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Two fishery-independent surveys are 
important for monitoring Atlantic 
sea scallop (Placopecten magellani-
cus) abundance and biomass levels 
off the northeastern coast of the 
United States because they provide 
abundance, body size,1 meat weight 
(weight of marketable adductor mus-
cles), and other data (NEFSC2,3). The 
National Marine Fisheries Service, 
Northeast Fisheries Science Center 
(NEFSC) sea scallop dredge survey 
has been conducted annually since 
1977 (Serchuk et al., 1979; Serchuk 
and Wigley, 1986). In addition, an 
underwater video survey for sea scal-
lops and other benthic organisms has 
been conducted annually since 2003 
(Stokesbury, 2002; Stokesbury et al., 
2004) by the University of Massachu-
setts Dartmouth, School for Marine 
Science and Technology (SMAST). The 
dredge and video surveys are carried 
out across the range of sea scallops in 
U.S. waters. 

In this analysis, we used sea scal-
lops to draw attention to errors in 
body-size data when the data are 
used in a length-structured stock 
assessment model. The topic of mea-
surement errors in body-size data 
has received relatively little atten-
tion, although Heery and Berkson 
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Abstract—Body-size measurement 
errors are usually ignored in stock 
assessments, but may be important 
when body-size data (e.g., from visual 
surveys) are imprecise. We used 
experiments and models to quantify 
measurement errors and their effects 
on assessment models for sea scallops 
(Placopecten magellanicus). Errors in 
size data obscured modes from strong 
year classes and increased frequency 
and size of the largest and smallest 
sizes, potentially biasing growth, mor-
tality, and biomass estimates. Model-
ing techniques for errors in age data 
proved useful for errors in size data. 
In terms of a goodness of model fit 
to the assessment data, it was more 
important to accommodate variance 
than bias. Models that accommodated 
size errors fitted size data substan-
tially better. We recommend experi-
mental quantification of errors along 
with a modeling approach that accom-
modates measurement errors because 
a direct algebraic approach was not 
robust and because error parameters 
were diff icult to estimate in our 
assessment model. The importance 
of measurement errors depends on 
many factors and should be evaluated 
on a case by case basis.

(2009) evaluated effects of systematic 
errors (biased sampling) in fishery 
size-composition data used in an age-
structured model. Our work was mo-
tivated by questions that arose from 
examining video survey shell-height 
data in sea scallop stock assessments 
(NEFSC2,3). Our experimental and 
analytical results may be important 
and useful in other situations where 
body-size data are imprecise. Body-

1 Shell height (SH, the distance in mm 
between the umbo and shell margin)  
is the body size measurement for sea 
scallops.
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size data may be imprecise, for example, when col-
lected by scuba (St. John et al., 1990; Edgar et al., 
2004), remotely operated underwater vehicles (ROV; 
Butler et al., 2006), camera sleds (Rosenkranz and 
Byersdorfer, 2004), or in other optical surveys where 
body-size measurements are obtained without handling 
individual specimens. 

In fishery stock assessment modeling, body-size mea-
surements are almost always assumed to be without 
error. In contrast, statistical sampling errors that arise 
from too few are often considered in modeling (Fournier 
and Archibald, 1982; Pennington et al., 2001). Measure-
ment errors in fishery age data have received substan-
tial attention and are often addressed in stock assess-
ment modeling (Methot, 1989, 1990). Approaches to 
dealing with measurement error in body-size data have 
not been explored. 

Shell-height composition data for sea scallops are 
of two types: 1) distributions of shell-height measure-
ments, which include measurement errors and true 
variability among individuals in size; and 2) distri-
butions of shell-height measurements, which include 
measurement errors only. It is important to distinguish 
between these two types of data. In particular, shell-
height compositions are sample specific and depend on 
the underlying distribution of true sizes. In our study 
measurement errors are the difference between the 
video or board measurements and the true shell height 
of individual specimens (i.e., after removing differences 
in true shell height among individuals). Shell-height 
composition data are important because they are in-
terpreted in stock assessments to estimate year-class 
strength, mortality, and other biological characteris-
tics. In our study measurement errors are important 
because they can be used to quantify the accuracy of 
the measurement process itself and because they affect 
shell-height data from all samples. 

Two types of measurement errors are considered in 
this study. The first type is bias that causes individual 
shell-height measurements and estimated sample means 
to differ, on average, from their true values (Cochran, 
1977). The second type is random errors, which cause 
variability in shell-height measurements and affect the 
precision of measurements and estimated mean values 
(Cochran, 1977).

Figure 1 shows how hypothetical errors in sea scal-
lop shell-height measurements tend to smooth the true 
underlying distribution of the data. Measurement errors 
tend to smooth modes in the data (which usually cor-
respond to recruitment events) by moving individuals 
from size bins with relatively high numbers into adja-
cent bins with lower numbers. Random measurement 
errors also tend to expand the range of observed sizes 
by decreasing the smallest observed size and increas-
ing the largest (Fig. 1). Bias degrades body-size data 
by making measurements consistently larger or smaller 
than the true value. Methot (1989, 1990) highlighted 
these issues in the context of age data from survey and 
fishery samples. We use Methot’s modeling methods in 
our analysis for shell-height data.

In principal, body-size measurement errors can cause 
errors in a wide range of important fishery estimates 
but biomass estimates are of particular importance. In 
the absence of bias, imprecise body-size data tend to 
cause positive bias in mean weight and biomass esti-
mates because of the nonlinear relationship between 
size and biomass and Jensen’s inequality (Feller, 1966). 
For example, according to Jensen’s inequality, if body 
weight is a cubic function of body size, then a –10% 
error in body size will cause a 0.93−1 = –27% error in 
estimated body weight for one individual. In contrast, 
a +10% error in body size will cause a 1.13−1 = +33% 
error in body weight. The combined effect of the two 
errors for two scallops of the same size would be a posi-
tive bias of +6%. 

The length-based Beverton-Holt mortality estimator 
involves equilibrium and other assumptions that may 
make it inappropriate to use in some cases (Gedamke 
and Hoenig, 2006), but it clearly demonstrates the po-
tential effects of errors in body-size measurements on 
stock assessment model mortality estimates:

 Z
K L L

L Lc
=

−( )
−
∞ ,  (1)

where  Z = the instantaneous rate of mortality from all 
sources; 

 L∞ = asymptotic length;
 K = rate parameter from the von Bertalanffy 

growth equation;
 L  = average length of individuals in a sample 

from the fishery; and
 Lc = the “critical” length at which individuals 

are fully vulnerable to the fishery (Quinn 
and Deriso, 1999). 

With all other factors held constant, a positive bias in 
L will make the numerator in Equation 1 too small, the 
denominator too large, and the mortality estimate will 
be biased low. Conversely, a negative bias in L will bias 
the mortality estimate high. 

In this article, we character ize measurement 
errors in shell-height data for sea scallops in two 
types of surveys, using exper imental data. The 
experimental results are used to evaluate effects 
on mean body weight and swept-area biomass es-
timates, and on biomass and mortality estimates 
from a modern size-structured stock assessment 
model .  T he assessment model  demonstrates  a 
promising approach (used originally for age data) 
for accommodating measurement errors in body-
size data. In the appendices, we use numerical and 
bootstrap techniques to evaluate robustness of the 
assessment model approach in comparison to an 
algebraic one. Our purpose is not to evaluate the 
merits of any particular survey, rather, we use sea 
scallops as an example for dealing with general 
problems arising from body-size measurement er-
rors in survey and f ishery-dependent data, and for 
suggesting possible approaches to using such data.
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Figure 1
Rootograms (Tukey, 1977) showing hypothetical distributions of Atlantic sea scallop (Placopecten 
magellanicus) shell-height (SH) measurements with and without simulated measurement errors. The 
black line in each panel shows the distribution of measurements with no errors (5-mm size bins). 
In the left column, bars show distributions of shell heights with measurement errors. In the right 
column, bars show residuals (measurement with no errors minus measurements with errors). For 
the “bias only” scenario (A and B), precise measurement errors were assumed with a bias of –4.1 
mm. For the “imprecision only” scenario (C and D) unbiased measurement errors were assumed 
with a standard deviation of 6.1 mm. For the “imprecision and bias” scenario (E and F), measure-
ment errors were assumed with a bias of –4.1 mm and standard deviation of 6.1 mm. 
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Materials and methods

The SMAST sea scallop survey is conducted with video 
cameras mounted on a steel pyramid frame to provide 
a 3.24-m2 view of the sea floor and associated macro-
benthos (Stokesbury, 2002; Stokesbury et al., 2004). 
Video images are recorded at sea on high-resolution 

S-VHS videotape and then replayed in the laboratory 
where digitized images are created. All sea scallops 
are counted, and all clearly visible sea scallops (with 
the hinge and opposite edge visible) within the digi-
tized images are measured to the nearest mm by using 
Image Pro Plus® software (Media Cybernetics, Inc., 
Bethesda, MD). 
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In previous analyses, correction factors were applied 
to the raw video shell-height measurements to account 
for distance from the origin (DFO), which is the dis-
tance of a specimen from the “origin” (center) of the 
sampling frame (Stokesbury et al., 2004). Subsequent 
work during routine stock assessments (unpublished) 
indicated that adjustments were unnecessary because 
the distributions of measurement errors were simpler 
and easier to describe statistically, and data were easier 
to model without adjustments. Moreover, adjusted data 
were sometimes less accurate than the unadjusted data. 
Additional research may result in more accurate adjust-
ments or transformations of body-size data. However, 
unadjusted video data from the “large” camera on the 
sampling frame are used in current stock assessments 
and in this analysis. 

NEFSC sea scallop surveys are conducted with a 
2.44-m New Bedford sea scallop dredge with a 38-mm 
liner. The catch is sorted, counted, and measured on the 
deck of the research vessel. In most cases, the entire 
catch is counted and measured, but a few large catches 
were subsampled. During the early 1980s through 2003, 
sea scallops in the catch were measured to the nearest 
5-mm shell-height interval with a standard NEFSC sea 
scallop measuring board. 

Experiments

Two experiments were conducted during 20 and 23 Feb-
ruary 2003 when the SMAST video pyramid was placed 
in a 341,000-L tank filled with seawater in the SMAST 
laboratory. NEFSC sea scallop measuring boards and 
SMAST video equipment in the experiments were con-
figured and used in a realistic manner that was similar 
to use during actual surveys at sea. Accurate measure-
ments used as true shell heights in this analysis were 
made to the nearest mm by using scientific calipers 
under laboratory conditions with adequate lighting.

We used the experimental data to evaluate statisti-
cal characteristics of shell-height composition data and 
shell-height measurement errors. 

Accuracy, bias, and precision of measurements were 
quantified by comparing data obtained from the mea-
suring board and video camera with data from the 
caliper. Accuracy is the closeness to the true underlying 
value and is measured by mean square error (MSE). For 
shell-height composition data,

 MSE h H= −( )2
,  (2)

where h  = the mean of the measurements; and
 H  = the mean of the true values for the sample 
(Cochran, 1977). 

For measurement errors in our analysis,

 MSE

e

n

j
j

n

= =
∑ 2

1 ,  (3)

where ej = hj–Hj =  the error for the jth observation (where 
hj is the measurement and Hj is the 
true value). 

Bias and variance both contribute to MSE. In fact, 
MSE = s2 + b2, where s2 is the variance and b is bias 
(Cochran, 1977). In our study, b=h–H where h is the 
mean of shell-height measurements and H  is the mean 
of the true shell heights in the sample. Bias is the same 
for shell-height composition data and measurement er-
rors as shown below:

 h H n h Hj j
j

n

−( ) = −
=

∑
1

/ .  (4)

Variance (s2) was computed from shell-height composi-
tion data or measurement errors by using the standard 
formula. Variance of shell-height composition data and 
measurement errors will generally be different because 
true shell heights usually differ among specimens in a 
sample.

It is convenient to express accuracy, bias, and preci-
sion in terms of the square root of the MSE (RMSE), 
bias (b), and standard deviation (s) because all three 
are absolute measures with the same units (mm for sea 
scallop shell-height data). Percent RMSE (RMSE/htrue), 
percent bias (b/htrue), and the CV (s/h) are useful for 
making comparisons on a relative basis. 

The third and fourth moment statistics, g1 and g2, 
were used to measure skewness (asymmetry) and kur-
tosis (peakedness) of shell-height composition data and 
measurement errors, in relation to what would be ex-
pected from a normal distribution (Sokal and Rohlf, 
1995). Skewness and kurtosis statistics for shell-height 
composition data and measurement errors from the 
same sample differ if there is variability in size among 
specimens. For normally distributed random variables 
with no skewness, g1 = 0. Negative g1 values indicate 
skewness to the left (a distribution with a long left 
tail and more small values than expected in a normal 
distribution). Positive g1 values indicate skewness to 
the right (long right tail with more large values than 
expected). Similarly, positive g2 values indicate dis-
tributions more peaked than expected for a normal 
distribution, and negative g2 values indicate distribu-
tions that are less peaked (flatter) than expected. The 
two statistics convey information about the shape of 
any distribution in relation to a normal distribution, 
but care is required in interpreting g1 and g2, particu-
larly for data that are far from normally distributed. 
The skewness and kurtosis statistics were easier to 
interpret for measurement errors than for shell-height 
measurements because the latter were not normally 
distributed. 

We used a test for normally distributed statistics 
(Sokal and Rohlf, 1995) to evaluate the statistical sig-
nificance of skewness and kurtosis for distributions of 
measurement errors that might be otherwise assumed 
normally distributed. Statistical tests were carried out 
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for distributions of measurement errors because 
they were closer to normally distributed. 

Multiple shell height-measurements were usu-
ally made from single specimens in our experi-
ments. We made allowance for repeated sampling 
when testing skewness and kurtosis by using the 
number of unique specimens in the experiment as 
the degrees of freedom instead of the number of 
measurements (i.e., if n measurements were made 
on each of k specimens, we used k as the degrees 
of freedom in statistical tests). The effect of this 
adjustment was to make the statistical tests more 
conservative (less likely to reject the null hypoth-
esis of no difference). The number of specimens 
is a reasonable lower bound estimate of the true 
effective sample size.

Body weights for sea scallops and other marine 
organisms are often computed from body size. For 
sea scallops in this analysis, 

 W e h= +α β ln( ),   (5)

where W = sea scallop meat weight (g, the weight 
of the marketable adductor muscle);

 h = shell height (mm); and the parameter 
values α=–12.01 and β=3.22. 

Bland-Altman plots (1986, 1995) were used to 
characterize shell-height measurement errors. In 
the case of measuring boards, for example, the dif-
ference between the measuring board and caliper 
shell-height measurements for each sea scallop was 
plotted on the y-axis against the average of the 
two measures for the same individual on the x-
axis. Bland-Altman plots are typically presented 
as scatter plots with a point for each difference 
(pair of measurements); however, boxplots may be 
more useful in some circumstances (see below). 
Bland-Altman plots are useful because they elimi-
nate spurious correlations when the difference of 
y–x is plotted against the more precise measure (x) 
and because patterns are easier to discern along a 
horizontal line (the x-axis) than along a diagonal 
line. Spurious correlations occur because the mea-
surement error in x affects the variables plotted on 
both the x- and y-axes. 

Experiment 1 was designed to measure the accuracy 
of video measurements for objects of known size (square 
ceramic tiles) as a function of position in the video 
frame as measured by DFO (Fig. 2). Scuba divers in 
experiment 1 placed black and white ceramic floor tiles 
(all were 48.5 × 48.5 mm) in a closely packed square grid 
on the bottom of the tank, starting at the center of the 
video pyramid and covering the entire range of view 
in actual surveys (Fig. 2). The width and height of 91 
tiles across the field of view and at various distances 
and positions from the center of the sampling frame 
(Fig. 2) were estimated from video images by using the 
standard video survey procedures described above. Data 
were recorded in such a way that the length and height 

measurements from the same tile could be associated 
with each other and with the particular position of the 
tile in the video image. The tiles used in experiment 1 
(48.5 × 48.5 mm) corresponded roughly with the size of 
the smallest scallops fully recruited to the dredge and 
video surveys (about 40 mm SH) and included in stock 
assessment analyses. Sea scallops, according to actual 
survey data, cover a much wider range of shell heights 
(to about 190 mm SH in experiment 2, see Discussion 
section).

Experiment 2 was designed to measure the accu-
racy of video shell-height measurements for sea scal-
lop shells of varying sizes (39 to 192 mm SH) placed 
randomly on a sand-granule-pebble substrate, similar 

A

Figure 2
(A) A video image showing ceramic tiles under water in the 
tank where they were placed for experiment 1. (B) Dots show 
the locations of the 91 tiles in the video images that were 
measured in experiment 1. The height, width, horizontal 
and vertical distance from the origin (DFO) was recorded 
for each tile measured. The x- and y-axis are the same in 
the top and bottom panels.
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to the random aggregations observed on Georges Bank. 
All shell-height measurements could be linked with 
each individual sea scallop in experiment 2 because 
the right valve of 172 individual sea scallop shells was 
numbered uniquely. The identification numbers were 
large and written under the valve with dark indelible 
ink and clearly visible with video equipment when the 
sea scallops were turned over so that the labels faced 
the camera. The numbered sea scallops were assigned 
randomly to fifteen groups. All members of the same 
group were stored together in a bag with a unique label 
for group identification. 

In each experimental replicate, a group of shell 
valves was placed randomly on the bottom of the tank. 
Two video images were made for each group. The first 
image (with the valve turned towards the sediment 
and identification numbers hidden) was used by four 
technicians to independently measure shell heights. 
The second image was taken with identification num-
bers visible after divers turned the shells over and 
replaced them in their original positions. After video 
images were recorded, the shell valves were measured 
with measuring boards by two technicians who could 
not see the identification numbers and once by a third 
technician with calipers.

A stock assessment model that incorporates  
errors from shell-height measurements 

Following NEFSC2,3 procedures, we used results from 
experiment 2 and a modified version of the CASA (catch-
at-size-analysis, Sullivan et al., 1990) stock assessment 
model (Appendix 1) to investigate potential effects of 
shell-height measurement errors on model-based bio-
mass and fishing mortality estimates for two sea scallop 
stocks. Assessment model results in this article should 
not be used by managers because model runs were 
tailored to investigate potential effects of shell-height 
measurement errors and because some types of data 
were omitted.

As described in Appendix 1, the CASA model that 
is routinely used for sea scallop stock assessments ac-
commodates both bias and imprecision in shell-height 
measurements. CASA models were run for sea scal-
lops in the Mid-Atlantic Bight during 1982–2006. In 
contrast to NEFSC2, measurement error parameters 
were obtained from experiments and not estimated in 
the CASA model itself. The data used in modeling in-
cluded commercial landings in metric tons (t), survey 
trend data (numbers per unit of sampling effort) from 
the camera video and dredge surveys, and shell-height 
composition data from the commercial fishery, video, 
and dredge surveys. Survey selectivity patterns were 
not estimated because the video and dredge surveys 
have flat selectivity patterns (catch sea scallops equally 
well) at shell height ≥40 mm, and goodness-of-fit calcu-
lations were restricted to this size range (Appendices 
B7–B8 in NEFSC3). Measurement errors in commercial 
shell-height data were assumed to be the same as those 
in the dredge survey for lack of better information and 

because procedures for measuring sea scallops on land 
in port samples and at-sea in fishery observer samples 
are similar to procedures followed in surveys. 

As described in Appendix 1, bias and precision of 
shell-height measurements are represented in the CASA 
model by an error matrix (E) that gives the probability 
that a sea scallop in each true shell-height bin is as-
signed to a range of observed shell-height bins (a range 
that accommodates measurement errors). As described 
by Methot (1989, 1990) for age data, the error matrix 
E can be set up to deal with a wide range of situations 
for bias and variance (e.g., both can vary among shell-
height bins or over time). 

For the calculation of E for sea scallops in this analy-
sis, shell-height measurement error distributions were 
assumed to be normally distributed with means and 
standard deviations from experiment 2. The normal 
distributions for measurement errors were truncated 
three standard deviations above and below the mean. 
In calculating distributions of measurement errors, true 
shell heights were assumed with or without bias to be 
uniformly distributed within each true 5-mm SH bin 
so that, for example, the frequency of sea scallops with 
true shell heights of 70, 71, 72, 73, and 74 mm (in the 
70–74.9 mm SH bin with midpoint 72.5) was the same. 
Distributions for measurement errors were normalized 
to sum to one before use in the CASA model.

Results

Height and width measurements from the same tiles 
in experiment 1 were not significantly different by a 
paired t-test (t=–0.23, P=0.30, 91 df). Therefore, height 
and width measurements from 91 tiles in experiment 1 
were combined to form a single set of video data (a total 
of 182 measurements) (Table 1).

The RMSE statistic for video tile-size composition 
and measurement errors in experiment 1 (Table 1) was 
3.5 mm (%RMSE=7%, Table 1). Bias (–2.2 mm) and 
imprecision (standard deviation 2.7 mm) of video tile 
measurements were similar. In comparison to the true 
size of the tiles (48.5 mm), the smallest measurement 
was 38 mm, and the largest measurement was 50 mm. 
The video size-composition data and measurement er-
rors were left skewed (g1=–0.28) and flatter (g2=–0.53) 
than expected for a normal distribution. There were 
gaps in the distribution of the video tile measurements 
(Fig. 3) due to the resolution of the video images used 
in digitizing (each pixel≈3 × 3 mm).

Measurement error increased with DFO for the video 
tile measurements (Fig. 3). Bias was positive for DFO 
<400 mm and negative at larger DFO levels. 

RMSE for shell-height composition data in experi-
ment 2 was 33 mm (%RMSE 30%) for video and 34 mm 
(%RMSE=31%) for measuring board data (Table 2). 
Mean shell height was 106 mm for video and 109 mm 
for measuring boards, compared to 110 mm for calipers. 
Minimum shell height was 34 mm for video, 38 mm for 
measuring boards, and 39 mm for calipers. Maximum 
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Table 1
Summary of size-composition data and measurement 
errors for 182 tile measurements (height and width from 
91 tiles, each 48.5×48.5 mm) by video equipment in exper-
iment 1. 

Statistic Video 

Measurements and measurement errors
 Bias –2.2
 Standard deviation 2.7
 Square root of the mean squared error  3.5
 Skewness (g1) –0.28
 Kurtosis (g2) –0.53
Measurements
 Minimum 38.3
 5% quantile 41.2
 95% quantile 50.1
 Maximum 50.1
 Average 46.3
 Percent bias –5%
 Coefficient of variation  6%
 Percent square root of the mean squared error 7%

Table 2
Summary statistics for shell-height composition data and measurement errors (in mm) from 172 uniquely identified Atlantic sea 
scallop (Placopecten magellanicus) shell valves in experiment 2. “NA” means that a statistic is not applicable. 

Statistic True shell height (calipers) Video Measuring boards

Shell heights and measurement errors
 n measurements used 172 670 344
 n omitted  0 18 0
 Bias NA –4.5 –0.6
Shell heights
 Minimum 38.5 34.3 37.5
 5% quantile 54.8 48.8 52.5
 95% quantile 149.6 147.3 147.5
 Maximum 192.0 200.6 192.5
 Average 109.9 106.5 109.3
 Percent bias NA –4% –1%
 Standard deviation 33.5 33.1 33.6
 Coefficient of variation  30% 31% 31%
 Square root of the mean squared error NA 33.4 33.6
 Percent square root of the mean squared error NA 30% 31%
 Skewness (g1) –0.46 –0.41 –0.47
 Kurtosis (g2) –0.84 –0.65 –0.85
Measurement errors
 Standard deviation NA 6.1 1.7
 Square root of the mean squared error NA 7.6 1.8
 Skewness (g1) NA –0.60 –0.044
 Kurtosis (g2) NA 1.84 –0.85

shell height was 201 mm for video, 193 mm for measur-
ing boards, and 192 mm for calipers. 

Bland-Altman plots for experiment 2 show that mea-
suring board shell heights were more accurate than 
video measurements, and that bias in video and mea-
suring board data was relatively constant across the 
range of shell heights in experiment 2 (Fig. 4). However, 
relatively large outliers sometimes occurred in video 
measurements at 80–130 mm SH (Fig. 4).

Video and measuring-board shell-height compositions 
in experiment 2 were similar in terms of skewness with 
g1=–0.41 for video measurements and –0.47 for measur-
ing boards compared to –0.46 for calipers (Table 2). The 
video shell-height distribution was more peaked with 
g2=–0.65 compared to g2=–0.85 for measuring boards, 
and g2=–0.84 for calipers (Table 2). Video measurement 
errors were skewed to the left (g1=–0.60) compared to 
measuring-board errors which were nearly symmetrical 
(g1=–0.05). The distribution of errors for measuring 
boards was flatter (g2=–0.85) and video measurement 
errors were more peaked (g2=1.84) than would be ex-
pected for normal distribution. The error distribution 
for measuring boards had a nearly f lat mode about 
5-mm wide because shell heights are automatically 
truncated by measuring boards to the next lowest 5-mm 
shell-height bin.

On a proportional basis, meat weights calculated from 
shell heights in experiment 2 were much less accu-
rate than the original shell-height measurements. In 

particular, %RMSE values for meat weights were 71% 
and 74% for video and measuring boards, respectively 
(Table 3), compared to 30% and 31% for the original 
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Figure 3
(A) Video measurements for tiles in experiment 1. The verti-
cal line shows the true value at 48.5 mm. (B) Measurement 
errors (video measurement minus caliper measurement) 
for tiles in experiment 1 as a function of distance from the 
origin (DFO). The nonlinear LOESS regression line shows 
the overall trend in measurement errors as a function of 
DFO.
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shell heights (Table 2). The nonlinear shell-height to 
meat-weight relationship showed exaggerated extremes 
of the distributions so that the ratio of maximum to 
mean meat weight was 158/27=5.9 for video data and 
138/29=4.8 for measuring boards (Table 3) compared to 
201/106=1.9 and 193/109=1.8 for shell heights (Table 2). 
Variance in meat-weight measurements increases as 
true meat-weight increases for video data and, to a 
lesser extent, for measuring boards (Fig. 5). 

The meat-weight composition data were more right 
skewed (g1=1.53) and flatter (g2=6.22) than the meat-
weight composition data from measuring boards 
(g1=0.92 and g2=2.61) or calipers (g1=0.99 and g2=3.00). 
Errors in meat-weight data were left skewed and not as 
peaked for video (g1=–0.80 and g2=2.48) than measur-
ing board data (g1=–1.06 and g2=4.68).

Results from the assessment models

Based on results from experiment 2 (Table 2) and 
assumptions listed above, video shell-height measure-
ments for sea scallops with true sizes evenly distributed 
over 100–104.99 mm SH (i.e., the 100-mm bin with 
midpoint 102.5 mm) would fall into nine observed shell-
height bins with midpoints from 77.5 to 117.5 mm (Table 
4). Measuring board shell-height measurements would 
fall into four observed shell-height bins with midpoints 
ranging from 92.5 to 107.5 mm (Table 4).

Four model configurations were used. The “no mea-
surement error” model configuration was fitted by as-
suming no errors in shell-height data. The “bias only” 
model was fitted by assuming that shell-height data 
were biased (to the extent measured in experiment 2), 

but precise (with zero variance). The “imprecision 
only” model was fitted by assuming that shell-height 
measurements were imprecise (standard deviations 
from experiment 2), but not biased. The “impreci-
sion and bias” model was fitted by assuming both 
types of shell-height measurement errors.

Models which accommodated measurement errors 
fitted better, with substantially lower negative log 
likelihoods for both stocks, than models that ig-
nored measurement errors. Differences in negative 
log likelihood were mostly for shell-height compo-
sition data. Mean 2004–06 biomass and fishing 
mortality rates and coefficients of variation (CV) 
for biomass and fishing mortality estimates were 
similar for all model configurations (Table 5).

Discussion

The importance of body-size measurement errors 
and the need to accommodate them in modeling 
probably depends on the situation. Biological factors 
(growth rate, recruitment variability), assessment 
model type, quality and quantity of fishery and fish-
ery-independent data may be important. Sea scallops 
may be an atypical case because they are a data-rich 
species. We suggest that the potential importance of 
body size measurement errors should be evaluated 
on a case by case basis, particularly if body-size data 
may be imprecise or biased. Simulation studies may 
be useful in determining the importance of experi-
mentally derived body-size measurement errors on 
stock assessment results. 

In the sea scallop case, models that accommodat-
ed measurement errors fitted substantially better, 
but there was little effect on point estimates and 
variances for recent biomass and fishing mortality. 
We hypothesize that effects on biomass and mortal-
ity estimates would be larger in cases with positive 
biases in body-size measurements. For both video 
and measuring boards, the positive bias in meat 
weights due to the nonlinear relationship between 
body size and meat weight was mitigated to some 
extent by the negative bias in shell-height mea-
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Figure 4
Modified Bland-Altman plots for Atlantic sea scallop (Placopecten 
magellanicus) shell-height (SH) measurements in experiment 2. The 
y-axis shows the difference between the experimental measurement 
(measuring boards in A or video in B) and the caliper measure-
ment. The x-axis shows the average of the experimental and caliper 
measurement. Boxplots and 30-mm shell-height bins were used 
instead of traditional scatter plots for shell height measurements 
in experiment 2 because the large number of samples between 120 
and 150 mm SH gave the impression that variance was higher for 
those sizes. Boxplots show the interquartile range (a robust vari-
ance measure) and are not sensitive to sample size. The width of 
the boxplots is proportional to the number of observations for the 
shell-height bin.
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surements. In contrast, Heery and Berkson 
(2009) used simulations to evaluate effects of 
systematic sampling errors (too many small 
or too many large individuals) in size-com-
position data from commercial catches and 
three simulated stocks. The simulated data 
were used in a forward-projecting age-struc-
tured stock assessment and in projection 
models to estimate stock size and fishing 
mortality in relation to threshold values, and 
rebuilding trajectories. Body-size data with 
too many large individuals biased stock size 
high and fishing mortality low and tended to 
support management measures that did not 
meet management goals, particularly for lon-
ger lived and depleted stocks. Body-size data 
with too many small individuals were less 
problematic, but tended to support overly 
restrictive management actions in extreme 
cases. Heery and Berkson’s (2009) results 
indicate that systematic errors in sampling 
may be more important than errors in indi-
vidual measurements of body size. 

Variance in calculated meat weights in-
creased rapidly with shell height with both 
video and measuring board techniques, in 
contrast to the variance in shell heights 
(Figs. 4 and 5). This additional source of 
variability likely increases variance in bio-
mass estimates, particularly for relatively 
large fishable sea scallops. 

In our analysis, assessment models that 
accommodated shell-height measurement er-
rors fitted better, even though no additional 
parameters were estimated. The Mid-Atlan-
tic Bight model that accommodated impre-
cise (but not biased) shell-height measure-
ment errors had a negative log likelihood 
that was 15 units smaller than the negative 
log likelihood for the no measurement er-
ror model (Table 5). Results for the Georges 
Bank stock (not shown to conserve space) were similar. 
In contrast and based on likelihood theory, a difference 
in negative log likelihoods of just 1.92 units is sufficient 
to justify an additional parameter in a statistical model 
at the P=0.05 level (Venzon and Moolgavkar, 1988). 
Comparing results of the “bias only” scenario to results 
from the “imprecision only” and “imprecision and bias” 
scenarios, we found that improvements in goodness of 
fit were mostly due to accommodating imprecision; bias 
was less important (Table 5). 

Experiments

Our results highlight the value and information that 
may be gained from evaluating body size measurement 
errors experimentally. Body-size measurement error 
experiments should be conducted when survey equip-
ment is changed, particularly if body-size measurements 
are imprecise. In some cases, frequent “mini-experi-

ments” may be required if the accuracy of the equip-
ment tends to drift over time or change in response to 
environmental conditions.

Our results indicate the importance of designing mea-
surement error experiments so that individual speci-
mens can be identified and associated with individual 
measurements; otherwise measurement errors can not 
be estimated individually and evaluated directly. Data 
from experiment 2 were most useful because individual 
sea scallops were numbered and replicate measure-
ments of different types could be linked and analyzed 
in detail. In addition, the full range of variability for all 
important factors (i.e., distance from the origin (DFO), 
shell height, and identity of individual technicians) 
should be included in the experimental design.

We ignored skewness and kurtosis in measurement 
errors in calculating measurement error matrices for 
use in the CASA stock assessment model. In future 
modeling, it may be better to use the experimental dis-
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Table 3
Summary statistics of meat weights and meat weight measurement errors (g) for Atlantic sea scallop (Placopecten magellanicus) 
shell-height measurements in experiment 2 (sample sizes are the same as those for shell-height measurements in Table 2). The 
original shell heights were obtained with calipers, video camera, and measure boards. “NA” means that a statistic is not applicable.

Statistic True (calipers) Video Measuring boards

Meat weights and measurement errors
 Bias NA –3.2 –0.4
 Meat weights
 Minimum 0.8 0.5 0.7
 5% quantile 2.4 1.7 2.1
 95% quantile 61.3 58.3 58.6
 Maximum 136.9 157.7 138.0
 Average 29.8 27.3 29.4
 Percent bias NA –10% –1%
 Standard deviation 22.2 21.4 21.8
 Coefficient of deviation 74% 78% 74%
 Square root of the mean squared error NA 21.6 21.8
 Percent square root of the mean squared error  NA 71% 74%
 Skewness (g1) 0.99 1.53 0.92
 Kurtosis (g2) 3.00 6.22 2.61

Measurement errors
 Standard deviation NA 5.1 1.5
 Square root of the mean squared error NA 6.0 1.6
 Skewness (g1) NA –0.80 –1.06
 Kurtosis (g2) NA 2.48 4.68

Table 4
Estimated probability distributions for Atlantic sea scallop (Placopecten magellanicus) shell-height (SH) measurements based on 
bias and standard deviations from experiment 2. Condition factors for error matrices used in the catch-at-size-analysis (CASA) 
stock assessment model scenarios are given also. The shell-height bins are 5-mm wide and identified by their midpoint. For 
example, sea scallops 80–84.9 mm SH fall into a bin whose midpoint is 82.5 mm. 

 Video scenario  Measuring board scenario

 Calipers  Imprecision Imprecision  Imprecision Imprecision
Statistic (true shell height) Bias only only and bias Bias only only and bias

Condition factor (κ) NA 3×1015 5457 2638 1.6 2.1 2.3
Bias (mm) 0 –4.5 0 –4.5 –0.6 0 –0.6
Standard deviation (mm) 0 0 6.1 6.1 0 1.7 1.7

Shell height bin (mm) Probability of observed bins

  72.5       
  77.5    0.0009   
  82.5   0.0014 0.0167   
  87.5   0.0203 0.0820   
  92.5   0.0929 0.2158   0.0001
  97.5  0.8000 0.2300 0.3101 0.2000 0.1325 0.2008
 102.5 1.0000 0.2000 0.3110 0.2436 0.8000 0.7349 0.7181
 107.5   0.2300 0.1045  0.1325 0.0810
 112.5   0.0929 0.0243   
 117.5   0.0203 0.0020   
 122.5   0.0014    
 127.5       
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Figure 5
Bland-Altman plots for Atlantic sea scallop (Placopecten mag-
ellanicus) meat weights calculated from experimental shell-
height measurements in experiment 2 (measuring boards in 
panel A and video in panel B). The y-axis shows the difference 
between the meat weights calculated from the experimental 
(video or measuring board) shell height measurements and the 
meat weights calculated from caliper measurements. The x-axis 
shows the average of the experimental and caliper-derived 
measurements. 
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tributions of measurement errors directly in er-
ror matrices, particularly if experimental sample 
sizes are large. 

Drouineau et al. (2008) used simulation analy-
sis to show the importance of alternative as-
sumptions about the distribution of individuals 
within size groups and the statistical distribu-
tion of growth increments in length-structured 
models like the CASA (catch-at-size-analysis) 
model. Our experience indicates that the same 
types of assumptions are important in calcu-
lating body-size measurement-error matrices. 
In particular, it was important to assume that 
individuals were uniformly distributed within 
size groups, to make realistic assumptions about 
the distributions of measurement errors, and to 
be careful in programming to ensure consistent 
calculations at the boundaries of length bins for 
calculating error matrices and for the stock as-
sessment model. 

Statistical methods for repeated measurements 
or random effects may be suitable for analysis of 
our experimental data. We made allowances for 
repeated measures in bootstrap calculations (Ap-
pendix 2) and in calculating P-values for skew-
ness and kurtosis tests, but not in calculating 
other statistics (Tables 1–3).

Our experiments were conducted under ideal 
conditions with tiles and shell valves, rather 
than live sea scallops. Our results may under-
estimate the magnitude of errors under more 
realistic field conditions.

Model results may depend on shell-height bin 
width such that larger shell height bins would 
cause measurement errors to have a greater im-
pact on biomass and mortality estimates. We 
used 5-mm SH bins for sea scallops because 5-
mm is the resolution and approximate accuracy 
for the survey shell-height data. In general, it 
may be important to consider the magnitude of 
measurement errors in making decisions about size bins 
used in stock assessment modeling.

Body-size measurement errors

Random measurement errors are unavoidable. One may 
conclude that it is incumbent on the researcher to search 
out and correct sources of bias, whatever the source. We 
suggest that it may be more cost effective to quantify 
measurement errors experimentally and to accommodate 
them in modeling. Time series with consistent body-size 
measurement errors are probably easiest to interpret. 
Models may become overly complex if multiple sets of 
assumptions about measurement errors are required 
to interpret one survey time series. Resources required 
to quantify measurement errors after each adjustment 
to survey procedures or equipment may be better spent 
on more accurately characterizing the measurement 
errors for survey gear that remains the same for longer 
periods of time.

Bootstrap results also showed that an algebraic ap-
proach to removing errors from the data by using the 
inverse error matrix E–1 gave negative proportions for 
both video and measuring board data in at least some 
size groups (Appendix 2). The sampling distribution for 
algebraically adjusted shell-height data may be difficult 
to characterize. These results indicate that it may be 
difficult to remove measurement errors directly from 
body-size data and we hypothesize that approaches like 
the one used in the CASA model will generally perform 
better. Bootstrap results showed that estimates of pre-
dicted shell-height composition data with measurement 
errors as carried out in the CASA model were robust 
to uncertainties in the measurement-error matrix E 
(Appendix 2). Models can be designed to be robust to 
measurement errors. For example, the last size bin in 
the CASA model is a plus-group that absorbs data for 
large scallops that may have been strongly affected 
by measurement errors. Other data in the model may 
have also contributed to the robustness of biomass and 
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Table 5
Results from the catch-at-size-analysis (CASA) model for Mid-Atlantic Bight sea scallops (Placopecten magellanicus) and four 
model configurations. The “no measurement error” model configuration does not accommodate shell-height measurement errors. 
Other model configurations accommodate bias and imprecise measurement errors in various combinations as shown in the table. 
Lower negative log likelihood (NLL) values indicate better model fit. Coefficients of variation (CV) shown in parenthesis are 
asymptotic variances calculated by the delta method. For ease of comparison, the “no measurement error” configuration NLL 
values were subtracted from corresponding NLL statistics for all three configurations. The lowest NLL, biomass or fishing mor-
tality estimates in each row are printed in boldface.

 No   Imprecision
 measurement  Imprecision and
Variable or estimate error Bias only only bias

Bias and precision (mm) assumed in modeling
 Standard deviation—video survey 0.0 0.0 6.1 6.1
 Bias—video survey 0.0 –4.5 0.0 –4.5
 Standard deviation—dredge survey 0.0 0.0 1.7 1.7
 Bias—survey 0.0 –0.6 0.0 –0.6

Negative log likelihood (NLL)
 Total 0.00 20.92 –14.62 –1.16
 Commercial fishery shell-height data 0.00 4.99 –0.34 2.06
 Dredge survey shell-height data 0.00 –4.14 –10.66 –6.97
 Video survey shell-height data 0.00 19.45 –3.00 4.59

Mean biomass and fishing mortality during 2004–06
 Fishing mortality (y–1) 0.45 0.41 0.46 0.42
 (8%) (7%) (8%) (8%)
 Biomass (t meats) 81,211 84,650 80,844 83,602
 (5%) (5%) (5%) (5%)

fishing mortality estimates to assumptions about shell-
height measurement errors. 

In principal, measurement-error parameters could be 
estimated directly in stock assessment models without 
resorting to experiments. Measurement-error param-
eters in the CASA model were estimated in the NEFSC 
study,2 but the estimates proved to be unstable (NEF-
SC3). Without at least one source of accurate body-size 
data, there may be too little information about mea-
surement errors to estimate parameters. In addition, 
there may be strong correlations between estimated 
measurement errors and estimates of other factors that 
affect interpretation of body-size data, such as survey 
and fishery selectivity, natural mortality, and recruit-
ment variability.
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Appendix 1

Following the approach of the Northeast Fisheries Sci-
ence Center (NEFSC,2,3) we used a likelihood approach 
to fitting the CASA model to sea scallop stock assessment 
data. The best estimates from the model minimized the 
combined negative log likelihood of all the data. Relevant 
details are described below. Appendix B10 in the NEFSC 
report (NEFSC3) is a complete technical description of 
the CASA model for sea scallops. Appendix B12 in that 
same report (NEFSC3) describes CASA model perfor-
mance with simulated stock assessment data. 

Estimates of population abundance and survey size 
selectivity are available for each shell height and year 
as the CASA model is fitted. In a single year, for ex-
ample, we calculated the number of sea scallops in the 
population that were available or selected by the video 
gear with the following equation:

 n q Nh h h= ,  (A1)

where Nh = the predicted number of sea scallops in the 
population for shell height bin h;

 qh = the size-specific probability of detection 
(selectivity) in the video survey (on a scale 
of 0 to 1 and relative to the bin with maxi-
mum probability of detection); and

 nh = the estimated number of sea scallops in the 
population that are available to the video 
survey gear. 

In the absence of measurement error, the predicted shell-
height composition πh for the survey is

 πh
h

i
i

L

n

n

=

=
∑

1

,  (A2)

where L = the number of shell-height bins in the model. 

If 
π  is a row vector of length L containing the predicted 

proportions (before measurement errors) for each length 
group in the survey, then

 
 
p E= π ,  (A3)

where 

p  the row vector of predicted proportions (includ-

ing measurement errors). 
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In Equation A3, E is a square measurement error ma-
trix with L rows and columns that distributes numbers 
at true shell height into observed shell heights bins that 
are larger and smaller than the true shell height. For 
example, the first row of E sums to one and gives the 
probability of observed shell heights for sea scallops in 
the first true shell height bin. The last row of E sums 
to one and gives the probabilities that sea scallops in 
each shell height bin would be assigned to the “plus 
group” because of measurement error. As described in 
the text, we estimated E for sea scallops using results 
from experiment 2. 

Appendix 2

Equation A3 in Appendix 1 indicates the possibility of 
correcting shell-height data measurement algebraically, 
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Appendix Figure 1
Boxplots showing bootstrap distributions (1000 iterations) of 
estimated true shell-height (SH) composition for Atlantic sea 
scallops (Placopecten magellanicus) in experiment 2, based on 
measurement boards (A) and video (B) shell-height data. True 
shell-height compositions were estimated by using bootstrap 
estimates of the inverse of the measurement error matrix E 
and Equation A4. The solid line in (A) shows the actual caliper-
derived shell-height data in the experiment. The solid line is 
not visible in (B) because of the scale of the y-axis. 

without resorting to an approach like the CASA model. 
In particular, if the matrix E is invertible, then it may 
be possible to estimate the true sample proportions 

̂π  
by multiplying both sides of Equation A3 by the inverse 
matrix E–1:

 
 ˆ .π = −pE 1  (A4)

However, the inverse calculation in Equation A4 will be 
unreliable if the estimated error matrix E is poorly con-
ditioned. If the error matrix is poorly conditioned, then 
small inaccuracies in the estimate of E will propagate 
into larger errors in the inverse E–1 and the predicted 
proportions 

̂π .
As described by Horn and Johnson (1985), the condi-

tion factor for an invertible matrix E is

 κ = −E E 1 ,  (A5)

where E  = the matrix norm of E. 

The condition factor κ is always at least one and 
is an upper bound measure of the extent to which 
errors in the original error matrix E (ignoring 
errors in 


p) will propagate to its inverse. If κ is 

slightly larger than one, then uncertainty in E–1 
and 

̂π  from Equation A4 will be at most slightly 
greater then uncertainty in E. If κ is large, then 
uncertainty in E–1 and 

̂π  may be much larger 
than uncertainty in E.

The measurement-error matrices that included 
both bias and imprecision are the most realistic 
according to results from experiment 2. The con-
dition factors for these error matrices were 2638 
for video and 2.3 for measuring boards (Table 4). 
These condition factors indicate that uncertainty 
in E–1 and “corrected” shell-height composition 
data could be much higher than uncertainty in 
the original error matrix E for video and at most 
2.3 times higher for measuring boards. 

Bootstrap analyses show the practical signifi-
cance of condition factors for video and measur-
ing board data in our study. For example, for the 
video shell-height measurements in experiment 
2, the first step was to resample n data records 
(including one video measurement and the corre-
sponding caliper measurement) with replacement 
from the data in experiment 2. 

Sample sizes (n=670 for video and n=344 for 
measuring boards) were the same as the number 
of experimental measurements and constituted 
an upper bound on the true effective sample size 
because they ignore repeated measurements on 
the same specimens (Table 2). The effect of us-
ing an upper bound estimate for effective sample 
size was to understate effects of uncertainty in 
error matrices. Our interest was, however, in a 
“best case” scenario with relatively large sample 
sizes. Next, the measurement errors (e.g. video 
or measuring board minus caliper measure-
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ments), their mean (bias), and variance were 
used to calculate the bootstrap measurement er-
ror matrix and its inverse. Finally, the original 
video shell-height composition data used in ex-
periment 2 (expressed as proportions) were then 
multiplied by the bootstrap inverse matrix (Eq. 
A4) to remove measurement errors and obtain a 
bootstrap estimate of the true shell-height com-
position. There were 1000 bootstrap iterations 
for both the video and measurement board data. 
The variability among bootstrap estimates of the 
true shell-height composition was due entirely to 
errors in the measurement error matrix E and 
its inverse E–1. 

As expected, based on condition factors (see 
above) and measurement error statistics (Table 
2), bootstrap estimates of true caliper shell-
height composition data from video data were 
highly variable and predicted proportions ranged 
from –188 to 195 (i.e., outside the feasible range 
for proportions). Bootstrap estimates from mea-
surement board data resembled the correspond-
ing true caliper measurements. However, the 
estimated proportions for both measurement 
methods were often negative and infeasible (Ap-
pdx. Fig. 1). 

We used a similar bootstrap procedure to eval-
uate effects of uncertainty in predicted length 
compositions with measurement errors (Eq. A3 
in Appdx. 1), which is the approach used in the 
CASA model. In this bootstrap analysis, the 
caliper shell height composition data from ex-
periment 2 were assumed to be true and error 
matrices were generated by bootstrapping the 
experimental and video and measuring board 
data as described above. The sample size was 
n=172 for both video and measuring boards and 
the same as the number of individual specimens 
in experiment 2. This lower bound estimate of 
the effective sample size was used in order to 

Appendix Figure 2
Bootstrap distributions (1000 iterations) for Atlantic sea scal-
lop (Placopecten magellanicus) shell-height data obtained from 
measurement boards (A) and video (B), with measurement 
errors. The solid line shows the actual caliper-derived shell-
height data in experiment 2. 
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overstate effects of uncertainty in error matrices. Re-
sults indicated that the calculations used in the CASA 
model for measurement errors were robust to uncer-

tainty about the error matrices and the magnitude of 
the errors because variability in predicted shell height 
compositions was relatively minor (Appdx. Fig. 2).


