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Abstract—A bottom- trawl survey with 
a stratified- random sampling design 
has been used to inform stock assess-
ments for commercially important spe-
cies in the Gulf of Alaska since 1984. 
A new stratified sampling design was 
evaluated to determine whether its 
use could improve the precision and 
accuracy of abundance estimates. In 
this proposed approach to defining 
strata, historical survey data are used 
to generate what we refer to as infor-
mation scores (ISes). We compared the 
traditional stratification scheme with 
the new method and 2 other sampling 
designs, using both a design- based esti-
mator and a model- based estimator 
with each design, to determine if the 
existing approach is optimal. Statistical 
robustness, measured in terms of coef-
ficient of variation, bias, and root mean 
square error, was compared among 
7 scenarios with different combinations 
of estimators and sampling designs by 
using simulation with a spatiotem-
poral generalized linear mixed model 
conditioned on historical observations 
of catch per unit of effort of 3 species. 
The combination of the design- based 
estimator with the IS- based stratifi-
cation scheme was the best scenario 
across all performance metrics for all 
species. This scenario consistently had 
the lowest variance and smallest total 
error, and it was generally unbiased. 
In contrast, the pairing of the model- 
based estimator with this sampling 
design was by far the worst- performing 
scenario. The performance of the exist-
ing approach was average.
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Surveys for estimating abundance of 
natural resources, and the precision of 
abundance estimates based on survey 
data, are limited in scope by a number 
of logistical constraints, including but 
not limited to funding, staffing, time, 
and access to appropriate and suffi-
cient sampling tools and platforms. 
The precision of abundance estimates, 
including those of biomass, generally 
increases with sample size, which is 
limited by available resources, assum-
ing the availability of a species to sam-
pling remains constant. In practice, the 
scope of a survey effort, as indicated by 
the number of stations where sampling 
occurs, is typically known before the 
sampling design is generated and is 
dictated by logistical constraints. The 
goal of a sampling design, therefore, 
is to optimize the geographical dis-
tribution of the predetermined num-
ber of survey stations to achieve the 
highest possible precision for survey 
data products. A potential problem for 
survey continuity arises when circum-
stances compel a reduction or increase 
in sampling effort, especially after a 
survey time series is well established. 

In such an event, it may be appropri-
ate to review the existing sampling 
design of the survey for optimality and 
to consider changes to the design while 
assuring continuity of the time series. 
The long- established and relatively 
large- scale multispecies bottom- trawl 
survey that has been conducted in the 
Gulf of Alaska (GOA) since 1984 can 
serve as an illustrative example of how 
these issues can be addressed.

The NOAA Alaska Fisheries Sci-
ence Center has conducted a bottom- 
trawl survey in summer in the GOA 
biennially since 1999 (and trienni-
ally between 1984 and 1999), using a 
stratified- random sampling design to 
assess the distribution and abundance 
of groundfish for the purposes of fish-
eries management (von Szalay and 
Raring, 2018). Traditionally, the survey 
effort consisted of 3 vessels sampling 
approximately 820 stations in 59 differ-
ent strata. Prior to 1990, the focal sur-
vey areas in a given year were adapted 
to meet specific scientific or manage-
ment needs, and as a result the effort 
levels in the different strata could be 
highly variable from one survey year 
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to another. This practice was discontinued in 1990, when 
the sampling design of the survey was standardized to 
adhere to a modified Neyman allocation scheme. A variety 
of factors in recent years, such as funding limitations and 
inability to acquire a sufficient number of suitable char-
ter vessels, have resulted in the need to reduce the survey 
effort in some years (von Szalay, 2015). Other fisheries 
resource management agencies, both domestic and inter-
national, similarly have had to or are preparing to contend 
with potential unavoidable reductions in survey effort for 
a variety of reasons, including vessel breakdowns, lack 
of enough survey vessels or staff due to the COVID-19 
pandemic, bad weather, and failure to obtain sampling 
permits for all parts of the survey area (Peel et al., 2013; 
ICES, 2020).

The reduction of survey effort has amplified the need 
not only to ensure the use of the optimal sampling design 
but also to seek the most robust and precise abundance 
estimator possible that would perform well in years with 
fewer data. This issue can be addressed by comparing the 
statistical robustness of the existing approach with that of 
alternative scenarios based on different combinations of 
estimators and sampling designs, a valuable exercise even 
if survey effort has not been reduced. Until recently, it has 
been difficult to make direct comparisons between differ-
ent estimators and sampling designs because of a lack of 
an appropriate simulation framework. However, Kotwicki 
and Ono (2019) developed a framework for simulating dis-
tributions of fish population density with a spatiotemporal 
model conditioned on historical catch and environmental 
survey data for a number of commercially important spe-
cies in the GOA. We used this operating model to simu-
late the “true” distribution of abundance and the results of 
simulated sampling with different designs.

When the existing stratified- random sampling design 
was first devised in the early 1980s, no historical catch or 
environmental data were available to refine the stratifica-
tion scheme. Now that a long- running time series is well 
established, it is possible to use these data to explore alter-
native stratification schemes and sampling designs, which 
may potentially reduce the uncertainty in abundance esti-
mates by yielding more accurate and precise estimates 
of biomass and its associated variance. In recent studies, 
optimization- based methods of stratifying finite popula-
tions (Hidiroglou and Kozak, 2018; Oyafuso et al., 2021, 
2022) have been proven to be superior to the traditional 
stratification scheme used for the bottom- trawl survey in 
the GOA. In our study, we evaluated the performance of 
3 different traditional sampling designs, which are among 
the most commonly used in the world and have already 
been implemented by the Alaska Fisheries Science Cen-
ter: simple random, stratified random, and systematic.

For these evaluations, we used a proposed new technique 
for determining stratum boundaries in the GOA, one in 
which estimates of abundance and its variability from his-
torical survey data are used to derive an empirical metric 
referred to herein as an information score (IS). This tech-
nique, which ensures that more stations are allocated to 
strata with higher abundance and variance in abundance 

based on historical survey data, fine- tunes the stratifica-
tion process by decreasing the variance within strata while 
increasing the variance among strata. This approach con-
trasts with the traditional stratification scheme whose 
performance may be compromised by including an ad hoc 
management area and depth bounds to define strata. Man-
agement area boundaries are unlikely to have any bearing 
on fish density, and arbitrary depth boundaries in regular 
100- m intervals are unlikely to coincide with breaks in fish 
density distributions.

There has recently been a rapid development of meth-
ods for estimating population density by using spatial 
model- based estimators to calculate biomass or abun-
dance (e.g., Thorson and Barnett, 2017; Anderson et al.1). 
Design- based estimators, such as the one developed by 
Wakabayashi et al. (1985), are simpler and faster, but spa-
tial model- based estimators, such as vector autoregres-
sive spatiotemporal (VAST) models (Thorson, 2019), may 
be more accurate or precise under some scenarios because 
they allow for spatial and temporal correlation and covari-
ate effects. In addition, model- based designs can be both 
efficient and flexible in allowing uneven sampling due to 
survey logistics and in providing a general framework to 
answer specific design questions (Peel et al., 2013).

The objective of this study was to compare the statisti-
cal robustness of 7 scenarios with different combinations 
of sampling designs and estimators in order to identify 
whether an approach improves the accuracy and precision 
of estimates of biomass, which we used as a measure of 
abundance. As a case study, we evaluated the statistical 
robustness of 7 scenarios by simulating the distribution 
and abundance of 3 species in the GOA: Pacific cod (Gadus 
macrocephalus), Pacific ocean perch (Sebastes alutus), and 
arrowtooth flounder (Atheresthes stomias). These species 
were chosen on the basis of their ecological or commercial 
importance as well as the diversity of their spatial distri-
bution patterns. In 6 scenarios, a random sampling design 
was paired with a design- based or model- based estimator, 
and in 1 scenario a systematic sampling design was paired 
with a model- based estimator.

Materials and methods

Survey characteristics

The GOA forms the northeastern border of the Pacific 
Ocean and has complex bathymetric features ranging 
from jagged, mountainous pinnacles to flat, muddy areas 
(von Szalay and Raring, 2018). These features provide a 
variety of habitats, creating a complex ecosystem. The 
standard survey area of the biennial bottom- trawl survey 
in the GOA is approximately 320,000 km2 and includes 

1 Anderson, S. C., E. J. Ward, P. A. English, and L. A. K. Barnett. 
Unpubl. manuscript. sdmTMB: an R package for fast, flexi-
ble, and user- friendly generalized linear mixed effects mod-
els with spatial and spatiotemporal random fields. bioRxiv 
2022.03.24.485545. [Available from website.]
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the portion of the continental shelf from the Islands of 
Four Mountains, in the Aleutian Islands, eastward to 
Dixon Entrance, near the border of Canada and the United 
States, and from nearshore waters to a depth of 1000 m 
(Fig. 1). The continental shelf, which makes up 82% of the 
survey area, is bordered by the continental slope, a region 
that is approximately 20 km in width, but only the portion 
of the slope at depths between 200 and 1000 m, is sampled 
in the standard surveys. The total survey area has been 
effectively decreased to 308,415 km2 in recent surveys as 
reductions in survey effort have resulted in the deepest 
strata (700–1000 m) not being sampled.

In the bottom- trawl surveys conducted in the GOA by 
the Resource Assessment and Conservation Engineering 
Division of the Alaska Fisheries Science Center, approx-
imately 820 locations within 59 strata traditionally have 
been sampled with a stratified- random sampling design. 
Abundance estimates are generated by using the estima-
tor developed by Wakabayashi et al. (1985). Henceforth, 
this combination of sampling design and estimator will be 
referred to as the TRS.

The same standard trawl gear has been used since 
the beginning of the survey, a Poly Nor’Eastern 4- seam 
bottom trawl with 24.2- m roller gear constructed with 
36- cm rubber bobbins separated by 10- cm rubber disks 
(Stauffer, 2004). Surveys start in the western end of 

the survey area and proceed eastward. Tow duration is 
approximately 15 min at 1.54 m/s (3 kt). The catch per 
unit of effort (CPUE) is estimated by using the area-swept 
method (e.g., Alverson and Pereyra, 1969), which defines 
the effort as the product of the distance fished and the 
average distance between wing tips (for details, see von 
Szalay and Raring, 2018).

A grid with a resolution of 5 km superimposed on the 
survey area is used for sampling design. Each 5- by-5- km 
cell in the grid is a potential survey station, but some 
potential stations are excluded from the pool of stations 
eligible for survey selection because they are untrawlable 
as a result of rough bottom or other factors. Further-
more, because they are truncated by the coastline and the 
deepest edge of the sampling domain, grid cells along the 
boundaries of the survey area have an area smaller than 
a standard 25- km2 grid cell. Only grid cells large enough 
to accommodate a complete tow path (those with an area 
>5 km2) are eligible for sampling.

Simulated distributions of catch per unit of effort

Simulated CPUE distributions of Pacific cod, Pacific 
ocean perch, and arrowtooth flounder were created by fit-
ting a spatiotemporal delta model to historical GOA sur-
vey data from 1996 through 2015, with the package 

Figure 1
Map showing the 59 strata of the bottom-trawl survey conducted biennially in the Gulf of Alaska 
by the NOAA Alaska Fisheries Science Center. The survey area includes the portion of the con-
tinental shelf from the Islands of Four Mountains eastward approximately 2800 km to Dixon 
Entrance and from nearshore waters to a depth of 1000 m. The stratum boundaries have been 
fixed since the inception of the survey in 1984.
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R-INLA (vers. 18.07.12; available from website, accessed 
October 2018; Rue et al., 2009) in R (vers. 3.6.1; R Core 
Team, 2019); this package accounts for both environmen-
tal covariates and spatiotemporal dependency in catches 
(Kotwicki and Ono, 2019) (Fig. 2). The delta model has 
2 components: one that models the species occurrence 
and another that models positive CPUE.

Species occurrence at locations s during year t, πt(s), 
was modeled by using a binomial generalized linear mixed 
model with the logit link function (see Lindgren et al., 2011):

( )( ) ( ) ( )π = + ωlogit t t ts X s b s , where (1)

( )( ) ( )ω ρ ω Σ−~ ,t 1 t 1 1s N s

and Xt(s) =  the matrix of covariates at locations s during 
year t;

b =  the vector of regression coefficients;
ω =  the spatiotemporal variation that follows a 

first- order autoregressive process;
N = normal distribution;
ρ1 =  the degree of autoregression in encounter prob-

ability between successive years; and
Σ1 =  the spatial covariance modeled as a Mátern 

function with smoothness of 1.

Figure 2
Simulated distribution of catch per unit of effort (CPUE) of arrowtooth flounder (Atheresthes sto-
mias) in 2015 at the entrance to Cook Inlet in southcentral Alaska. The simulations were created 
by fitting a spatiotemporal delta model that accounts for both environmental covariates and spa-
tiotemporal dependency in catches to historical data from the bottom-trawl survey in the Gulf 
of Alaska. Each pixel on the map is 2 km2 and represents the CPUE realized when a station is 
sampled at that location in the simulated surveys conducted in this study.

The covariates used in this study were log(depth), 
(log(depth))2, bottom temperature, bottom temperature 
squared, surface temperature, surface temperature squared, 
and a fixed year effect (Kotwicki et al., 2005, 2015).

The non- zero species density at a set of locations s 
during year t, μt(s), was modeled by using a lognormal 
distribution:

( )( ) ( )μ + δlog = ( )t t ts Z s a s , where (2)

( )( ) ( )δ ρ δ Σ−~ ,t 2 t 1 2s N s

and Zt(s) =  a matrix of covariates at locations s during 
year t;

a =  the vector of regression coefficients;
δt =  the spatial field for year t assumed to follow an 

autoregressive 1 process;
ρ2 =  autocorrelation of the autoregressive 1 pro-

cess in which the current value is based on the 
immediately preceding value; and

Σ2 =  the spatial covariance modeled as a Mátern 
function with smoothness of 2.

Annual distributions of simulated CPUE within the 
survey area were predicted over a nominal grid with a 

https://www.r-inla.org/
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2- km resolution on the basis of a single but random sam-
ple from the posterior predictive distribution of the mod-
els while accounting for the sampling process. In other 
words, simulated CPUE was calculated as the product of 
sampled fish occurrence and sampled density. Sampled 
fish occurrence was estimated by using a Bernoulli trial 
with the probability determined by the parameter sam-
ples taken from the posterior predictive distribution (in 
practice, a random Markov chain Monte Carlo [MCMC] 
run was chosen and parameter values were taken from 
it). Sampled density was estimated by using a sample 
from a Gaussian distribution on the link scale with the 
mean and variance derived from parameter values taken 
from a randomly chosen MCMC run (the sample value 
was exponentiated by using the natural exponential func-
tion to convert it to real space).

With this approach, predictions accounted for all 
sources of uncertainty included in the model and created 
a noisier CPUE distribution that was more reflective of 
“true” patterns than the mean MCMC prediction. Envi-
ronmental covariate values were determined by kriging 
with the semivariogram model that best fit the historical 
survey data (Kotwicki and Ono, 2019), as implemented by 
the function autofitVariogram in the R package automap 
(vers. 1.0-16; Hiemstra et al., 2009). All geographic coordi-
nates were converted into an Albers projection in order to 
preserve distances prior to analysis.

Simulation of surveys

The CPUE distributions defined over the grid with the 
finer resolution of 2 km were superimposed on the grid 
with a 5- km resolution for the surveys in the GOA before 
the simulated surveys were generated. Each station sam-
pled during surveys in the GOA (i.e., each 25- km2 grid 
cell), therefore, contained an average of approximately 
4–7 of the 2- km2 grid cells with density data. A variety of 
scenarios with different combinations of estimators and 
sampling designs were then implemented to generate sim-
ulated surveys over the modeled CPUE distributions for 
each of the 10 survey years between 1996 and 2015 and 
for each of 3 commercially important species: Pacific cod, 
Pacific ocean perch, and arrowtooth flounder.

In addition to the traditional stratified- random sam-
pling design and the proposed stratification sampling 
design based on an IS, we considered 2 additional sam-
pling designs, simple random sampling and systematic 
sampling, in conjunction with both the model- based 
estimator and the design- based estimator, for a total of 
8 potential scenarios. The scenario in which the design- 
based estimator is paired with the systematic sampling 
design was excluded from this analysis because of its 
unsuitability for the survey area in the GOA. Because the 
survey area is characterized by relatively wide strata on 
the continental shelf but extremely narrow strata along 
the continental slope, stations are too far apart to ade-
quately cover the slope area. The remaining 7 scenarios 
consisted of the use of the design- based estimator with 
3 different sampling designs— simple random sampling 

(SRS), stratified- random sampling based on ISes (WIS) 
(described later in the “Stratified- random sampling based 
on information scores” section), and TRS— and the use of 
the model- based estimator in the R package VAST (vers. 
3.3.0; Thorson, 2019) with 4 different sampling designs— 
systematic sampling (VSY), simple random sampling 
(VRS), stratified- random sampling based on ISes (VIS), 
and traditional stratified- random sampling (VTRS).

We simulated 100 replicate surveys, each consisting of 
820 stations, for each of the 10 years in which surveys had 
been conducted, resulting in 82,000 simulated stations per 
survey year for each scenario. All analyses were conducted 
in R, vers. 3.6.1 (R Core Team, 2019).

Design- based approaches

Traditional stratified- random sampling In the stratified- 
random sampling design used since the inception of the 
bottom- trawl survey of the GOA in 1984, the survey area 
is divided into 59 strata defined by water depth, bottom 
terrain (e.g., shelf, gully, and slope), and statistical man-
agement areas (von Szalay and Raring, 2018). Following 
this traditional design, we allocated stations among the 
strata for species k by using a modified Neyman strategy 
for optimal allocation (Cochran, 1977):

∑
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where nhk =  the sample size for species k in stratum h;
n =  the total sample size;

Nh =  the population size for stratum h;
shk =  the standard deviation of species k in  

stratum h;
ah =  the area of stratum h; and
ch =  the cost to conduct a trawl tow in stratum h.

Catch rates, stratum variances, and stratum areas from 
the surveys conducted in 1990–2015 were used to allocate 
sampling effort among strata for each previous survey 
year and for each of the 50 principal GOA groundfish spe-
cies that the historical survey was designed to sample. The 
estimated time to perform a trawl tow in a given stratum 
was used as a cost variable because tows in deeper strata 
have a greater probability of unacceptable gear perfor-
mance and take longer to complete. A mean sample size 
was calculated across years for each principal species, and 
the sample size for each species was then weighted by each 
species’ commercial value, which was defined as the prod-
uct of the mean biomass and its ex- vessel value in 2015. 
The calculated sample sizes, representing the numbers of 
trawl tows allocated to the various strata, were rounded 
to whole numbers while ensuring that each stratum was 
allocated at least 2 samples.

The allocated stations within each stratum were 
randomly selected without replacement from the 
2- km- resolution grid described earlier. Sample mean (xhk) 
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and standard deviation (Shk) for species k were calculated 
by stratum and were used to generate the survey mean 

( kX ) and variance ( x
2S k) for a stratified- random sampling 

design according to the following equations:
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Stratified- random sampling based on information scores As 
an alternative method of stratification to the traditional 
scheme, we propose the IS approach to stratified- random 
sampling. This novel approach uses spatial and temporal 
information of abundance and temporal information of 
variation in abundance to derive an IS for each sampling 
unit. A high IS should identify areas where abundance 
tends to be high, areas where the abundance is highly 
variable over time, or a combination of these characteris-
tics. Sampling in such areas is likely to provide most infor-
mation about population abundance, composition, and 
trends in abundance, all of which are critical for use in 
stock assessment models and for acquisition of other types 
of information about sampled populations and temporal 
trends in population parameters. Information scores could 
be used to stratify the survey area and provide a basis for 
prioritizing areas with high fish density and high variance 
in fish density to ensure that more stations are allocated 
to strata with higher expected abundance and variability 
in abundance. Given this logic, we propose an IS that is 
calculated for each of the 15,718 eligible 5- by-5- km grid 
cells in the survey area as follows:

Var( )
,ik ik

2
ik�

�
= +IS CPUE

CPUE
n

 (6)

where ik
�CPUE  =  the mean predicted CPUE of species k 

in grid cell i over the 10 survey years 
between 1996 and 2015.

The ik
�CPUE of grid cell i (5- by-5 km) for a given year was 

calculated as the mean prediction of the simulated densi-
ties of all 2- by-2- km grid cells within it. By squaring the 
mean predicted CPUE, we ensure that the 2 terms have 
the same units and equal weight.

To determine how to stratify on the basis of discretiz-
ing the ISes into bins of similar values, we first examined 
how the scores were distributed. We found the distribu-
tion of the 15,718 ISes to be highly positively skewed 
for all species (Pearson’s coefficient of skewness ranged 
between 8.7 for arrowtooth flounder and 43.5 for Pacific 
ocean perch; Suppl. Fig. 1).

These values were sorted from low to high, and evenly 
spaced breakpoints were inserted to generate 20 strata, 
each with 786 stations. The choice to use 20 strata resulted 
from observations about the scores. These observations 

were that approximately 5% of the ISes were equal to zero, 
and a similar proportion of the scores on the opposite end 
of the distribution were of the same order of magnitude, 
resulting in 2 strata that contained the extreme values 
on both ends of the distribution with other strata having 
intermediate values. In a sensitivity analysis, we found no 
indication of substantial differences in results when either 
19 or 21 strata were used. Furthermore, 20 strata is a rea-
sonable number for the survey in the GOA and is also the 
number of strata being considered for a revised sampling 
design for this survey.

The number of survey stations allocated to the different 
strata was weighted by the mean IS of each stratum. First, 
we used the Neyman algorithm to determine the sample 
allocation (Lavrakas, 2008):

∑
=
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.h

h h

h hh=1

20
n

n N s

N s
 (7)

Then, to weight the allocation among strata by using the 
mean IS of each stratum, the weights were calculated as 
follows:

∑
= ,h

h

hh=1

20
w

IS

IS
 (8)

where wh =  the weight of stratum h, and

hIS =  the mean information score for stratum h.

In this equation, substituting hIS  for sh in Equation 
7 and algebraically simplifying the new equation (Nh is 
a constant and cancels out) results in nh being equal to 
nwh, which is the sample size of stratum h weighted by its 
information score.

Some stations originally assigned to the strata with the 
highest ISes were reallocated to strata receiving fewer 
than 2 stations to make variance calculations possible 
for all strata. This procedure for station allocation among 
strata was repeated for each species.

The allocated stations within each stratum were ran-
domly selected without replacement from the grid with a 
5- km resolution for the survey in the GOA. A random grid 
cell from the 2- km- resolution grid was then sampled to 
represent the CPUE of the entire station. Sample mean 
and standard deviation were calculated by stratum and 
were used to generate the survey mean and variance for 
a stratified- random sampling design similar to the proce-
dure used for the traditional stratified- random approach 
described in the previous section.

Model- based approaches

The model- based estimator was a spatiotemporal delta 
model consisting of a binomial model for the probability 
of encounter and a user- selected model for positive catch 
rates, as implemented in the VAST package (Thorson, 
2019). In a report of their recent work, Thorson et al. (2021) 
noted that the choice of distributional assumptions can 

https://doi.org/10.7755/FB.121.1-2.5s1
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have a substantial effect on the scale of the biomass index 
estimated from such spatiotemporal models; therefore, we 
tested a range of assumptions to determine which provided 
the best fit and accuracy. We considered 2 different obser-
vation error distributions for positive catch rates, lognor-
mal and gamma, and whether or not to correct values for 
retransformation bias (Thorson and Kristensen, 2016).

The hurdle models included year as a fixed effect, a 
spatial random field for each model component (encoun-
ter and positive catch rate), and independent spatiotem-
poral random fields for the positive catch rate component 
(Suppl. Table). The spatiotemporal term for encounter 
probability was not estimated because of the lack of con-
sistent convergence among replicate simulated surveys. 
A model resolution of 500 knots was used, and bilinear 
interpolation was implemented to extrapolate from knot 
locations in order to generate predictions at each location 
in the same 2- km- resolution grid used in the operating 
model. Anisotropy was estimated. The models for each 
scenario differed only in terms of the observation error 
model used for positive catch rates (gamma versus lognor-
mal distribution) and by whether retransformation bias 
was addressed (i.e., with or without epsilon bias correc-
tion) (Thorson and Kristensen, 2016). All models were run 
with the VAST package (Thorson et al., 2015) and the tools 
available in FishStatsUtils (vers. 2.6.0; available from 
website, accessed October 2019).

A customized 2- km- resolution extrapolation grid was 
created as a subset of the standard GOA survey grid 
(depths <1000 m), which excluded all grid cells known to 
be untrawlable. This custom grid was used to ensure that 
the VAST estimation model only integrated densities from 
trawlable areas or areas with an unknown trawlability 
status in order to make the estimates of biomass and its 
variance from the model- based approaches comparable 
to those from the design- based approaches. The results 
of the 4 different combinations of settings, between the 
2 observation models for positive catch rates and whether 
or not the retransformation bias was addressed, for each 
scenario and species were compared with respect to the 
performance metrics described later in the “Performance 
metrics” section. The combination of settings that resulted 
in the lowest relative root- mean- square error (rRMSE) for 
a given scenario and species was selected for final compar-
ison with the other scenarios (Table 1).

Simple random sampling Simulated CPUE values from 
the operating model were sampled by using simple ran-
dom sampling. These values were then used as input to 
the VAST estimation model, along with the associated 
data on location and year for CPUE observations.

Systematic sampling A rectangular grid encompassing 
the entire survey area in the GOA was created by identi-
fying the extreme latitudes and longitudes spanning the 
survey area. An iterative procedure was used to deter-
mine that the length of the square grid cells that would 
result in approximately 820 uniformly spaced stations 
falling within the survey area was approximately 20 km. 

To generate multiple iterations of systematic surveys, the 
origin of the survey grid was altered between iterations by 
randomly sampling a set of coordinates from within the 
grid cell in the extreme southeast corner of the survey grid. 
This 20- km2 survey grid was, in turn, superimposed on the 
nominal 2- km- resolution grid of simulated fish densities. 
The 2- km2 density grid cells within each of the 820 uni-
formly spaced grid cells were identified, and the density 
associated with the 2- km2 grid cell closest to the center of 
the survey grid cell was used to represent the density of 
the entire survey grid cell.

Stratified- random sampling based on information scores  
Simulated CPUE estimates from the operating model 
were sampled by using an IS- based stratified- random 
sampling design. These values were then used as input 
to the VAST estimation model, along with the associated 
data on location and year for CPUE observations.

Traditional stratified- random sampling Based on the same 
principles described for the traditional stratified- random 
sampling in the “Design- based approaches” section, the sta-
tion allocation by stratum scheme replicated the sampling 
design used for the bottom- trawl survey in the GOA in 2007 
that consisted of 825 stations allocated to the 59 survey 
strata. However, rather than sampling directly from the 
2- km- resolution CPUE grid, the stations were sampled from 
the grid with a 5- km resolution used for the survey in the 
GOA, and the CPUE associated with each station was based 
on the mean of the 2- km2 CPUE grid cells within it.

Performance metrics

Three performance metrics were used to evaluate the rel-
ative performance of the 7 scenarios that were used to 
simulate abundance: coefficient of variation (CV), relative 
bias, and rRMSE. Each metric was applied to estimates 
of biomass and its associated variance and was calculated 
separately for each year and species. The true biomass was 
calculated as the product of the trawlable area of the sur-
vey area in the GOA and the arithmetic mean of simulated 
CPUE (with observation error) from all 65,863 trawlable 
grid cells. The true variance was calculated for each year as 
the variance of the replicate simulated biomass estimates:

σ =
∑ −( )

,T
2 S S T

2B B

N
 (9)

where σT
2  =  a “true” variance of the abundance index based 

on 100 simulated surveys;
N =  the total number of simulated surveys (i.e., 100);

BS =  the estimated biomass realized in simulation 
survey s; and

BT =  the “true” biomass estimated from simulated 
density grids.

Bias of both biomass and its variance was defined as the 
mean of the deviations between the respective value of 
each simulation and the true value. The relative bias (RB) 

https://doi.org/10.7755/FB.121.1-2.5s2
https://github.com/James-Thorson-NOAA/FishStatsUtils/tree/2.6.0


von Szalay et al.: Reducing uncertainty in survey abundance estimates: a case study with 3 species in the Gulf of Alaska 57

of these estimates was calculated within each year and 
species as follows:

∑ ( )
=

θ − θ

θ
=

1
n ,

i Truei 1

n

True

RB   (10)

where θi =  the value (biomass or variance) of the ith sim-
ulation replicate, and

θTrue =  the true value (biomass or variance), over 100 
simulation replicates.

The CV was defined as follows:

( )
=

θ

θ
,
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where (11)
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Table 1

Relative root- mean- square errors (rRMSEs) for 7 scenarios with different combinations of estimators and 
sampling designs used to estimate biomass and its variance for arrowtooth flounder (Atheresthes stomias) 
(ATF), Pacific cod (Gadus macrocephalus) (COD), and Pacific ocean perch (Sebastes alutus) (POP) in the 
Gulf of Alaska. The observation error model for positive catch rates and the approach to bias correction 
are indicated for the scenarios in which the model- based estimator was used. The model- based estimator 
was the vector autoregressive spatiotemporal (VAST) model in the R package VAST. The design- based esti-
mator was developed by Wakabayashi et al. (1985). One of the sampling designs was a stratified- random 
design based on information scores. The scenarios with the best overall performance for each species have 
the lowest values for biomass and its variance, which are indicated with asterisks. Analysis of scenarios 
was based on data from the bottom- trawl surveys conducted in the Gulf of Alaska during 1996–2015 by 
the NOAA Alaska Fisheries Science Center. The abbreviations in parentheses represent the 7 scenarios.

Species
Estimator and sampling 
design (scenario)

Observation 
error model

Bias 
correction

rRMSE

Biomass Variance

Model- based approaches
ATF VAST systematic (VSY) delta- gamma Off 0.16 >1.00

VAST simple random (VRS) delta- lognormal Off 0.05 0.30
VAST information score (VIS) delta- gamma On 0.24 0.25
VAST stratified random (VTRS) delta- gamma On 0.04* 0.18*

COD VAST systematic (VSY) delta- lognormal On 0.07 0.69
VAST simple random (VRS) delta- lognormal On 0.10 0.18
VAST information score (VIS) delta- gamma On 0.13 0.15*
VAST stratified random (VTRS) delta- gamma On 0.05* 0.15*

POP VAST systematic (VSY) delta- gamma On 0.17 0.98
VAST simple random (VRS) delta- lognormal On 0.14 0.31
VAST information score (VIS) delta- gamma Off 0.40 0.18*
VAST stratified random (VTRS) delta- gamma On 0.12* 0.28

Design- based approaches
ATF Simple random (SRS) – – 0.07 0.19

Information score (WIS) – – 0.02* 0.05*
Stratified random (TRS) – – 0.08 0.28

COD Simple random (SRS) – – 0.06 0.15
Information score (WIS) – – 0.03* 0.09*
Stratified random (TRS) – – 0.06 0.19

POP Simple random (SRS) – – 0.17 0.39
Information score (WIS) – – 0.03* 0.10*
Stratified random (TRS) – – 0.16 0.40

and Var(θ) =  the mean of the square deviations between 
the value (biomass or variance) of each simu-
lation and the mean biomass or variance.

The mean square error was defined as the sum of the bias 
squared and variance, and the rRMSE was calculated as 
follows:

=
+

θ
,

2

True

rRMSE
Bias Var

 (12)

where Bias =  the absolute bias as defined by the numera-
tor in Equation 10.

Results

Of the 7 scenarios with different combinations of estima-
tors and sampling designs that were considered in this 
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study, the best scenario for estimating biomass and its 
variance across all performance metrics and all species 
was the design- based estimator coupled with the stratified- 
random sampling design in which strata were defined by 
ISes. This IS scenario consistently had the lowest CV and 
rRMSE and was generally unbiased (Table 1, Figs. 3–8). In 
contrast, the scenario that paired the model- based estima-
tor of biomass with this sampling design (VIS scenario) 
was by far the worst- performing scenario by all 3 perfor-
mance metrics for all species. It had the highest CV and 
rRMSE and was the most biased for all species. However, 
for variance, the VIS scenario performed considerably bet-
ter, with no bias for 2 of the species and with an rRMSE 
similar to or smaller than that of the other model- based 
variance scenarios.

The performance of the combination of the design- based 
estimator with the traditional stratified- random sampling 
design (TRS scenario) was generally average for estimates 
of biomass and its variance among the 7 scenarios. The 

performance of this scenario was most similar to that of 
the scenario that pairs the design- based estimator with a 
simple random sampling design (Figs. 3–8).

The performance of scenarios differed among species. 
Of the 7 scenarios for estimating biomass, 5 scenarios per-
formed relatively well for arrowtooth flounder (VRS, VTRS, 
SRS, WIS, and TRS). A sixth scenario (VSY) performed well 
for Pacific cod in terms of rRMSE (rRMSE <0.10). However, 
only the WIS had an rRMSE below 0.10 for Pacific ocean 
perch (Table 1). All of the scenarios with the designed- based 
estimator of biomass were consistently unbiased (mean 
relative bias <0.005 for all species), whereas the scenarios 
with the model- based estimator were generally negatively 
biased, except the VRS for arrowtooth flounder and the VIS 
across all species (Figs. 3–5).

Of the 7 scenarios for estimating variance in biomass, 
only the WIS consistently performed well as measured by 
rRMSE (rRMSE: 0.06–0.10). Although most of the other 
scenarios were relatively unbiased for Pacific cod and 

Figure 3
Relative performance of the 7 scenarios with different combinations of estimators and sampling 
designs in estimating biomass for arrowtooth flounder (Atheresthes stomias) based on 100 simu-
lated bottom-trawl surveys in the Gulf of Alaska. Each box plot represents the distribution of a 
performance metric, (A) coefficient of variation, (B) relative bias, or (C) relative root-mean-square 
error (RMSE), for a scenario over the 10 survey years between 1996 and 2015. The model-based 
estimator, the vector autoregressive spatiotemporal (VAST) model in the R package VAST, was 
paired with 4 sampling designs: systematic (VSY scenario), simple random (VRS scenario), strati-
fied random based on information scores (VIS scenario), and traditional stratified random (VTRS 
scenario). The designed-based estimator was paired with 3 sampling designs: simple random (SRS 
scenario), stratified random based on information scores (WIS scenario), and traditional stratified 
random based on Neyman allocation (TRS scenario). In each box plot, the thick black line is the 
median. The lower and upper hinges of the box plots correspond to the 25th and 75th percentiles. 
The whiskers extend from the hinge to the farthest value no more than 1.5 times the interquartile 
range (distance between the 25th and 75th percentiles). Data points beyond the end of the whis-
kers, outliers, are plotted individually.
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Pacific ocean perch (with VSY being the only exception), 
they produced relatively large variances, which resulted 
in relatively large rRMSEs (Figs. 6–8).

The VTRS scenario performed better in estimating bio-
mass than 2 of the design- based methods (TRS and SRS), 
as well as all of the other model- based scenarios in terms 
of CV and rRMSE, but this scenario was somewhat nega-
tively biased (mean relative bias ranged between −0.02 
and −0.05). The only scenario with the model- based esti-
mator of biomass that had a comparable rRMSE was the 
one with the simple random sampling design (VRS sce-
nario), but only for arrowtooth flounder and Pacific ocean 
perch (Figs. 3–5). The performance of the VTRS in esti-
mating variance in biomass, on the other hand, was gener-
ally similar to that of the other methods (except for the 
poorly performing VSY and the best performing WIS) 
across all performance metrics (Figs. 6–8).

The VSY scenario for estimating the variance of bio-
mass had extreme values of all performance metrics 

for Pacific cod and Pacific ocean perch (CV: 0.64–0.78; 
mean relative bias: from −0.28 to −0.60; rRMSE: 0.7–1.0; 
Figs. 7–8) but even more extreme values for arrowtooth 
flounder (CV and rRMSE >1.0). The VSY scenario for esti-
mating biomass variance for arrowtooth flounder, there-
fore, was excluded from the boxplots in Figure 6 because 
it was an extreme outlier, which if included, would have 
made comparisons of the other scenarios difficult. The 
poor performance of the VSY scenario for estimating vari-
ance was due to the highly skewed variance distributions 
for all species, with ranges spanning as much as 5 orders 
of magnitude for arrowtooth flounder (Suppl. Fig. 2).

Apart from the differences in the relative performance 
of the various scenarios for estimating biomass and vari-
ance, differences in the performance of each scenario 
among species are notable. All of the scenarios performed 
considerably worse in estimating biomass for Pacific ocean 
perch than for the other 2 species in terms of rRMSE. The 
difference in performance across species was small for the 

Figure 4
Relative performance of the 7 scenarios with different combinations of estimators and sampling 
designs in estimating biomass for Pacific cod (Gadus macrocephalus) based on 100 simulated 
bottom-trawl surveys in the Gulf of Alaska. Each box plot represents the distribution of a per-
formance metric, (A) coefficient of variation, (B) relative bias, or (C) relative root-mean-square 
error (RMSE), for a scenario over the 10 survey years between 1996 and 2015. The model-based 
estimator, the vector autoregressive spatiotemporal (VAST) model in the R package VAST, was 
paired with 4 sampling designs: systematic (VSY scenario), simple random (VRS scenario), strati-
fied random based on information scores (VIS scenario), and traditional stratified random (VTRS 
scenario). The designed-based estimator was paired with 3 sampling designs: simple random (SRS 
scenario), stratified random based on information scores (WIS scenario), and traditional stratified 
random based on Neyman allocation (TRS scenario). In each box plot, the thick black line is the 
median. The lower and upper hinges of the box plots correspond to the 25th and 75th percentiles. 
The whiskers extend from the hinge to the farthest value no more than 1.5 times the interquartile 
range (distance between the 25th and 75th percentiles). Data points beyond the end of the whis-
kers, outliers, are plotted individually.

https://doi.org/10.7755/FB.121.1-2.5s3
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top- performing WIS scenario (an rRMSE of 0.03 for Pacific 
ocean perch versus values of 0.02 and 0.025 for arrowtooth 
flounder and Pacific cod, respectively). However, the differ-
ence was much higher for all of the other scenarios for esti-
mating biomass, with absolute differences in rRMSE 
between Pacific ocean perch and the other 2 species rang-
ing from 0.01 to 0.16 for arrowtooth flounder and from 
0.04 to 0.27 for Pacific cod (Table1). In contrast, all but one 
of the scenarios for estimating variance of biomass per-
formed best for Pacific cod, with absolute differences in the 
rRMSE between Pacific cod and the other 2 species rang-
ing from 0.03 to >0.31 for arrowtooth flounder and from 
0.01 to 0.29 for Pacific ocean perch. The single exception 
was the WIS scenario, which had a smaller rRMSE for 
arrowtooth flounder (0.05 for arrowtooth flounder versus 
a value of 0.09 for Pacific cod) but a larger rRMSE for 
Pacific ocean perch (0.10). The differences in relative per-
formance of the scenarios between Pacific ocean perch and 
arrowtooth flounder were mixed.

Discussion

The objective of this study was to assess the performance of 
7 scenarios with different combinations of sampling designs 
and estimators and to compare their statistical robustness. 
Although we used 3 different performance metrics to eval-
uate statistical robustness, for conciseness, we highlight 
herein the best- performing scenarios on the basis of only 
rRMSE (those with the lowest rRMSEs are considered the 
best performing), which includes both the bias and variance 
components teased apart by the other performance metrics.

The results of the simulation analyses indicate that, 
compared to the scenario that paired the design- based 
estimator with the existing sampling design (TRS), 4 sce-
narios performed better for arrowtooth flounder, 3 sce-
narios performed the same or better for Pacific cod, and 
3 scenarios performed better for Pacific ocean perch. Of 
these scenarios, only the design- based WIS and the 
model- based VTRS scenarios performed better than the 

Figure 5
Relative performance of the 7 scenarios with different combinations of estimators and sampling 
designs in estimating biomass for Pacific ocean perch (Sebastes alutus) based on 100 simulated 
bottom-trawl surveys in the Gulf of Alaska. Each box plot represents the distribution of a per-
formance metric, (A) coefficient of variation, (B) relative bias, or (C) relative root-mean-square 
error (RMSE), for a scenario over the 10 survey years between 1996 and 2015. The model-based 
estimator, the vector autoregressive spatiotemporal (VAST) model in the R package VAST, was 
paired with 4 sampling designs: systematic (VSY scenario), simple random (VRS scenario), strati-
fied random based on information scores (VIS scenario), and traditional stratified random (VTRS 
scenario). The designed-based estimator was paired with 3 sampling designs: simple random (SRS 
scenario), stratified random based on information scores (WIS scenario), and traditional stratified 
random based on Neyman allocation (TRS scenario). In each box plot, the thick black line is the 
median. The lower and upper hinges of the box plots correspond to the 25th and 75th percentiles. 
The whiskers extend from the hinge to the farthest value no more than 1.5 times the interquartile 
range (distance between the 25th and 75th percentiles). Data points beyond the end of the whis-
kers, outliers, are plotted individually.
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TRS scenario for all 3 species, with only the WIS scenario 
consistently performing substantially better than the 
TRS scenario for estimates of both biomass and its vari-
ance for all species (with rRMSEs >50% lower than those 
for the TRS). The reduction in rRMSE from the WIS sce-
nario to the TRS scenario ranged among species between 
58% and 81% for biomass and between 53% and 82% for 
variance in biomass, with the greatest reduction observed 
for Pacific ocean perch. It is likely that the traditional 
sampling design is not as suitable for assessing abun-
dance of Pacific ocean perch because of the patchy distri-
bution of this species in the GOA (Lunsford et al., 2001; 
Clausen and Fujioka, 2007), a pattern that requires 
larger sample sizes in areas of high density than in other 
areas. In summary, our results indicate that the combi-
nation of stratified- random sampling with model- based 
estimation methods is likely to produce the best results.

These results have at least 2 important implications for 
the redesign of and improvements to the method of abun-
dance estimation for the bottom- trawl survey conducted in 
the GOA. First, in the short term, estimates of abundance 
can be improved immediately by using model- based estima-
tors in combination with traditional stratified- random sam-
pling. Second, in the long term, basing stratification on ISes 
could be an additional change that can improve estimates 
for species with spatially restricted or patchy distributions, 
when used in combination with design- based estimators.

Recommendation to develop model- based estimators

Our results indicate clear improvements in estimation for 
all species when the model- based estimator was used with 
a stratified- random sampling design. This finding is 
important because it indicates that some of the losses in 

Figure 6
Relative performance of the 7 scenarios with different combinations of estimators and sampling 
designs in estimating the variance of biomass for arrowtooth flounder (Atheresthes stomias) based 
on 100 simulated bottom-trawl surveys in the Gulf of Alaska. Each box plot represents the distri-
bution of a performance metric, (A) coefficient of variation, (B) relative bias, or (C) relative root-
mean-square error (RMSE), for a scenario over the 10 survey years between 1996 and 2015. The 
box plots for the VSY scenario for this species have been omitted for readability of the vertical axis 
values of the other methods. The model-based estimator, the vector autoregressive spatiotemporal 
(VAST) model in the R package VAST, was paired with 4 sampling designs: systematic (VSY sce-
nario), simple random (VRS scenario), stratified random based on information scores (VIS scenario), 
and traditional stratified random (VTRS scenario). The designed-based estimator was paired with 
3 sampling designs: simple random (SRS scenario), stratified random based on information scores 
(WIS scenario), and traditional stratified random based on Neyman allocation (TRS scenario). In 
each box plot, the thick black line is the median. The lower and upper hinges of the box plots corre-
spond to the 25th and 75th percentiles. The whiskers extend from the hinge to the farthest value no 
more than 1.5 times the interquartile range (distance between the 25th and 75th percentiles). Data 
points beyond the end of the whiskers, outliers, are plotted individually.
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precision expected from design- based estimators in cases 
with reduced survey effort (Oyafuso et al., 2021) can per-
haps be mitigated by the use of spatiotemporal model- 
based methods, such as those in the VAST package. Similar 
improvements were also observed when simple random 
sampling was used with the model- based estimator.

In a related study, in which the effect of sampling den-
sity changes on biomass estimates was examined for the 
same 3 species analyzed here, the model- based estimator 
when used with the stratified- random sampling design 
performed better than the design- based estimator for all 
3 species at 4 different levels of survey effort (von Szalay 
et al.2). In other studies, the advantages of a spatiotempo-
ral model- based estimator have been demonstrated more 

2 von Szalay, P. G., E. A. Laman, S. Kotwicki, L. A. K. Barnett, and 
K. Ono. In preparation. Quantifying the effects of sample size 
and species distribution on the precision and accuracy of abun-
dance estimates from bottom trawl surveys in the Gulf of Alaska.

broadly. O’Leary et al. (2020) found that the spatial and 
temporal scope of total biomass for walleye pollock (G. chal-
cogrammus) in the northern Bering Sea was improved in a 
stock assessment model when a model- based biomass index 
from multiple surveys was used as model input in combina-
tion with the standard design- based estimates. In addition, 
stock assessment models for dusky rockfish (S. ciliatus) 
and northern rockfish (S. polyspinis) in the GOA have 
incorporated such model- based estimates because they are 
less noisy than the sampling- design- based CVs (Lunsford 
et al., 2015; Cunningham et al., 2018).

The improvements we observed with the model- based 
estimator are likely due to an increase in the effective sam-
ple size when data from multiple surveys are used to derive 
biomass estimates. Thorson and Haltuch (2019) showed 
that the effective sample size increased by 17% and that the 
model fit was better, resulting in smaller standard errors of 
estimated spawning biomass, when a spatiotemporal model- 
based estimator was used in a stock synthesis assessment 

Figure 7
Relative performance of the 7 scenarios with different combinations of estimators and sampling 
designs in estimating the variance of biomass for Pacific cod (Gadus macrocephaluls) based on 
100 simulated bottom-trawl surveys in the Gulf of Alaska. Each box plot represents the distri-
bution of a performance metric, (A) coefficient of variation, (B) relative bias, or (C) relative root-
mean-square error (RMSE), for a scenario over the 10 survey years between 1996 and 2015. The 
model-based estimator, the vector autoregressive spatiotemporal (VAST) model in the R package 
VAST, was paired with 4 sampling designs: systematic (VSY scenario), simple random (VRS sce-
nario), stratified random based on information scores (VIS scenario), and traditional stratified 
random (VTRS scenario). The designed-based estimator was paired with 3 sampling designs: sim-
ple random (SRS scenario), stratified random based on information scores (WIS scenario), and tra-
ditional stratified random based on Neyman allocation (TRS scenario). In each box plot, the thick 
black line is the median. The lower and upper hinges of the box plots correspond to the 25th and 
75th percentiles. The whiskers extend from the hinge to the farthest value no more than 1.5 times 
the interquartile range (distance between the 25th and 75th percentiles). Data points beyond the 
end of the whiskers, outliers, are plotted individually.
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model for lingcod (Ophiodon elongatus) in the California 
Current. However, we acknowledge that additional work 
with more than the 3 species examined in our study is 
needed before our results can be generalized. It is possible 
that the VAST estimator does not perform as well for spe-
cies with a more limited spatial distribution.

Furthermore, both bias and variance tended to be high 
for the model- based estimator when the sampling design 
is highly unbalanced. This was the case for all 3 species 
when the VAST estimation model was paired with the 
IS- based sampling design (VIS scenario), which concen-
trated sampling density in areas of high biomass.

Recommendation to develop stratification methods 
based on information scores

For all 3 species, IS- based stratification in combination 
with design- based estimation yielded results that were by 
far better than any other method. The main reason this 

method outperformed the traditional design schemes (ran-
dom and systematic) was that stratification was informed 
by historical data in the form of ISes, which can be described 
as estimated expectation of population abundance and its 
temporal variability. Of course, for this approach to be valid, 
one must be confident in the predictions of density based 
on historical data to adequately represent current and per-
haps future species distributions. In contrast, the stratum 
boundaries in traditional random sampling are defined by 
depth and management area. Using ISes to stratify the 
survey area resulted in strata with more homogenous vari-
ances than the strata in the traditional Neyman allocation. 
This difference is due to the variance component of the IS, 
which increases the efficiency of IS- based stratification 
compared to that of the traditional stratification scheme. 
Furthermore, in contrast to using Neyman allocation, the 
use of ISes ensures that samples are representative in 
areas where density is persistently high and temporal vari-
ance is low. In Neyman allocation, strata with high density 

Figure 8
Relative performance of 7 scenarios with different combinations of estimators and sampling 
designs in estimating the variance of biomass for Pacific ocean perch (Sebastes alutus) based on 
100 simulated bottom-trawl surveys in the Gulf of Alaska. Each box plot represents the distri-
bution of a performance metric, (A) coefficient of variation, (B) relative bias, or (C) relative root-
mean-square error (RMSE), for a scenario over the 10 survey years between 1996 and 2015. The 
model-based estimator, the vector autoregressive spatiotemporal (VAST) model in the R package 
VAST, was paired with 4 sampling designs: systematic (VSY scenario), simple random (VRS sce-
nario), stratified random based on information scores (VIS scenario), and traditional stratified 
random (VTRS scenario). The designed-based estimator was paired with 3 sampling designs: sim-
ple random (SRS scenario), stratified random based on information scores (WIS scenario), and tra-
ditional stratified random based on Neyman allocation (TRS scenario). In each box plot, the thick 
black line is the median. The lower and upper hinges of the box plots correspond to the 25th and 
75th percentiles. The whiskers extend from the hinge to the farthest value no more than 1.5 times 
the interquartile range (distance between the 25th and 75th percentiles). Data points beyond the 
end of the whiskers, outliers, are plotted individually.
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but low variance are apportioned a relatively small number 
of stations. Such allocation is undesirable for fisheries sur-
veys because, in addition to precise estimates of abundance, 
representative samples for other population measures, 
such as age and size compositions, are also needed. In the 
extreme case of the abundance of a stratum being very high 
but uniform, the Neyman strategy would allocate no sam-
ples to that stratum.

In the future, it may be problematic to use historical data 
to define stratum boundaries under the IS approach if fish 
distributions change in response to climate change as they 
are in many regions (Hobday and Evans, 2013; Maureaud 
et al., 2021; Hollowed et al., 2022). If the shift in distribu-
tions is relatively gradual over time, it may still be appropri-
ate to use relatively recent data while excluding older data 
to define stratum boundaries on the basis of ISes. However, 
if the shift in distribution patterns is more abrupt, it may 
not be appropriate to use any sampling design that defines 
strata on the basis of historical data, as is the case for both 
the WIS and TRS approaches. In this situation, it may be 
necessary to conduct a pilot survey prior to the main survey 
to establish new stratum boundaries.

The finding that the design based on ISes outperformed 
the traditional sampling design is not surprising given 
that the stratification was performed individually for each 
species in the case of the WIS scenario. Therefore, this 
method would be applicable to only single- species surveys. 
In contrast, the stratification scheme used for the TRS 
scenario was first optimized for each species, but because 
the GOA survey is a multispecies survey, the realized sta-
tion allocation to each stratum was based on a weighted 
average of several principal species. This weighting effec-
tively resulted in less than optimal station allocation for 
each species. The comparison is nevertheless informative 
because it illustrates how much better the biomass and 
variance estimates are if we can focus on sampling indi-
vidual species, given their importance to the fishery. Per-
haps it has been a mistake to make so many compromises 
with the traditional weighting across too many species.

More research is needed to investigate how the relative 
performance of the WIS scenario compares with the TRS 
scenario in the context of a multispecies survey, in which 
the IS- based station allocation scheme would be subjected 
to the same compromises among several principal species 
as the traditional stratified- random sampling design. We 
envision generating multispecies ISes, which are linear 
combinations of the single- species scores associated with 
each of the principal species included in the TRS scenrio. 
Each component of these combinations could be weighted 
by a number of different factors important to manage-
ment (e.g., the commercial value of each species, ecologi-
cal importance of each species, or non- biological elements, 
such as cultural or political considerations).

Although both the absolute and relative performance 
of a multispecies version of the WIS would necessar-
ily be lower than the performance of the single- species 
version, we expect it to perform better than the TRS 
scenario because the stratum boundaries and station allo-
cation scheme are strictly driven by historical data and 

determined by the objective factors of fish density and its 
variance. Furthermore, it is likely that the IS approach can 
be improved by optimizing for both the relative weighting 
of the variance component and the number of strata used. 
In contrast, in the TRS scenario, strata are defined by ad 
hoc boundaries and depth of the management area, likely 
reducing the efficiency of the traditional sampling design. 
The allocation scheme of the TRS scenario also includes a 
penalty against strata that are relatively costly to sample 
in terms of time. This cost penalty may be problematic for 
estimating biomass and its variance for slope species, such 
as Pacific ocean perch and sablefish (Anoplopoma fim-
bria), which primarily inhabit these high- cost strata and 
are also more patchily distributed than species, such as 
Pacific cod and arrowtooth flounder, that inhabit the con-
tinental shelf. As a compromise with the objective to pre-
serve the TRS approach, it may be feasible in the future to 
introduce a hybrid sampling design in which sampling for 
some species is done with the traditional design and sam-
pling for other species, such as Pacific ocean perch, may be 
enhanced by sampling more in areas with high ISes.

The relatively poor performance of the model- based VIS 
scenario can likely be attributed to the unbalanced sam-
pling design resulting from stratification based on ISes. 
Under this stratification scheme, in which the distributions 
of the ISes were highly skewed (Suppl. Fig. 1), the bulk of 
the stations were assigned to just a few strata while the 
minimum of 2 required stations were assigned to all of the 
remaining strata, concentrating the spatial distribution of 
samples used to extrapolate to the entire survey area. The 
performance of the VIS in estimating biomass was partic-
ularly poor for Pacific ocean perch because this species is 
primarily confined to a depth range of approximately 150–
300 m, which exists only in a relatively narrow band on the 
upper continental slope of the survey area. Pacific cod and 
arrowtooth flounder, on the other hand, are more evenly 
distributed over a larger portion of the survey area (primar-
ily over the relatively wide continental shelf); therefore, the 
effect of the unbalanced sampling design is less pronounced 
for them. The IS- based sampling design tailors the station 
allocation to individual strata, resulting in better perfor-
mance than the traditional stratification scheme with 
designed- based estimators because stations are allocated 
to areas where fish are most likely to be, thereby reducing 
the variance in biomass estimates while having no effect on 
bias. However, it does not work well with the model- based 
estimator, which is sensitive to the highly unbalanced sam-
pling dictated by the IS- based stratification.

Conclusions

The results of our analysis of 6 scenarios with different 
combinations of sampling designs and estimators, in com-
parison to the method used for the bottom- trawl survey 
conducted in the GOA since 1984, not only identify which 
scenario consistently outperformed the traditional approach 
but also indicate that the traditional approach of using a 
stratified- random sampling design with a design- based 
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estimator is not optimal for any of the 3 species consid-
ered in this study. Estimates of abundance can likely be 
improved immediately by using the model- based estimator 
in the VAST package in combination with the traditional 
stratified- random sampling design (VTRS scenario). In the 
long term, stratification based on the IS proposed in this 
study, when used with a design- based estimator, could be a 
useful alternative to the traditional approach in improving 
estimates of abundance for species, such as Pacific ocean 
perch, with spatially restrictive or patchy distributions. 
However, in subsequent work, interspecific tradeoffs in a 
multispecies context will be required to justify reconsid-
ering the traditional sampling design. Nonetheless, this 
approach of combining an IS- based sampling design with a 
design- based Wakabayashi estimator is promising, particu-
larly for single- species surveys or for multispecies surveys 
in areas with few interspecific differences in distribution.

Resumen

Desde 1984, se han utilizado prospecciones de arrastre de 
fondo con un diseño de muestreo aleatorio estratificado 
para la evaluación de poblaciones de especies de impor-
tancia comercial en el Golfo de Alaska. Se evaluó un nuevo 
diseño de muestreo estratificado para determinar si su uso 
podría mejorar la precisión y exactitud de las estimaciones 
de abundancia. En el enfoque propuesto para definir los 
estratos, se utilizaron datos de estudios históricos para gen-
erar lo que denominamos puntajes de información (ISes). 
Para determinar si el enfoque existente es óptimo, se com-
paró el esquema de estratificación tradicional con el nuevo 
método y otros 2 diseños de muestreo, utilizando tanto un 
estimador basado en el diseño como un estimador basado en 
el modelo con cada diseño. La robustez estadística, medida 
en términos del coeficiente de variación, sesgo y la raíz del 
error cuadrático medio, se comparó entre 7 escenarios con 
diferentes combinaciones de estimadores y diseños de mues-
treo mediante simulación con un modelo lineal general-
izado mixto espaciotemporal condicionado a observaciones 
históricas de capturas por unidad de esfuerzo de 3 especies. 
La combinación del estimador basado en el diseño con el 
esquema de estratificación basado en los ISes fue el mejor 
escenario en todas las medidas de desempeño para todas 
las especies. Este escenario consistentemente presentó la 
varianza más baja y el menor error total, y en general, no 
estuvo sesgado. En contraste, la comparación del estimador 
basado en el modelo con este diseño de muestreo fue por 
mucho, el escenario con peor desempeño. El desempeño del 
enfoque existente fue promedio.
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