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Detecting Trends in Harbor Porpoise
Abundance from Aerial Surveys
Using Analysis of Covariance

animals detected from the air does
not change over time, the correction
factor becomes irrelevant, and in
dices of relative abundance can be
used in place of absolute abundance
measures.

We describe a series of five aerial
surveys for harbor porpoise con
ducted in central California during
autumn of 1986, 1987, 1988, 1989,
and 1990. These surveys were de
signed specifically to detect changes
in porpoise abundance. We used twin
engine aircraft to fly predetermined
transect lines which zigzagged up the
coast between Point Conception and
the mouth of the Russian River (Fig.
1). Line transect methods were used
with one observer on each side of the
aircraft and a belly-port observer. A
fourth person recorded information
pertaining to sightings of porpoises
and sighting conditions. Each year
within the survey period, the transect
lines were repeated 3-7 times, de
pending on weather conditions.

The number of porpoise seen per
kilometer of search effort was used
as a measure of relative abundance.
A stepwise analysis of covariance
procedure (ANCOVA) with year as
the covariate was used to identify the
best model describing porpoise seen
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Harbor porpoise Phocoena phocoena
are caught incidentally during halibut
fishing with gillnets along the central
California coast (Diamond and Hanan
1986; Hanan et al. 1986, 1987; Bar
low 1987; Barlow and Hanan 1990).
To assess the potential impact of this
fishery mortality, ship and aerial sur
veys have been used to estimate the
abundance of harbor porpoise along
the coast of California, Oregon, and
Washington (Barlow 1988, Barlowet
al. 1988). These authors showed that
although aircraft can be used to sur
vey a large area very quickly, abun
dance estimates from aerial surveys
must be multiplied by a very large
and uncertain correction factor to
account for the majority of animals
that will be underwater at any given
instant. For this reason, ship surveys
were concluded to be preferable for
estimating absolute porpoise abun
dance.

The requirements are, however,
less stringent if the only goal is to
detect trends in the abundance of
porpoise over time, rather than de
termining absolute abundance. The
ability of aircraft to cover great dis
tances relatively quickly and inexpen
sively makes them a logical platform
for such surveys. If the fraction of
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Abstract.- Aerial surveys de
signed to detect trends in the abun
dance of harbor porpoise Phocoena
phocoena were conducted each au
tumn, 1986 through 1990. The num
ber of porpoise seen per kilometer of
survey effort was used as an index
of abundance. Based on these sur
veys, an analysis of covariance was
used to model porpoise abundance.
Year was treated as a covariate, and
factors which affected sighting rates
were included as categorical vari
ables. No significant changes were
seen in the abundance of porpoise
over the five survey years. Monte
Carlo simulations were performed to
detennine the power of the ANCOVA
to detect trends in abundance. We
conclude that the ability to detect
trends is poor if traditional levels of
statistical significance (a = 0.05) are
used. A larger a-error may be appro
priate in the management context of
this species and increases the power
to detect trends. Additional survey
years similarly improve the power to
detect trends. Based on the results
of the simulations, we suggest that
power should be defined to include
only the detection of the correct
trend when two-tailed tests are
employed.
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Figure 1
Flight transects for aerial survey of harbor porpoise in cen
tral California, 1986-90. Transect 7 was combined with
transect 8 after 1986 and is not shown.

per kilometer. Standard ANCOVA F-ratio tests were
applied to determine whether a significant trend with
year is present. Monte Carlo methods were used to
determine the power of this test to detect known trends
in abundance.

Methods

Field methods

The surveys were established to monitor changes in
abundance within the range of porpoise/gillnet fishery
interactions (Point Conception to Russian River, Cali
fornia). Surveys were started only when there was a
good likelihood of completing at least half of the survey
(Point Conception to Monterey, or Monterey to Rus
sian River) under good weather conditions. They were
halted when viewing conditions deteriorated below ac
ceptable levels (sea state higher than Beaufort 4 or 5,
excessive dark cloud cover, rain, or fog).

A series of predetermined locations marking the
beginning and end of each transect was entered into
the aircraft's LORAN C navigational receiver to give
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the pilot a course to follow. The transects zigzagged
in a generally northward progression between shore
and roughly the 50-fathom (91-m) contour (Fig. 1).
Sightings at the endpoint of a transect were very rare,
and duplication at the start of the next transect did not
occur. The transect lengths ranged from 5.2 to 44.8km
and averaged 24.8km. The aircraft maintained an
altitude of approximately 213m and speeds of 90-100
knots (167-185kmlhour). To reduce sun glare, surveys
were conducted only from south to north.

The surveys were flown in a twin-engine, high-wing,
seven-passenger aircraft with the rear seat removed
(Partenavia P68). Two observers sat behind the pilot
and copilot seats and looked out the side windows; a
third observer (belly observer) lay on the floor on
hislher stomach just behind the right-side observer's
seat and surveyed the water below the airplane through
a 25 x 30-cm rectangular viewing port. Starting in
1988, the side windows were fitted with plexiglas
bubble-type windows, allowing the side observers to see
from the horizon to directly under the plane. This
created an overlap with the belly observer's field of
view; however, this did not result in double counting
because the observers were in constant communication
and discussed all possible sighting duplicates as they
occurred.

The data recorder sat in the copilot position and
recorded flight information, including location Oatitude
and longitude), time, weather (% cloud cover, Beaufort
sea state, and sun position), viewing conditions, and
porpoise sighting information. The data recorder en
tered weather and viewing conditions at the start of
each transect and whenever conditions changed. Each
observer subjectively evaluated viewing conditions as
excellent, good, poor or "off effort," depending on
estimated viewing depth into the water, sun glare, and
sea state. To simplify the recording procedure and
enhance accuracy of the data, a lap-top computer con
nected to the LORAN C navigational receiver replaced
the hand-written flight log during the 1988-90 surveys.

The pilot, recorder, and observers communicated
through headsets and voice-activated microphones. All
communication was recorded on a central tape re
corder. Additionally, each observer used a hand-held
tape recorder for storage of individual sighting infor
mation. The two side observers used hand-held in
clinometers to measure declination angles in degrees
to the animals sighted. Due to space limitations, the
belly observer could not use an inclinometer and
estimated angles using marks applied to the viewing
port. The observers changed positions approximately
every 1-1.5 hours and between flights.

The observers actively searched (were "on effort")
from start to finish of a transect, except when circling
or when they declared themselves "off effort" because
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of poor sighting conditions. The pilot circled on por
poise sightings if there was any question about species
identification or number of porpoise. Additional sight
ings made while circling were recorded as "off effort"
sightings and were not included in the analyses.

During the first survey year (1986), observers re
ported all marine mammals sighted. However, the
large number of California sea lion sightings took a
disproportionate amount of time, so only harbor por
poise were recorded in 1987-90. Following the surveys,
the data in the flight log or computer were checked for
accuracy and, if needed, compared with the tape
recordings. The data were transferred into micro
computer databases for summary and analysis.

Analytical methods

Individual flight segments during which all sighting
conditions were constant were combined to measure
porpoise per kilometer in relation to each of the sight
ing variables. These variables included Beaufort sea
state, cloud cover, viewing condition, individual ob
servers, and an a posteriori geographic subdivision
chosen on the basis of apparent porpoise abundance:
south (low abundance) and north (high abundance)
(Fig. 2). This subdivision was created to correct for
slight interannual differences in survey effort for high
and low-density areas, caused by bad weather.

Cloud cover was recorded as a percentage and later
coded into the categories "clear" (0-24%) and "cloudy"
(25-100%). Sighting efficiency and sample sizes de
creased dramatically when Beaufort sea state was
higher than 3, so only segments with Beaufort 0-3
were used. Beaufort 0 was combined with Beaufort
1 because there was very little survey effort at
Beaufort o.

The data were fitted to an analysis of covariance
(ANCOVA) model of the form:

P = 1.1 + al + a2 + ... + d(y - y) + £ (1)

where P represents the log-transformed (loge) value of
porpoise per kilometer, 1.1 is the mean value of P, the
a represent qualitative factors influencing observed
porpoise abundance, d represents the coefficient for the
covariate year (y), y is the mean value of y, and £ is
a random error term. Such an additive model for
logarithmic values is equivalent to a model describing
multiplicative effects on the untransformed number of
porpoise seen. This was deemed appropriate because
sighting conditions affect the fraction of porpoise seen
but not the absolute density of porpoise present.
Because of the logarithmic transformation, a linear
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Figure 2
Porpoise seen per kilometer in transects 1 through 26 for
1986-90 surveys (including Beaufort sea states 0-3 and clear
skies only). For the analysis. transects were divided into two
areas at Point Pinos (between transects 14 and 15): south (low
abundance) and north (high abundance).

increase or decrease in the covariate would be inter
preted as an exponential increase or decrease in por
poise abundance. The constant 0.001 was added to each
value before transformation to avoid trying to take the
logarithm of zero. This logarithmic transformation also
made the data more nearly normal (Fig. 3).

It was not possible to include all potential variables
in the model selection procedure, because this would
have caused overstratification of the data. Individual
observer effects were excluded because not all ob
servers collected data each year, resulting in a large
number of missing cell values. Viewing condition was
also excluded because it is somewhat redundant with
sea state and cloud cover and it is more subjective.
Previous nonparametric tests of individual observer
effects and viewing conditions with three years of data
(Forney et al. 1989) yielded no significant differences
in observed numbers of porpoise per kilometer.

In the ANCOVA, the data were weighted by the
number of kilometers flown to correct for variability
due to unequal sample sizes. A stepwise selection pro
cedure with the SAS procedure GLM (Joyner 1985) was
used to determine the best model for the observed data.
At each step, all appropriate parameters and inter
action effects were tested individually. The most sig
nificant parameter was added to the model, based on
a criterion level of a = 0.05. Each included variable was
retested for significance at each subsequent step of the
procedure.
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Figure 3
Distribution of observed porpoiselkm values (A), and log
transformed porpoiselkm values (B) for five years of aerial
survey data. The transformation was In(x + 0.001), where x
is the observed number of porpoiselkm.

each combination of conditions was calculated from the
fitted parameters. A random error term for each ex
pected value was then drawn from a normal distribu·
tion with a mean of zero and standard error from the
ANCOVA results of the best model. To allow weighted
analysis of the simulated data, this error term was
weighted inversely, i.e., multiplied times V<lIw),
where w is the number of kilometers flown under the
given conditions. A set of 60 values for w, one for each
of the 60 simulated porpoise-per-kilometer values, was
obtained for each year by randomly selecting the ac
tual numbers of kilometers flown from one of the five
survey years. Complete yearly sets were chosen rather
than individual values to avoid unlikely combinations
of kilometers flown.

A yearly trend was incorporated into the simulation
data by multiplying the calculated value of porpoise per
kilometer times a factor representing the desired ex
ponential change in porpoise abundance. To make the
simulated data more like potential real data, all values
were rounded to yield only integer values of porpoise
over the given number of kilometers flown. In addition,
to prevent unfeasible values of porpoise per kilometer,
a new error term was drawn if the original one resulted
in a value which was negative or greater than 0.4 por
poise per kilometer. The highest value observed in
1986-90 was 0.24 porpoise per kilometer; mUltiplying
this value times the maximum simulated increasing
trend yields an upper limit of approximately 0.4 por
poise per kilometer. Less than 5% of all error terms
were redrawn in the simulations.
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Simulation methods

Once the best model had been selected (see Results),
Monte Carlo simulations were performed to determine
the power of the ANCOVA to correctly detect a given
trend in porpoise abundance. The analysis of power was
divided into two main steps: (1) Simulations without
a trend, to determine whether the procedure can create
and correctly analyze simulated data; and (2) simula
tions with trends, to estimate how often the procedure
correctly identifies a known trend in harbor porpoise
abundance. Annual changes of ±5% and ±10% were
tested over periods of five, six, eight, and ten years.

The random data sets were generated using the
parameters and error structure obtained for the actual
data from the best model (see Results). First, the ex
pected logarithmic value of porpoise per kilometer for
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Table 2
Stepwise model selection procedure for 1986-90 aerial survey data. Parameters marked with an asterisk indicate variables included
in the model at each step. P = In(porpoiselkm + 0.001); Il = mean value of P; BF = Beaufort sea state; AR = area; CL = cloud
cover; YR = year; an x between letters indicates an interaction effect.

STEP 1 2 3 4
Base model P =Il P=Il+ AR P=Il+ AR +CL P = Il + AR + CL + BF

P-values for tested variables BF: 0.0587 BF: 0.0079 *BF: 0.0016 YR: 0.8535
*AR: 0.0001 *CL: 0.0021 YR: 0.5865 BFxAR: 0.8491

CL: 0.0256 YR: 0.9628 CLxAR: 0.3399 BFxCL: 0.8378
YR: 0.9258 CLxAR: 0.3875

Results

Survey results

A total of 16,948km of survey effort during 1986-90
resulted in 431 sightings, representing a total of 796
harbor porpoise. The overall mean number of porpoise
per kilometer was 0.047. The average values of por
poise per kilometer over the five years are listed in
Table 1 for different sighting conditions and areas.
Mean group size was 1.85 porpoise, with a range of
1-10 and median 1.

The model

The following model provided the best fit to the ob
served logarithmic estimates of porpoise per kilometer:

Table 3
Results of the weighted analysis of covariance.

Sum of Mean F Prob.
Source df squares square value >F

Model 5 15397 3079 10.46 0.0001
Area 1 9494 9494 32.24 0.0001
Cloud cover 1 3927 3927 13.34 0.0006
Beaufort 2 4095 2047 6.95 0.0021
Year 1 10 10 0.03 0.8535

Error 54 15900 294

Table 4
Parameter estimates from (A) the ANCOVA testing year, and
(B) the 'best' model (ANOVA) chosen for the simulations. Stan
dard errors are given in parentheses.

P = I.t + QBi + QCj + QAk + £i,j,k (2)

where P = loge of [(porpoise/km) + 0.001],
I.t = mean value of P,

QBi = effect of Beaufort sea state i on P,
QCj = effect of cloud cover jon P,

QAk = effect of area k on P,
£i,j,k = normally distributed error with a mean

of zero.

Parameter

Il Mean
aBI Beaufort 0&1
am Beaufort 2
aB8 Beaufort 3
aAl Are~ 1 (South)
aA2 Area 2 (North)
aCI Clear skies
aC2 Cloudy skies
d Year

(A)

-2.1496 (0.3288)
0.0000

- 0.0838 (0.3304)
-1.1344 (0.3516)
-1.5338 (0.2701)

0.0000
0.0000

-1.0377 (0.2841)
+0.0182 (0.0982)

(B)

-2.1454 (0.3251)
0.0000

-0.0883 (0.3266)
-1.1257 (0.3453)
-1.5360 (0.2674)

0.0000
0.0000

-1.0454 (0.2787)

The model selection procedure is outlined in Table
2. None of the included variables lost significance and
subsequently had to be dropped after inclusion of other
variables. The yearly trend was not significant, so the
model is essentially reduced to an analysis of variance
(ANOVA) model. The results of the complete ANCOVA
model testing for a yearly trend in the 1986-90 har
bor porpoise data are shown in Table 3. The effects of
area, cloud cover, and Beaufort sea state were signifi
cant (P<O.OOOl, P<0.0006, and P<0.0021, respective
ly), the yearly trend was not (P = 0.8535). None of the
interaction effects were significant. The parameter

estimates for the models with and without year are
displayed in Table 4.

Analysis of power to detect trends

No trend simulations (d =OJ To determine the reli
ability of the simulation procedure to model trends in
porpoise abundance, 500 simulated data sets with no
yearly trend were created for five, six, eight, and ten
survey years, using parameter set (B) in Table 4. The
simulated data sets were analyzed using the full
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Table 5
Actual a-errors and fractions ofpositive and negative covariate
coefficient estimates (6) for ANCOVA of 500 random data sets
for five, six, eight. and ten simulated survey years.

No. % Actual a-errors for Fractions
of annual of ± 6

change a =0.05 a =0.10 a =0.20 values I-years Z
~

5 none 0.05 0.10 0.20 0.4810.52 0
()

6 none 0.06 0.11 0.21 0.54/0.46
8 none 0.04 0.10 0.20 0.49/0.51

10 none 0.Q7 0.12 0.23 0.53/0.47

ANCOVA model with a null hypothesis of no trend in
abundance. The a-error (Type I error) is the fraction
of simulations which falsely detected a trend.

For all four simulations, the resulting a-errors were
close to the theoretical ones (Table 5). The average root
mean-square-error term obtained for these data sets
(16.63) was also close to the error for the actual data
(17.01). The estimates of the covariate for year (d) in
the simulated data were approximately normally
distributed with a zero mean, as expected (Fig. 4). This
confirms that the simulation procedures do not intro
duce substantial bias into the data or error structure.

Simulations with trends fd #=0' To analyze the power
of this procedure to detect given trends, random data
sets spanning five, six, eight, and ten years were
created with artificial changes in abundance of ±5%
and ±10% per year. All other parameters were taken
from Table 4, set (B), as above. For each combination
of survey years and trend, 500 data sets were created
and analyzed with the ANCOVA procedure.

In each simulation, a fraction of the analyses did not
detect a trend: this represents the {J-error (Type II
error). A much smaller fraction detected a trend in the
opposite direction of the true trend. The latter presents
a special case (dilemma), and we have termed this type
of error y-error (Type III, d. Carmer 1976). Figure 5
graphically illustrates 0', {J, and yfor a situation where
an increasing trend is occurring and being tested
against the null hypothesis in a two-tailed test (in a one
tailed test, y is zero). The three types of errors are inter
dependent: as 0' increases (i.e., the bars in Figure 5
move closer to zero), {J decreases, and y increases.

Power has been defined as the probability ofcorrectly
rejecting the null hypothesis when it is false, which
numerically is 1 - {J (Rotenberry and Wiens 1985,
Peterman 1990ab). However, this definition does not
address the error associated with accepting a false
alternate hypothesis (y). In the case of trend analysis,

Figure 4
Distribution of covariate estimates (6) representing yearly
change in abundance of harbor porpoise (from ANCOVA) for
500 simulations of five survey years with no annual trend in
abundance.

this is the probability of rejecting the null hypothesis
(no trend) in favor of a trend in the wrong direction.
We therefore suggest that power be defined more
precisely to include only the probability of detecting
the correct alternate hypothesis, which numerically is
1- ({J + y).

Using this definition, the power to correctly detect
trends in harbor porpoise abundance is displayed in
Table 6 for six different levels of a. The values listed
under 0' =1.0 correspond to the fraction of the time that
the sign of the covariate is correct, regardless of
significance level. At this a-level, the {J-error is zero,
because the null hypothesis of no trend is always re
jected in favor of either an increasing or a decreasing
trend. Both power and y-errors are maximized when
a = 1.0 (see Discussion below).

At a = 0.05, the ability to detect trends in abundance
of harbor porpoise is poor (0.07-0.79) for all tested
trends and numbers of survey years. This is below the
level of power = 0.80 which has been suggested as a
minimum standard (Skalski and McKenzie 1982, Peter
man and Bradford 1987). Raising a-levels improves the
ability to detect trends, but also increases the chance
of detecting a trend in the opposite direction of the true
trend (y-error). When a = 0.05, y-errors are less than
0.01 for the levels of change tested. In contrast, at
a = 0.20, y-errors range from 0 to 0.05, and with
0' = 1.0, y-errors are between 0 and 0.33. Both {J and
y-errors are reduced with larger trends and more
survey years.
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Figure 5
Graphic illustration of the errors associated with a two-tailed
test, such as trend analysis. Solid line represents the distribu
tion of coefficients for a hypothetical increasing trend. Dashed
line represents the null distribution ofcoefficients (when there
is no trend). Shaded areas represent the three error types,
a, (1, and y (see text). HAl represents an increasing trend,
HA2 represents a decreasing trend, and Ho represents no
trend.

Discussion

The number of years necessary to detect trends in har
bor porpoise abundance with the techniques described
above will depend on two things: the rate of change
to be detected, and the degree of certainty desired. A
5% annual change will be more difficult to detect than
a 10% change over the same time period. If a large
change must occur before the trend is detected, such
methods may be of limited use in the management of
populations, and more powerful techniques may be
required.
Ifone does not need the ability to determine both in

creases and decreases, but merely wishes to determine
whether a population is declining (objective 3, Peter
man and Bradford 1987), one-tailed statistical tests can
be used and will increase statistical power. Alternative-

Table 6
Estimated power of the analysis to detect a given trend in
harbor porpoise abundance correctly, based on 500 random
data sets for each combination of change and number of survey
years. Power is defined as 1 - «(3 +y).

Power associated with given a-error
No. % a=
of annual

years change 0.05 0.10 0.20 0.30 0.40 1.0

5 -10 0.17 0.24 0.36 0.43 0.52 0.82
6 -10 0.23 0.35 0.52 0.60 0.68 0.90
8 -10 0.52 0.63 0.74 0.82 0.86 0.98

10 -10 0.79 0.87 0.92 0.95 0.97 1.00

5 +10 0.11 0.18 0.29 0.39 0.47 0.78
6 +10 0.21 0.32 0.45 0.54 0.63 0.89
8 +10 0.46 0.56 0.70 0.80 0.85 0.97

10 +10 0.74 0.82 0.88 0.93 0.96 1.00

5 -5 0.08 0.14 0.22 0.28 0.35 0.70
6 -5 0.10 0.16 0.29 0.38 0.44 0.72
8 -5 0.17 0.27 0.42 0.50 0.59 0.84

10 -5 0.27 0.37 0.55 0.65 0.71 0.91

5 +5 0.07 0.13 0.20 0.27 0.34 0.67
6 +5 0.10 0.16 0.25 0.34 0.40 0.73
8 +5 0.15 0.23 0.35 0.45 0.53 0.83

10 +5 0.25 0.34 0.48 0.57 0.66 0.89

ly, if one is willing to accept a larger probability of in
ferring a trend when none is actually present, the
power to detect trends can be improved by raising the
level of a used to determine statistical significance.

It has been suggested that appropriate levels for a

and (J should be determined based on the relative costs
of committing each type of error (Toft and Shea 1983,
Rotenberry and Wiens 1985, Hayes 1987, Peterman
1990b). If the cost of failing to detect a change in abun
dance is high relative to the cost of falsely detecting
a trend for a stable population, then the traditional
a-level of 0.05 may be inappropriate. In such cases it
may be preferable to minimize (J-errors by increasing
a. For example, in the context of ecological monitor
ing, Hinds (1984) suggests that a should be made equal
to (J. However, it is important to remember that in
creasing a when power is low also raises y from vir
tually zero to potentially large levels. Rather than
equalizing a and (J, a tradeoff must be made between
all three types of error. The magnitude of these errors
can be estimated using simulations.

When a is raised to 0.10, ten years of data are suffi
cient to yield power greater than 0.80 and a y-error of
virtually zero when a 10% annual change is occurring.
However, this corresponds to a very large total change
in abundance (236% increase or 61% decrease). A
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Distribution of covariate estimates (d) representing yearly
change in abundance (from ANCOVA) for 500 simulations
each of (A) 10% annual decrease, (B) no change, and (C) 10%
annual increase in abundance over 10 survey years. Shaded
area under curves A and C which lies on the incorrect side
of zero represents the y-error when a = 1.0; here, it is essen
tially zero.
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detecting a decreasing trend could be extinction of the
population and the permanent loss of a resource. On
the other hand, eliminating or reducing exploitation on
a stable population which is incorrectly thought to be
decreasing would cause smaller, short-term costs. In
the case of marine mammals in the United States,
existing laws mandate that all species be maintained
at sustainable levels, so extinction represents an un
acceptably high cost.

Several assumptions of the above procedures must
be discussed. The most critical assumption is that the
five years of data collected during 1986-90 characterize
the level of variability expected in a longer time series.
In addition, the results of the simulations are only
accurate if the ANCOVA model is appropriate. The
results indicate that the chosen model fits the data well
(P<0.0001).

smaller, but still substantial, change of 5% per year
(total 155% increase or 37% decrease) would have a
very low chance of being detected at this level of a. If
small changes are to be detected, then a may have to
be set higher.

The most extreme form of raising a-levels is ac
complished by considering only the sign of the estimate
for the covariate coefficient in the ANCOVA, thus set
ting a = 1. In this case, the direction, rather than the
presence, of a trend is tested for. This approach max
imizes power, and may be an alternative for situations
where power cannot be improved through other means
(i.e., increasing the number of surveys conducted). For
harbor porpoise trend estimation, the roughly equal
fractions of positive and negative covariate coefficient
estimates, d (Table 5) indicate that such an analysis is
not biased towards detecting either trend direction.

With a = 1.0, power to detect the correct trend in
harbor porpoise abundance ranges from 0.67 to 1.00
for 5-10 survey years and ± 5% and ± 10% annual
population changes. Power of 0.80 or higher is achieved
with a = 1.0 after 5-6 survey years for a 10% annual
change, or after 8 survey years for a 5% annual change.
However, since the cost of low power in this case is
a y-error, power should be higher than when a is set
at the traditional level of 0.05. In this case, eight survey
years may provide high enough power to detect an
annual 10% change, whereas even 10 years may not
yield sufficient power to detect the smaller 5% annual
change.

The magnitude of the y-error when a = 1.0 can be
demonstrated with Figures 6 and 7. The three curves
in these figures represent the distribution of covariate
coefficients, d, for 500 simulated data sets with annual
changes of (A) -10%, (B) 0%, and (C) + 10%. The
y-error is represented by the area under curves A and
C which lies on the incorrect side of zero. If this area
is small or equal to zero, as when 10 annual surveys
are conducted (Fig. 6), then the analysis will have a high
probability of detecting the direction of a trend correct
ly. However, if the area is large, as when only five
annual surveys are conducted (Fig. 7), then the pro
cedure will not be able to detect the direction of trends
accurately. The large degree of overlap between the
three curves in Figure 7 also reflects the low power
to detect trends. The dotted line marks the location of
the covariate coefficient estimate (d) for the 1986-90
survey data. It is apparent that the estimate could
reasonably come from any of the three distributions.

Setting a = 1.0 is valid only if the costs of interpreting
a nonexistent trend in a stable population are small in
relation to the costs of failing to detect an existing
trend. This may be the case if one needs to determine
whether an existing level of take from a commercially
exploited population is sustainable. The cost of not
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The use of simulations allows researchers to estimate
appropriate error levels for the analysis of surveys
of animal populations. The ANCOVA model we used
suggests that no trend in harbor porpoise abundance
occurred between 1986 and 1990. However, our simula
tions show that the power of this model to detect trends
using conventional a-levels of 0.05 or 0.10 is poor.
Therefore, it is more correct to say that we could not
reject the null hypothesis of no trend due to insufficient
power.

Power can be increased by raising the acceptable
level of a. If only the sign of the coefficient for the
covariate year is used to determine the direction of a
trend, regardless of significance level, then the
ANCOVA has a high probability of detecting trends
correctly, particularly with eight or more annual sur
veys. However, at higher a levels, the probability of
detecting a change in the wrong direction (y-error)
increases.

When making decisions, there are distinct trade-offs
between the error types which must be evaluated. In
trend analysis, power should be defined as 1- (fJ + y)
to include only detection of a trend in the correct direc-

Conclusion

ferences. In our analysis, we controlled for sighting
conditions by eliminating poor conditions and stratify
ing by the remaining ones. Changes in observers be
tween years prevented tests of observer differences.
However, based on previous tests with three years of
data, they are not believed to be significant (Forney
et al. 1989).

Harbor porpoise behavior, including frequencies of
active versus inactive behaviors and mean group sizes,
has been shown to vary by area and season (Calam
bokidis et al. 1990, Taylor and Dawson 1984, Sekiguchi
1987). To control for these potential differences, the
surveys followed the same transect lines during the
same season (autumn) each year. Nevertheless, group
sizes in 1989 were significantly different than those in
1987 and 1988 (Kolmogorov-Smirnov test of cumulative
distributions, P = 0.02 for both tests). The difference
appears to be due to a larger percentage of groups con
taining three or more animals.
If group size affects harbor porpoise sightability, a

substantial change in group size distribution could bias
the trend analysis, either obscuring a present trend or
creating a false one. To test for this possibility, the
ANCOVA was repeated excluding the data for 1989.
The overall results were similar, with the same final
model, similar parameters, and no significant yearly
trend (P =0.98). We conclude that this slight difference
in group sizes is not likely to have affected our analysis.
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Figure 7
Distribution of covariate estimates (6) representing yearly
change in abundance (from ANCOVA) for 500 simulations
each of (A) 10% annual decrease, (B) no change, and (C) 10%
annual increase in abundance over five survey years. Shaded
area under curves A and C which lies on the incorrect side
of zero represents the y-error when IJ = 1.0. Dashed line marks
location along the x-axis of the covariate estimate for actual
1986-90 harbor porpoise data.

The choice of adding the constant 0.001 in the log
transform may at first seem a bit odd, but in fact would
be the same as the more familiar transformation
In(x + 1) if relative abundance had been defined as por
poise per thousand kilometers, rather than porpoise per
kilometer. Several other constants were tested to
determine if the choice of transformation might in
fluence the analysis. The stepwise procedure yielded
the same model in each case. The value 0.001 was
chosen because it yielded the most normal distribution
of porpoise per kilometer values (Fig. 3B).

This approach to trend analysis also assumes that the
fraction of animals visible from the air does not change
over time. The probability of detection can be influ
enced by many factors, particularly sighting conditions,
porpoise behavior and group sizes, and observer dif-



376

tion. If the cost of making an a-error, i.e., falsely con
cluding that a stable population is increasing or de
creasing, is low, a can be increased to increase power.
However, attention must be paid to both {j and y-errors
as power increases. If yis relatively large, then power
should be greater than the previously suggested value
of 0.80.

Additional surveys improve the power to detect
trends and reduce y-errors. Furthermore, if future
research can identify and record additional factors af·
fecting observed abundances, such as productivity of
the area surveyed (Smith et al. 1986) or ocean tem
perature patterns (Reilly 1990), this may reduce the
variability in the model and increase power.

Future research is planned to continue surveys and
search for alternative methods of analyzing these data.
The traditional approach to making statistical inference
regarding trends has been hypothesis testing with a
null hypothesis of no change. As seen in this paper, this
is a complicated approach. One must first decide what
levels of a, p, and (now) y one is willing to tolerate. The
range of these errors is dependent on many factors,
including the level of change to be detected, and the
number of years surveyed. Once inference is made, it
cannot be presented to others without reference to this
bewildering array of decision criteria.

Bayesian statistics (Iversen 1984, Press 1989) may
offer an alternative approach to statistical inference,
circumventing many of the complications discussed
above. Bayesian methods would allow the calculation
of the probability distribution of possible trends given
the observed data. From this distribution it would be
possible to directly calculate the probability that the
population is increasing or decreasing. Such methods
may be of more value than statistical test results which
are highly dependent on the chosen error levels.
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