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ABSTRACT

The time-dependent formulations of the Graham-Schaefer and Pella-Tomlinson systems are re
structured so as to accommodate directly the critical-point parameters of their respective governing
graphs; the resulting parametric system accounts for the behavior ofeither model wholly in terms ofits
management components. The indeterminate exponent and the coefficients of the Pella-Tomlinson
equations are uncoupled and the dual formulations associated with the conventional casting of the
system are eliminated; the governing equations and corresponding solutions are cast into composite
forms and the sign changes of coefficients become automatic. The previously obscure relationships
between management parameters and variable graph curvature in the Pella-Tomlinson model are
expressly formulated; maximum sustainable yield is shown to be independent of the indeterminacy of
the system. Time-delay estimators for both systems are formulated.

We analyze here, in a deterministic setting, cer
tain of the transient, nonlinear mechanisms
employed in the modelling of stock and yield dur
ing periods ofimbalance between fishing removals
and stock productivity. The general method of
analysis, which appeals primarily to the direct
parameterization of critical points, will apply to
any nonlinear scheme of exploitation and gross
production, but it applies in particular to the
Graham-Schaefer hypothesis (Graham 1935;
Schaefer 1954) and to the "generalized" model of
Pella and Tomlinson (1969). Since control ofeither
system rests ultimately with the control of critical
points, we restructure the parametric definitions
accordingly and the governing equations for both
systems are then controlled directly by parame
ters of management significance.

Typically, either system reflects the determinis
tic premise that a stock offishes, otherwise held by
exploitation at levels below a prior abundance,
will constantly strive to recover its numbers in
accord with some innate, self-regulating, and re
peatable mechanism of restoration. Any such res
toration must accrue from the productivity of the
stock, and by Graham's hypothesis, the inherent
or latent capacity for productivity in a stock of
fishes depends jointly on the current size of the
stock (in numbers or biomass) and the difference
between the current and potentially maximum
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sizes. Whence, in terms of time-dependent
biomass B, and with the proportionality
coefficient defined as the ratio of "intrinsic"
growth rate k and boo, Graham's formula for latent
productivity P takes on the familiar form

(1)

Of the two expanded terms, the first governs the
intrinsic, exponential capacity for growth of the
population's biomass, while the negative, non
linear term provides the damping that ultimately
slows growth as B(t) approaches its asymptotic
maximum Boo. The two terms, in their algebraic
sum, govern the latent productivity of the stock at
any stock size between zero and Boo. Parameter k,
as we shall see, is coupled analytically and
phenomenologically to parameter Boo, but the de
pendence of k on root Boo in Equation (1) can be
supressed in favor of the direct parameterization
of maximum productivity (which, in the complete
exploitation model, we identify with maximum
yield rate).

In the Pella-Tomlinson model, the parametric
controls for latent productivity exceed by one the
total number of such parameters in Graham's
formulation, an increase in freedom that comes at
considerable cost to tractability, both analytical
and statistical. The differential equation that gov
erns latent productivity in the Pella-Tomlinson
system has the indeterminate form
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(2) Y(t) = F(OoB(t), (4)

we interpret B(BJ as being the resultant produc
tivity, at stock size B, that nets to the stock for its
growth. The net may be positive, negative, or zero
accordingly as P and Y vary with B. That is

Although the detailed time course of any real
stock biomass is actually determined by varia
tions in renewal, survival, member growth, and
the age- or size-dependent probabilities ofcapture,
such effects are not usually separated in the mod
els of interest here, and yield rate Ycustomarily
takes the form

P > Y implies E > 0: the stock's latent
productivity exceeds the rate of exploitation; a
positive net productivity remains to the stock
and the stock so tends to a higher level of
biomass.
P < Y implies E < 0: the rate of biomass re
moval exceeds the stock's capacity for growth;
the stock adjusts to the deficit in net productiv
ity by tending to a lower level of total biomass.
P = Y implies E = 0: the exploitation rate just
balances latent productivity, and biomas~

trajectory B(t) exhibits an extremum. ShouldB
= 0 over finite time, stock biomass remains
stationary and the state called "equilibrium"
prevails.

(5)

P(I3

E =P -FoB,

with the implication that all fish of the fishable
stock are presumed to share, in equal measure, the
force of fishing mortality F, irrespective of age or
size. By admitting Equation (4) into Equation (3),
our general form for net productivity becomes

p = 6i't-----t(p,m)
~

vr:due

Figure 1 illustrates the phase-plane graph of
Equation (1), the latent productivity of a Graham
stock. Maximum productivity m occurs at stock
sizep. And regardless ofthe conventions employed
in the formulation of Equation (2), essential
parametric control in the equation resides spe
cifically with its nonzero root Boo and with coordi
nate m of the critical point (p, m). Parameter m
and Boo constitute a complete, minimum set of
analytically independent parameters for latent

o

where the time variation ofF is usually prescribed
by average effort f on the assumption that F =
qfl7, quantity q being the individual probability of
capture per unit of effort and 7 the averaging in
terval measured in fractions of the dimensional
time unit of F.

ANALYSIS OF
THE GRAHAM SYSTEM

FIGURE I.-Latent productivity P as a function of stock size B,
the Graham model. See Equations (1) and (1a).

(3)E(BJ =PrBJ - Y(BJ,

with exponent n the additional parameter, but
with the signs ofthe coefficients now dependent on
the range of definition of n. As before, the com
bined terms describe, at any stock size B, the
stock's latent capacity for productivity. With n
undetermined (its determination being a part of
the empirical demonstration), solutions of Equa
tion (2) constitute infinitely many growth laws. By
setting n = 2, and with c1 >0, C2<0, Equation (2)
reduces to the Graham equation (Equation (1)).
Pella and Tomlinson (1969) attribute Equation (2)
to Richards (1959). For a detailed analysis of(2) as
a general growth form, see Fletcher (1975); the
anticedents of this analysis appear there.

In either of the two systems, exploitation enters
the formulation for productivity by the direct dif
ference P - Y, with Y signifying the rate of
biomass removal owed to exploitation and P the
latent productivity of the stock. Wherefore, in
writing
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productivity in the Graham system, and they rep
resent the whole extent of available control over
the graph of Equation (1). Coordinate p of the
critical point has the fixed value B rx,!2, and the
graph of Equation (1) has a fixed curvature of
second degree.

Wherefore, productivity Equation (1), cast di
rectly in terms of analytical parameters m and
Boo, takes on the form

and intrinsic rate k, as it turns out, bears a propor
tionality dependence on maximum productivity
and maximum biomass in the relationship

And with the substitution of Equation (la) into
Equation (5), the formula for the net productivity
of a Graham stock becomes

B = 4m t~,J - 4m [~oor - FB. (6)

In the integrated, equilibrium versions of the
Graham system, maximum latent productivity m
becomes maximum sustainable yield (MSY),
hence parameter m may be directly interpreted as
MSY in any optimization procedure on Equation
(6).

Ifwe restrict the time-dependence ofF to abrupt
changes so that any solution of Equation (6) cor
responds on its interval of validity ,however brief,
to some constant value of F, then the time
dependence of B in Equation (6) becomes

(7)

and with initial time to set arbitrarily to zero, the
integration constant in Equation (7) becomes

B* -Bo
Co =--

Bo

Figure 2 illustrates the relationship between net

productivity (Equation (6)) and the biomass solu
tion (Equation (7» for cases where

As indicated in the figure, root B* becomes the
adjustment level to which biomass trajectory B(t)
will trend when F is less than critical quantity
4m/Boo (and obviously, B(t) trends to Boo in Equa
tion (7) whenF is zero). The system is governed by
the positive branch ofEquation (6) when Y <P (in
which case, iJ > 0), and by the negative branch of
Equation (6) when Y > P (in which case, iJ < 0).
But this partitioning ofF into subranges for nega
tive or positive B is a density-dependent process.
Although we must have F < 4m/B oo for positive
B*, the values of F on that range that drive the
stock either up or down will depend on initial stock
size Bo. To insure, for arbitrary Bo' that Y < P in
Equation (6), mortality F must have a value such
that

o < F < 4m r1 - BoJ
Boo L Boo'

in which case B(t) increases from initial value Bo
towards a higher adjustment level B*. But for any
value of F on the interval

then Y > P and B(t) decreases from Bo towards a
lower adjustment level B*.

Figure 3 illustrates the relationship between
net productivity (Equation (6)) and the biomass
solution (Equation (7») when

F> 4m
- Boo'

in which case the adjustment level of biomass cor
responds to the zero root of Equation (6). As indi
cated by the figure, any mortality F so great as to
equal or exceed the quantity 4m/B oo ' if main
tained, will fish a Graham stock to extinction.

Since Equation (6) governs the relationship be
tween transient biomass and nonequilibrium re
moval, we look to its solution (Equation (7)) for
time delays between equilibria. But the asympto
tic behavior of Equation (7) is a minor analytical
annoyance to be circumvented here. Let us
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FIGURE 2.-A. Typical phase-plane graph of net productivity B = P - Y. Equation (6). the Graham system. with mortality F
constrained to the interval 0 < F < 4m/Boo . When removal rate Y exceeds latent productivity P then B < 0 and the negative branch of
Equation (6) applies. When productivity P exceeds removal rate Y then B > 0 and the positive branch applies. B. Typical solution
graphs ofstock biomass B(t), Equation (7). When Y >P, biomass declines from initial valueBo towards adjustment level B*. When Y <
P, biomass increases from initial value Bo towards adjustment level B*.
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FIGURE 3.-A. Typical graph ofnet productivity B =P - Y, Equation (6). the Graham system, with mortality F '" 4m/B oo.For any such
value ofF, the zero root ofEquation (6) applies, removal rate Yexceeds latent productivity P, andB <0. B. Typical solution trajectory
B(t) of Equation (7) when F '" 4m/Boo . Biomass declines from initial value Bo towards extinction level B = O.

380



FLETCHER: TIME-DEPENDENT SOLUTIONS AND EFFICIENT PARAMETERS

presume that no practical technique of estimation
will have a precision of resolution better than
some assignable percentage oftrue stock size, and
let us reflect that practical uncertainty in our
analysis by expanding the asymptotic bound of
Equation (7) to a region of radius eoB* around the
analytical value of the bound (e being the measure
of the uncertainty). Whence, with Bo and B l now
signifying initial and adjustment levels, and by
supposing that F changes abruptly at time to from
value Fo to some new value Fl' Equation (7) be
comes

1
(1 ± €)

the plus sign applying when F1 >F o and the minus
sign when F l < Fo' By setting initial time to arbi
trarily at zero,

c = B1 -Bo
o Bo '

reference time zero, ofFl = 0.20 yr- I
. The adjust

ment level to which B(t) will trend in the transi
tion period is B l = 160,000 tons (by setting, in
Equation (6), B = 0, F =Fl andB =B l . Ifwe now
specify the uncertainty in estimation precision as
being, say, 5% oftrue stock size, then Equation (8),
with F l < Fo and e = 0.05, gives the estimated
delay in adjustment as

__1_ R1 - 0.05) (160,000 - 100,000)1
tlag - 0.533 In l 0.05(100,000) J

= 4.6 yr.

When the model stock declines between similar
levels, the time delay is longer. That is, stock at
level Bo = 160,000 tons, corresponding to the
fishing mortality Fo = 0.20 yr- I

, declines to the
adjustment level B l = 100,000 tons following an
increase at to = 0 to the new mortality F l = 0.40
yr- I

. Transition time t lag now becomes

and the transition time between initial level Bo
and the e-region at adjustment level B1 becomes

Boo = 220,000 tons,
-Im = 40,300 tons yr (the MSY of the model).

In few commercial fisheries do we expect to see
exploitation rates constant over intervals equal to
transition times tlag, and in any case we antici
pate considerable variation in stock size along the
way, owing to chance events. Nevertheless, Equa
tion (8) serves a purpose; it will give us some idea,
in a management strategy, of the time delays to be
expected in bringing a stock from one general
state of exploitation to another through the regu
lation of mortality F.

To illustrate the particularization of Equation
(8), we follow an adaptation by Ricker (1975: 312
315) of Graham's work on demersal stocks of the
North Sea. To accommodate our formulation here,
parameters for Ricker's adaptation would be

t = 1 I ~1 ± €)(B1 - Bo~
lag 4 IB n .m 00 - F1 - (± € Bo)

(8)

t = _1_ I R1 + 0.05) (100,000 -160,000)1
lag 0.333 n l - 0.05(160,000) J

= 6.2 yr.

Yields from transient periods differ consider
ably from the removals associated with equilib
rium states. Obviously, an increase in fishing mor
tality increases the yield temporarily, and a
decrease in fishing mortality decreases the yield
temporarily, but the ensuing trends of adjustment
will depend, in the context ofthe Graham system,
on the following relationships:

F < 4m/B oo; stock size B(t) ..B* (Figure 2),
which implies that Y"FB*.
F~4m/Boo; root B*<O and B(t) ..O (Figure 3)
which implies that Y"O.
F = 2m/B oo ; stock size B(t) implies p (p being
the biomass level B oo/2 where maximum latent
productivity occurs; Figure 1), which implies
that Y"m. Accordingly, we may identify
parameter m, in any of the rate equations here,
with MSY (which, we should remember, is it
self a yield rate).

With reference to Ricker's illustrations (1975:
312-315), we first calculate the time delay that
accompanies a reduction in mortality from Fo =

0.40 yr-I, corresponding to a stock level of Bo =
100,000 tons, to a new mortality commencing at

Since, by Equation (4), instantaneous removal
varies in time as Y(t) = F(t)B(t), then over the
course of the adjustment interval that follows an
abrupt change in F, yield from a Graham stock
will accumulate as
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00

m
± b(l - n) ran1 1 /(1-n)

n [b] ,

the plus sign applying to Equation (10) and the
minus sign to Equation (11),

ANALYSIS OF
THE PELLA-TOMLINSON SYSTEM

As noted in the foregoing section, the maximum
latent productivity m of a Graham stock always
occurs at a biomass value exactly one-half the
unexploited maximum Boo. In turn, MSY of the
equilibrium model must also occur at the stock
level Boo l2. So as to gain control over the locations
ofthose extrema, Pella and Tomlinson (1969) mod
ify the Graham system by writing the differential
equation for latent productivity P essentially in
the form of Equation (2), which, by the customary
treatment,' has a troublesome, dual formulation
owing to the sign changes at n = 1 of coefficients
cl'c2 • On the interval 0 < n < 1 latent productivity
in the Pella-Tomlinson system takes the basic
form

n" 1

~;
n <1

0< p< &..Ie

o m

P = aBn - bB (10)
FIGURE 4,-Typical graph of Equation (12), latent productivity
P as a function of stock size B, the Pella-Tomlinson system.

the ordinate p is determined by

= [aJ1/(1-n)

Boo [b] ,

(where, for the sake of emphasis, c1 = -b, c2 = a,
with a and b positive), but on the interval n > 1
latent productivity takes on the basic form

(where c1 = b, c2 = -a, with a and b positive). In
either case, the bound Boo, the maximum produc
tivity m, and the ordinate p (which governs the
biomass level where m occurs), all depend on the
numerical value assigned to exponent n. That is,
root Boo is given by

Coordinate p, in its location with respect to root
B x ' directly reflects the value assigned to expo
nent n, as indicated by Figure 4. When n takes any
value between zero and unity, coordinatep falls on
the range between zero and Bx/e ("" a.3679B,x)' in
which case Equation (10) applies. When n takes
any value greater than unity, coordinate p falls on
the range between Boo/e and Boo, in which case
Equation (11) applies. But the coordinate m has no
essential dependence on exponent n, and its ap
parent coupling with n (as indicated by the formu
lation above) is merely an inconvenient artifact of
the conventional analysis. With parameters m
and n uncoupled (see Fletcher 1975), the Equa
tions (10) and (11) that govern latent productivity
in the Pella-Tomlinson system can be consolidated
into the single governing equation

(11)P = bB - aBn

_ran1 1 /(1-n)

p - LbJ '
while maximum productivity m, by the conven
tional casting of the model, must be determined
from the formula

(12)

with 'Ya purely numerical factor wholly prescribed
by n as
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-y =
nn/(n-l)

n-l . (13)

(e being Napier's constant), while ratio (14), in the
limit as n ....I, has the value

P = -e m~~}n 5:ooJ

Consolidated Equation (12) now takes on the role
in the Pella-Tomlinson system that Equation (Ia)
takes on in the Graham system. In fact, when n =
2, Equation (12) reduces to Equation (Ia), in which
case'Y = 4 and p/Boo = Ih. As an interesting aside
here, we note that Equation (12), at the turning
point n = 1, takes on the form

With the coefficients so cast, the sign reversals at
turning point n = 1 become automatic. In con
sequence. the consolidated interval of definition
for n becomes 0 < n < 00 (the point n = 1 being a
removable singularity). With parameter m thus
separated from n in Equation (12), the undeter
mined exponent n can be defined solely by the
fraction p/B oo in the relationship

And over any time interval, however brief, that
mortality F might be presumed to have a fixed
value, biomass variableB in Equation (15) has the
general time-dependent solution

B = -ym t:J - I'm ~ooj - FB. (15)

In fact, Fox (1970) constructed a stock-production
model around this special case, but since the ratio
p/B oo has the fixed value lie, Fox's model "has as
rigid a form as the Graham model" (Ricker 1975:
331).

Quantities m, p, and Boo constitute a complete,
minimum set of independent parameters for la
tent productivity in the Pella-Tomlinson system.
Collectively they control the behavior of govern
ing Equation (12), but the influence of anyone
parameter remains independent of the remaining
two. Figure 5 illustrates their separate effects on
the graph of Equation (12).

By appealing to the same piecewise constraints
that enter the Graham productivity equations, we
substitute Equation (12) into the general produc
tivity formula (Equation (5» and net productivity
in the Pella-Tomlinson system becomes

(14)L = n1/(1-n)Boo .

-m-

t
1

Boo: unexploited stock
level [the nonzero
root of Equation (12)].

p: biomass level for
maximum productivity
[the coordinate of B in Equa
tion (12) where m occurs].

m: maximum productivity
[the extremum coordinate
Pmax in Equation (12)].

FIGURE 5.-The graph of Equation (12), latent productivity in the Pella-Tomlinson system, as controlled by independent parameters
m, p, and Boo.
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r ~ l/(l-n)
B(t) = LB* I-n + C exp ((1m /B oo - F)(1 - n) t)J '

--------
(16)

- 6 1 m Jl/(l-n)
B* - F B Boo·1m - 00

By setting initial time to arbitrarily at zero, the
integration constant C in Equation (16) becomes

C = B I-n - B I-no *.

Biomass Equation (16) will apply immediately
upon a change in F and remain valid thereafter for
the time that F remains constant. Over such time,
population biomass will trend up or down in accord
with Equation (16) from initial size Bo towards
adjustment level B*. Should nonzero root B* be
negative (which is possible only when n > 1), then
the adjustment level corresponds to the zero root of
Equation (15) and the population tends to extinc
tion by Equation (16).

The critical relationships between fishing mor
tality, productivity, and time-dependent yield rate
in the Pella-Tomlinson system are considerably

B

more complex than the relationships between F,
P, and Y in the Graham system. Figure 6 illus
trates the behavior of P - Y when n < 1, and
Figures 7 and 8 illustrate P - Y when n > 1. The
ratio ymlB oo becomes the critical quantity in the
Pella-Tomlinson system (4mlB oo being its coun
terpart in the Graham system).

As indicated by Figure 6, the biomass level p
where maximum productivity occurs must lie on
the range 0 <p < Boo/e when 0 < n < 1. And when
n takes any such value, the corresponding Pella
Tomlinson stock will exhibit nonzero adjustment
levels ofbiomass for all values offishing mortality
however large; such a stock cannot be fished to
extinction. That is, nonzero root B* of Equation
(15) will always have a positive value when 0 < n

< 1, its range of variation being 0 <B* ~Boo for F
unrestricted on 0 ~F < 00. But F is partitioned into
subranges accordingly as Y < P or Y > P. And
those values ofF, for which B(t) either increases or
decreases to B*, depend on the critical ratio ymlB 00

and initial biomass value Bo' To insure, for arbi-

B(t)
-.....:::-------8_

Y(OIl)
"">-------:---:.::'-"'--+-~'"<"----------8

0

8<0 5>0

A B

t

FIGURE B.-A. Typical phase.plane graph ofnet productivity Equation (15), the Pella-Tomlinson system, for values ofn where 0 < n <
1. For any such value of n, root B* of Equation (15) is always positive irrespective of the magnitude ofF. Should removal rate Yexceed
latent productivity P, then B< 0 and the negative branch ofEquation (15) applies. ShouldP exceed removal rate Y, thenB > 0 and the
positive branch applies. B. Typical solution graphs of stock biomass B(t), Equation (16), when 0 < n < 1. Should Y > P, biomass
declines from initial value Bo towards adjustment level B*. But when Y < P, biomass increases from Bo towards B*.
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trary Bo' that Y <P in Equation (15), mortality F
must have a value such that

in which case B > 0 and the positive branch of
Equation (15) applies. Trajectory B(t) then in
creases, in accord with Equation (16), from initial
value Bo towards a higher adjustment level B* ~

But for any value of F such that

Boo [1- (1 ± f)l-n J
tlag

= (1 - n) ('Ym - F1Boo) In 1 - (BoIBJ>l-nJ

(18)

then Y > ft, B < 0, and the negative branch of
Equation (15) applies; trajectory B(t) decreases
from Bo towards a lower adjustment level B* as
indicated by the upper curve of Figure 7b.

Should mortality F equal or exceed the critical
ratio ym/B oo in a Pella-Tomlinson system where n
exceeds unity, the corresponding stock, over
sufficient time, will trend to extinction. Figure 8
illustrates the behavior of Equations (15) and (16)
for the constraints

n > 1

F> 'Ym
- Boo

B* :S 0,

in which case the zero root of Equation (15)
applies, and we have B < 0 and B(t) -'0, irrespec
tive of initial conditions.

By expanding the asymptotic bound ofEquation
(16) to a region of radius E"B*, and by appealing to
arguments similar to those that led to the delay
estimate (Equation (8» of the Graham system, we
calculate from Equation (16) the transition times
for a Pella-Tomlinson stock as being

[
B n-lJ'Ym 1 __0 _ < F < 'Ym

Boo Boon-l Boo '

thus B > 0 and the positive branch of Equation
(15) applies as indicated by Figure 7a. Trajectory
B(t) then increases, in accord with Equation (16),
from initial value Bo towards a higher adjustment
level B*, as indicated by the lower curve of Figure
7b. But for any value of F on the interval

where E represents the imprecision of stock
abundance estimates, and whereBo andB I signify
initial and adjustment levels as they correspond to
mortality values Fo andFI . Again we suppose that
F changes abruptly at zero reference time from
value F o to the new value FI' the plus sign of
Equation (18) applying when F I > F o and the
minus sign when F 1 < F o.

By Equation (4) and the assumption that F var
ies in time by taking on fixed values of finite dura
tion, we can write the transient yield rate for the
Pella-Tomlinson system in the consolidated form

(17)

~
Bon-lJ

1---'Boon-l ,
o < F < 'Ym

- Boo

o < F < 'Ym r1
- Boo L

then Y > P and the negative branch of Equation
(15) applies; trajectory B(t) decreases from Bo to
wards a lower adjustme~t level B*.

Although the sign of B and the consequential
course of B(t) is a density-dependent process for
given F, we should note here that when

then B(t)-.Y and -. m, irrespective of initial con
ditions. Accordingly, we may identify parameter
m with MSY in any of the (reformulated) rate
equations of the system.

As indicated by Figures 7 and 8, the biomass
level p where m occurs must lie on the range Boo/e
< p < Boo when n > 1. And with n so prescribed,
root B* of Equation (15) may have positive or
negative values accordingly as F has a value less
or greater than the critical ratio ym/B oo. Figure 7
illustrates the behavior of Equations (15) and (16)
for the constraints

n > 1

o ::; F < 1:
o < B* :S Boo,

in which case, root B* of Equation (15) becomes
the adjustment level such that B(t) -'B* by
Equation (16). But whether B(t) trends up or down
to B* depends on the further partitioning ofF with
respect to initial biomass value Bo. To insure, for
arbitrary Bo' that Y <P in Equation (15), mortal
ity F must be further constrained to the interval
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FIGURE 7.-A. Typical phase-plane graph of Equation (15) when n>1 and F<ym/B ,in which case root B* >0. Should Y>P, the
negative branch of Equation (15) applies; should Y<P, the positive branch applies. B. Typical solution trajectories, Equation (16),
when n > 1 and F <'Ym/Boo. Should Y>P, biomass trajectory B(t) declines from initial value Bo toward adjustment level B*. Should

.Y<P, B(t) increases from Bo toward B*.
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FIGURE B.-A. Phase-plane graph ofnet productivity Equation (15) when n > 1 andF ~ ym/Boo. For any such combination of n andF,
B* < 0 and the zero root of Equation (15) applies. B. Typical solution trajectory, Equation (16), when n > 1 andF "'ym/Boo' in which
case the stock declines from initial value Bo towards extinction.
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FLETCHER: TIME-DEPENDENT SOLUTIONS AND EFFICIENT PARAMETERS

• [( :\ (, )~ 1/(1-n)
Y(t) = F B* 1 - 1- (Bo/B*)l-nJ exp ,('Ym/Boo - F) (1- n) t ~ (19)

DISCUSSION

TABLE I.-Parameters of the restructured Graham and Pella
Tomlinson systems as they apply to management components.

Control parameters

Any nonlinear stock-production system may be
restructured along the lines of the critical-point
analysis described in the foregoing sections; such a
treatment will generate parametric variables
most likely to be those essential to management
analysis. A synopsis ofthe parameters that appear
in the restructured Graham and Pella-Tomlinson
systems is given by Table 1.

n

(1 - l/n) ,mIB",2m/B oo

fixed

Graham Pella·Tomlinson
system system

m m

B",/2 (fixed) p

'12(fixed) n l /(l-n)

F F

B•• or a B., or a

Management components

Maximum stock size

Maximum productivity
(corresponds to MSY)

Stock size for maximum
productivity (the "optimum"
stock size)

Ratiop/B",

Fishing mortality
General adjustment level

(consult text for mortality
conditions)

Fishing mortality for
adjustment level p (the
"optimum" F)

Graph curvature

0< n < 1:
O<F<oo; stoc~ size B(t) ....B* (Figure 6), which
implies that Y ....FB*.
n > 1:
F < '1m/Boo; stock ~ize B(t) ....B* (Figure 7),
which implies that Y ....FB*.
F~ym/B00; st<,>ck size B(t) ....O(Figure 8), which
implies that Y ....O.
n > 0 (both ranges):
F = (1-l!n)ym/B oo; stock size B(t) ....p, which
implies that Y....m (and we may identify
maximum latent productivity m with
maximum yield rate in any of the time
dependent formulations of the analysis).

which is valid for all values of n save n = 1. Owing
to the range of definition on exponent 1I1-n, I
have not found a closed form for the general time
integral of Equation (19) (although existence is
fairly easy to show for n positive and either less or
greater than unity). But the usefulness of the
analysis does not suffer too greatly for that omis
sion, since one may accommodate Equation (19) to
a numerical equation solver for finite measures of
yield 8Y on associated intervals 8t.

When F changes abruptly (as we have assumed
throughout), yield rate Y changes abruptly, but
the ensuing trends of adjustment are governed, in
the Pella-Tomlinson system, by the following rela
tionships:

The quantity '1m/Boo' which plays such a promi
nent role in the analysis, can be identified as the
"intrinsic growth rate" of the stock whenever ex
ponent n > 1, in direct analogy to quantity k ofthe
Graham system (and, in fact, with n = 2, then 'I =
4 and 4m/B oo == k). But as a consequence of the
indeterminate power form of the Pella-Tomlinson
system and the switching ofcoefficient signs in the
governing equations, the intrinsic growth rate
turns out to be density-dependent when n takes on
values between zero and unity. That is, by Equa
tion (12), the intrinsic rate (ifwe may call it so) has
the form

when n falls on the interval 0 < n < 1 (in which
case, 'I < 0).

For optimization procedures on the Graham sys
tem, the essential parameters are {F, m, Boo}
augmented by the auxiliary parameters Bo and
B*. For the Pella-Tomlinson system we may
choose the combination {F, m,p, Boo} or the combi
nation {F, m, n, Boo}, either ofwhich constitutes an
essential set ofmutually independent parameters.
In the first set, p and Boo determine n; in the
second, n and Boo determine p. The relationships
in either case are governed by Equation (14).

Although the parametric influence of n is
wholly prescribed by the ratio p/Boo' exponent n
also determines the curvature of all graphs of the
Pella-Tomlinson system. Therefore, when the par
ticularization of the system depends primarily on
general curve fitting, the likelihood always exists
that ill-determination of parameters will follow,
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owing to stochastic displacement of datum points
at biomass levels remote from locations p and Boo.
As revealed by Equation (14), exponent n is quite
unstable to small perturbations in the ratio p/Boo'
The variational response in n exceeds the pertur
bation in p/Boo by an order of magnitude near n =

1, and the instability increases asp/Boo.....1. But the
location ofp with respect to Boo is far more critical
to management analysis than graph curvature
and its associated "good fit," since, to the left ofp,
the stock produces biomass at a positively acceler
ated rate, while to the right of p productivity de
celerates.

The trait of degeneracy in the system has been
noted by Pella and Tomlinson (1969) and by Fox
(1971, 1975), but the exact relationships between
exponent n and the quantities m, p, and Boo have
been obscured heretofore by the conventional
castings of the system. With the restructured gov
erning equations and the explicit formulations of
critical parameters, much of the statistical degen
eracy associated with previous routines can be
constrained. And since the management parame
ters appear directly in the equations of the system,
their variances can be calculated directly in the
estimation procedure and appeals to indirect
methods are avoided.
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