent CI width 

for rotary screw trap mark-recapture data collected for juvenile Chinook salmon (Oncorhynchus tshawyts-
cha) at Marsh Creek and Big Creek, Idaho, in 2014 from the pooled-simple (MPS), hierarchical within-year 
(MHW), hierarchical penalized-spline (MSPLINE), and hierarchical multiyear (MHB) models.   
 

Model U [
Tot 95% CI CI width % CI width

Marsh Creek
 MPS

1 104,594 (103,149, 106,064) 2915 3
 MHW 121,718 (110,295, 208,526) 98,231 81
 MSPLINE 112,299 (105,910, 120,212) 14,302 13
 MHB 114,035 (106,991, 123,920) 16,929 15
Big Creek   
 MPS

† 106,141 (101,856, 104,729) 2873 3
 MHW 216,292 (154,931, 584,029) 425,498 197
 MSPLINE NA NA NA NA
 MHB 148,110 (119,758, 239,889) 120,131 81 

1 Posterior parameter distributions for temporal strata that were missing data were removed from the analysis.
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dence intervals did not overlap for all (Table 2). The 
MPS model estimated total population abundance at 
levels 8000–17,000 fish less than the 3 other models 
but had the smallest 95% credible interval width. The 
total population abundance estimate for MPS excluded 
potential fish migrating in ordinal weeks 11, 45, and 
46 (Fig. 1). In addition, the precision of MPS model 
estimates rely on the assumption that capture prob-
abilities are constant across all weeks throughout the 
year and this condition is not likely satisfied because 
of fluctuating environmental and biological conditions. 
The MHW model had the largest credible interval width 
that was nearly as large as the total population abun-
dance estimate. Most of the uncertainty around the to-
tal population abundance estimate was acquired from 
strata with missing data at the beginning and end of 
the year. Posterior distributions for strata missing data 
using the MHW model relied on capture probabilities 
and abundance characteristics from strata across the 
entire sample season. Models MHB and MSPLINE had 
similar total population estimates but the MHB model 
produced 95% credible intervals wider by roughly 2500 
individuals.

In contrast to estimates for Marsh Creek, total pop-
ulation estimates for Big Creek for 2014 varied greatly 
among models (Table 2). The MPS model estimated to-
tal population abundances using 28 out of the 37 strata 
owing to the removal of strata missing data (Fig. 2). 
As with results for Marsh Creek, the precision asso-
ciated with the total population estimate for the MPS 
model is dependent on the assumption of homogeneous 
capture probabilities throughout the year and is likely 
overstated in this application. The population estimate 
produced by the MHW model was 216,291 fish with a 
credible interval width nearly double the median es-
timate. The variability of abundance estimates and 
capture probabilities throughout the year at Big Creek 
increased the uncertainty associated with estimates for 
missing data from the MHW model. The MSPLINE model 
was not able to run because of the large number of 
consecutive strata missing data. The MHB model pro-
duced a U {Tot of 148,110 individuals with a 95% credible 
interval width of 120,131 fish.

To illustrate how the MHB model used past data to 
inform the 2014 estimates at the Big Creek RST dur-
ing the missing strata, we show u, m, and n from the 

Figure 1
Abundance of juvenile Chinook salmon (Oncorhynchus tshawytscha) emigrating down-
stream during 2014 by ordinal week, estimated by using 4 competing models with 
data collected at a rotary screw trap deployed in Marsh Creek, Idaho, in 2014. The 
4 models are the pooled-simple (MPS), hierarchical within-year (MHW), hierarchical 
penalized-spline (MSPLINE), and hierarchical multiyear (MHB) models. Gray regions 
denote estimates produced for temporal strata with missing data in 2014.
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Figure 2
Abundance of juvenile Chinook salmon (Oncorhynchus tshawytscha) emigrating 
downstream during 2014 by ordinal week, estimated by using 3 competing models 
with data collected at a rotary screw trap for Big Creek, Idaho, in 2014. The 3 mod-
els are the pooled-simple (MPS), hierarchical within-year (MHW), and hierarchical 
multiyear (MHB) models. A fourth model, the hierarchical penalized-spline MSPLINE 

model, was unable to run and is not displayed. Gray regions denote estimates pro-
duced for temporal strata with missing data in 2014.

past record during the spring (Fig. 3). Spring peaks in 
catch varied in both timing and magnitude. Capture 
probabilities were variable but usually <0.10. Most gaps 
in operations start on the descending limb of the catch. 
These features influenced the 2014 estimates for weeks 
17–19 such that the variable peak catches from the past 
record cause broad 95% credible intervals (Fig. 2). There 
were less past data after those strata but catches were 
not as variable; hence 95% credible intervals for strata 
20–24 are not as wide. Note, however, that there were 
some data in every stratum in the past record and the 
MHB model was able to use that information to esti-
mate abundance with a precision measure during strata 
17–24 in 2014. Because the past record is thin during 
these periods, the MHB model estimate incorporates that 
uncertainty in the form of wide credible intervals.

Discussion

To our knowledge, this is the first time a hierarchi-
cal Bayesian model has been structured to incorporate 
data on annually recurring species behavior by using 
multiple years of data to improve abundance estimates 
from sparse and missing mark-recapture data. In the 
simulation, the hierarchical multiyear model produced 

comparable estimates to those of the best model when 
data were complete but also produced the most accurate 
and precise estimates when large periods of data were 
missing or reduced. Because the hierarchical multiyear 
model can incorporate information about recurring spe-
cies behavior to improve the accuracy of abundance es-
timation, it can be applied beyond salmonids. Studies 
focused on species that express recurring behavior, par-
ticularly for species with low abundances, could benefit 
from similar hierarchical multiyear models to increase 
the accuracy and precision of abundance estimates ob-
tained from sparse and missing mark-recapture data.

Current Lincoln–Petersen estimator approaches 
used for juvenile salmonids abundance estimation do 
not provide an effective method for addressing sparse 
or missing data. When strata have low numbers of re-
captured individuals (less than 7), confidence intervals 
obtained from bootstrap approaches are largely unin-
formative (Steinhorst et al., 2004). Manual pooling, 
or the use of software that attempts to optimize the 
balance between satisfying model assumptions while 
maintaining fine-resolution run characteristics (e.g., 
Darroch analysis with rank reduction; Bjorkstedt4), of-

4 Bjorkstedt, E. P. 2000. DARR (Darroch analysis with 
rank-reduction): a method for analysis of stratified mark-
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ten results in completely pooled strata, and therefore 
loses the power to distinguish real changes in sampling 
efficiency. Additionally, neither approach addresses 
missing periods when the trap is not able to operate 
but fish are known to be migrating, as was the case 
with the MPS model in our study that was designed 
to represent these models. In the simulation, some 
of the MPS model bias was offset by removal of miss-
ing strata. Because the MPS model can use data only 
from sampled strata within a single year, it will con-
tain inherent bias. Therefore the MPS model precisions 
and biases reported in Tables 1 and 2 are misleading, 
because the model structure cannot incorporate the 
uncertainty associated with the missing strata. When 
data are not abundant and “well behaved,” more com-
plex models are necessary.

The hierarchical structures of the MSPLINE and MHB 
models incorporate information about the characteris-
tics of salmonid migration to improve abundance esti-
mates in situations with sparse or missing data. The 
MHW and MSPLINE models share information among 
temporal strata within years. The MHB model shares 

recapture data from small populations, with application 
to estimating abundance of smolts from outmigrant trap 
data. NOAA, Natl. Mar. Fish. Serv., Southwest Fish. Sci. 
Cent. Admin. Rep. SC-00-02, 19 p. [Available from website.]

information during the same temporal period between 
years, allowing data from previous years to inform pe-
riods of sparse or missing data. Because the MHB model 
shares information among years, it effectively uses the 
entire data set.

Performance during the spring 2014 period in Big 
Creek shows best how the MHB model is useful. The 
basic Lincoln–Petersen approach as implemented in 
the MPS model provided no estimates in missing stra-
ta. Information from within 2014 was not very useful 
with the 2-month gap in operations, such that the MHW 
model had extremely wide credible intervals and spline 
components of the MSPLINE model could not bridge the 
missing period. The MHB model provided an estimate 
based on data from previous years and included the 
appropriate uncertainty around that estimate (e.g., 
higher variability between years leads to increased un-
certainty for estimates with missing data during that 
time period). The spring peak in migration becomes 
more pronounced closer to the coast and at lower el-
evations (Spence and Hall, 2010). hence the problems 
we address here may be greater elsewhere. Models that 
performed poorly with our data sets would fare even 
worse in more extreme environmental scenarios. 

For the applications made in this study, we relied 
only on mark-recapture data but one could incorporate 
other types of information to make further improve-

Figure 3
Raw weekly abundance (u) of Chinook salmon (Oncorhynchus tshawytscha) and raw weekly 
trap efficiencies, measured as the number of marked individuals in the population divided by 
the number of marked individuals counted or captured at a sampling event (m/n), at the rotary 
screw trap deployed in Big Creek, Idaho, during the spring from 2007 through 2013. In the top 
graph, catches within the same year are linked by a line. In the bottom panel, the middle line 
within the box represents the median, the upper and lower edges of the box represent the first 
and third quartiles (the 25th and 75th percentiles), the lines extending beyond the box corre-
spond to the largest or smallest values or 1.5 times the interquartile range, and dots represent 
outliers (values outside of 1.5 times the interquartile range).

https://swfsc.noaa.gov/publications/FED/00116.pdf
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ments. For example, spawner abundance, flow charac-
teristics, and data from co-migrating species could help 
explain variability in U and p in the respective exam-
ples. In particular, data on the number of previous-year 
spawners could explain annual differences in juvenile 
abundances, thus accounting for significant changes 
in abundances and timing of migration from year to 
year. Inclusion of data from co-migrating species could 
bolster estimates for species with extremely low abun-
dances. With appropriate assumptions, a multi-species 
model could be a powerful approach to obtain informa-
tion for threatened and endangered species.

The framework of the MHB model is flexible and can 
easily be elaborated upon in other ways. For another 
example, one could combine the MSPLINE model and 
MHB model to create a multiyear spline model to apply 
within- and between-year information. Strata with con-
sistent capture probabilities between years that would 
potentially benefit the most from the multiyear spline 
model may not improve much because capture and re-
capture rates are typically high and data are abundant 
in these strata. In addition, the use of the multiyear 
spline model would still be limited by large periods of 
missing data and running such a model would take 
substantial computing power and time. We surmise 
that it would be more beneficial to include environmen-
tal and biological covariates into the MHB model than 
creating a multiyear spline model. We chose not to in-
vestigate the hybrid spline model or to include covari-
ates because we wanted to illustrate the basic concept 
and functionality of the competing models and because 
additional data are not always available. However, if 
conditions are extreme, then these more complex op-
tions may be desirable.

Throughout this study we focused on 2 long-term 
monitoring projects with data sets ranging from 8 to 
21 years; the MHB model could produce estimates for 
missing data with fewer years of data. The accuracy 
and precision of abundance estimates produced for pe-
riods with sparse or missing data from short data sets 
will depend on the amount of data collected during 
years that the trap was able to operate and the consis-
tency of recurring life-history characteristics between 
years. The effects of relevant factors on the quality of 
information in the data record can be tested but that 
is beyond the scope of this article. However, so long 
as the assumption that the species exhibits a recur-
ring life-history characteristic that is expressed during 
the same temporal period between years, the estimates 
from sparse and missing data would be accurate but 
the uncertainty with these estimates will be expressed 
in wide, credible interval widths. 

The hierarchical multiyear Bayesian model has 
broad application to fish and wildlife studies that em-
ploy mark-recapture approaches to obtain population 
abundance estimates, particularly when addressing is-
sues of sparse or missing data. Other studies have used 
similar Bayesian approaches to calculate adult salmo-
nid abundance estimates in Alaska (Sethi and Tanner, 
2013), survival estimates of harbor seals (Phoca vitu-

lina) in Scotland (Mackey et al., 2008), and wolverine 
(Gulo gulo) densities in Alaska (Royle et al., 2011) in 
order to address issues associated with sparse data. In 
this study, we were able to produce abundance esti-
mates for populations of anadromous salmonids with 
sparse data by structuring a hierarchical model that 
incorporated prior biological information about the 
species behavior. The MHB model has applicability to 
a wide range of fish and wildlife research that uses 
mark-recapture data to estimate species abundance. 
This model will be particularly useful in assessments 
of species for which long-term monitoring has occurred 
but for which low abundances and variable environ-
mental conditions affect sampling efforts.
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