GEOGRAPHIC AND HYDROGRAPHIC DISTRIBUTION OF ATLANTIC MENHADEN EGGS AND LARVAE ALONG THE MIDDLE ATLANTIC COAST FROM RV DOLPHIN CRUISES, 1965-66

ARTHUR W. KENDALL, JR.¹ AND JOHN W. REINTJES²

ABSTRACT

Atlantic menhaden, *Brevoortia tyrannus*, eggs and larvae were collected during eight ichthyoplankton cruises of the RV *Dolphin* from December 1965 to December 1966. On each cruise tows were made with a Gulf V plankton net at 92 stations along 14 transects from the coast to the edge of the continental shelf from Martha's Vineyard, Mass., to Cape Lookout, N.C. Larvae resulting from a protracted spawning season were taken throughout the year. Eggs were taken over the middle of the shelf in fall. Seasonal shifts in geographic pattern of larvae indicated spawning started in summer off New Jersey and New York, became widespread in the Middle Atlantic Bight in fall, and continued into winter off North Carolina. Larvae were equally distributed in shallow (0-15 m) and deep (18-33 m) tows during night and day. Larvae occurred over a water temperature range from 0° to 25°C and a salinity range of 29 to $36^{0}/\infty$. Seasonal distribution of larvae suggests some of the annual variation in year classes may be due to cold-related mortality of larvae entering middle Atlantic estuaries in late fall.

Along the Atlantic coast spawning and early development of many fishes occur in the ocean. The distribution of early stages of most coastal species is inadequately known. Personnel of the Sandy Hook Marine Laboratory designed a program to determine the spawning times and localities of migratory coastal fishes through a series of cruises off the Atlantic coast from Martha's Vineyard, Mass., to Cape Lookout, N.C. From December 1965 to December 1966 eight survey cruises were conducted to collect fish eggs, larvae, and juveniles. These cruises, together with data on juvenile and adult distribution, provided information on the oceanic life history of most of the commercial and sport fishes of the region.

Atlantic menhaden, *Brevoortia tyrannus* (Latrobe), an important commercial and forage fish, was among the species collected during this survey. The early life history of menhaden has puzzled scientists since early accounts by Baird (1873) and Goode (1879). The eggs and larvae were first described by Kuntz and Radcliffe (1917). After early development at sea, the larvae enter estuaries along the coast where they metamorphose into juveniles. June and Chamberlin (1959) concisely review the estuarine stage of menhaden. The seasonal cycle of menhaden spawning has been inferred from ovary studies by Higham and Nicholson (1964). From Maine to eastern Long Island ovarian development starts in May and reaches a peak in October. The seasonal occurrence of sexually mature fish begins in New Jersey and Delaware in April, continues sporadically in summer, and reaches a peak in October. Around Cape Hatteras maturing fish were taken mainly in late fall; some are found as late as March.

Atlantic menhaden eggs and larvae have been collected offshore and in estuarine waters along the Atlantic coast (Table 1). These collections show a pattern similar to that found by Higham and Nicholson (1964). Spawning off New England occurs in late spring and early summer and again in early fall. Off the middle Atlantic coast eggs and larvae are found in late fall and in spring. Off North Carolina young occur in winter and spring.

Inlet and estuarine studies have collected larval menhaden as they emigrate from the ocean (Table 1). The time of entry varies considerably along the coast and from year to year in the same estuarine areas. In some years entry occurs in late fall, before lowest temperatures are reached. In other years entry occurs primarily as temperatures are warming in early spring. Larvae in the estuaries are apparently killed if winter temperatures fall below 3°C (Reintjes and Pacheco 1966). Emigration from the estuaries varies from late August in the north to January in the south, with some

^{&#}x27;Middle Atlantic Coastal Fisheries Center Sandy Hook Laboratory, National Marine Fisheries Service, NOAA, Highlands, NJ 07732.

²Atlantic Estuarine Fisheries Center, National Marine Fisheries Service, NOAA, Beaufort, NC 28516.

TABLE 1.-Collections of menhaden eggs and larvae, east coast of United States.

	Sampling	period		
Reference	Years	Months	Sampling area	Occurrences
Open ocean				
Marak and Colton 1961 Marak, Colton, and Foster 1962 Marak, Colton, Foster, and Miller 1962	1953 1955 1956	MarJune FebMay FebJune	Georges Bank-Gulf of Maine Georges Bank-Gulf of Maine Georges Bank-Gulf of Maine	June—1 egg, off Martha's Vineyard May—eggs, 130 km off Nantucket June—Iarvae, off Woods Hole
Reintjes 1961	1953-54	all	Cape Hatteras-Florida	DecFeb.—eggs DecMar.—larvae, off North Carolina
Massmann et al. 1962 Reint]es 1969	1959-60 1966	ali Dec.	Off Chesapeake Bay Off North Carolina	NovApr.—larvae Dec.—eggs, patch of several thousands
Bays and open sounds				
Bigelow and Schroeder 1953 Kuntz and Radcliffe 1917			Gulf of Maine Near Woods Hole, Mass.	Oct. 1900–young fry, Casco Bay Oct. 1915–eggs and larvae, Nantucket Sound
Hildebrand and Schroeder 1928 Pearson 1941	1912-22 1929 1930	May-Oct. AprDec.	Chesapeake Bay Lower Chesapeake Bay Lower Chesapeake Bay	Aug.—eggs, off Gay Head July—larvae, Woods Hole Harbor JanMay—large larvae May—larvae Apr.—larvae
Perlmutter 1939	1931 1938	JanMar. May-Oct.	Lower Chesapeake Bay Around Long Island	May-Oct.—eggs
Merriman and Sclar 1952 Wheatland 1956	1943-46 1952-53	all all	Block Island Sound Long Island Sound	Fall-larvae (see Wheatland 1956) June-Octeggs
Richards 1959	1954-55	all	Long Island Sound	May-Oct.—eggs
Deubler 1958 Herman 1963	1955-57 DecApr. 1957-58 all		Bogue Sound, N.C. Narragansett Bay	Winter and spring-larvae, common May-Aug, and Octeggs June, July and OctFeb. (most in Oct.)-
Croker 1965	1960-61	all	Near Sandy Hook, N.J.	Nay-Dec -larvee
Dovel 1971	1963-67	all	Chesapeake Bay	Spring and summer near Solomons, Md eggs Mar-June and Novlarvae, upper
				Chesapeake Bay
Inlets				
Reintjes and Pacheco 1966	1955-61	SeptJune	Indian River Inlet, Del. ¹	OctMay-larvae, month of peak occurrence varied with year from DecFeb.
de Sylva et al. 1962 Tagatz and Dudley 1961 Lunz 1965 Lewis and Mann 1971	1956-58 1957-60 1964 1966-68	ali all JanMar. NovApr.	Indian River Inlet, Del. ¹ Beaufort Inlet, N.C. Several South Carolina inlets Boque and Beaufort inlets, N.C.	NovMay–larvae Jan, and AprMay–larvae FebMar.–larvae NovApr.–larvae
Smaller estuaries				
Warfel and Merriman 1944 Massmann et al. 1954	1942-43 1950-52	all MarOct.	Morris Cove, Conn. Five Virginia tidal rivers	July-Nov.—larvae AprMay—larvae, brackish water
Pacheco and Grant 1965 Reintles and Pacheco 1966	1955-61	SeptJune	White Creek, Indian River, Del.	NovJune, most FebJune-larvae
Tagatz and Dudley 1961 Pearcy and Richards 1962 Dovel 1967 Wilkens and Lewis 1971	1957-60 1959-60 1965-66 1967-69	all all all all	Neuse River, N.C. Mystic River, Conn. Magothy River, Md. White Oak River, N.C.	JanJune and Sept.—larvae June-July—larvae Mar.—larvae JanApr.—larvae

Larvae emigrating from ocean.

juveniles overwintering in southern estuaries. Fish range from 50 to 160 mm when they leave the estuaries (June and Chamberlin 1959).

Recently Mansueti and Hardy (1967) amplified the descriptions of young menhaden and Reintjes (1969) reviewed the biology of the species.

This paper describes the occurrences of menhaden eggs and larvae in the *Dolphin* surveys and relates these findings to daylight, temperature, salinity, and depth, and to our understanding of menhaden early life history.

PROCEDURES

The eight ichthyoplankton cruises were made at approximately 6-wk intervals from December 1965 to December 1966 (Clark et al. 1969). On each cruise 92 stations were located along 14 transects from Martha's Vineyard to Cape Lookout (Figure 1). Stations were closely spaced inshore (9.3 km) along the transects and farther apart (27.8 km) offshore. The order that the transects were run and the time during the 24-h workday that stations were occupied varied among the cruises.

FIGURE 1.-RV Dolphin survey, 1965-66. Locations of transects and collecting stations.

Gulf V plankton samplers with 0.4-m openings and 0.52-mm wire mesh were towed for 30 min at 5 knots (2.6 m/s) in step-oblique tows at each station. Two nets were fished simultaneously at six 3-m depth intervals, from separate warps, one shallow (0-15 m) and one deep (18-33 m), where water depth permitted. In shallower water fewer depth intervals were sampled for longer time periods. Plankton samples were preserved in 4% buffered formaldehyde solution and brought to shore for sorting. Supplementary data collected at each station included water temperature and salinity with depth. A scaled-down Cobb midwater trawl was towed at about half of the stations to collect juvenile fishes.

Fish eggs and larvae were separated from the plankton in the laboratory. Clupeoid larvae were distinguished by their slender body, long gut, sparse pigment, and short dorsal and anal fin bases (Table 2), and separated from other larvae.

Several other fishes whose long slender larvae resemble clupeoids occur in the area but they differ in certain features. Lizardfish larvae have a large finfold, an adipose fin later in development, and a row of 6 to 12 paired dark patches ventrally along the body (Anderson et al. 1966). Other elongate salmoniform larvae generally have an adipose fin, photophores often, and oval or stalked eves. Sand lance larvae have little pigment, but the dorsal and anal fins extend most of the length of the body (Norcross et al. 1961). Blennioid larvae have a short gut, with the anus forward of midlength of the body, and long dorsal and anal fin bases. Other larvae are excluded by myomere counts which fall outside the range for clupeoids (38-55) or by other distinctive characters not found on clupeoid larvae.

 TABLE 2.-Distinguishing features of Atlantic coast clupeoid larvae.

Character	Distinguishing features
Body shape	Body slender and elongate, the greatest body depth less than 20% of total length. Anus in posterior third of body.
Fin positions	Dorsal — single, short, about two-thirds way back along body; no adipose fin. Anal — posterior to at least part of dorsal fin, not confluent with caudal fin. Pelvics — abdominal, at about midlength on the body.
Meristic counts	Myomeres (vertebrae) – 38-55. Dorsal fin rays – 9-22. Anal fin rays – 10-30. Principal caudal fin rays – 10 + 9.
Pigmentation	Little pigment except ventrally. Ventral pigment — small spots on throat, along the gut, and at base of caudal fin.
General	Eyes round, in orbits, not stalked. Gut straight with annular folding of the intestine.

Identification of menhaden eggs and larvae among the four other clupeid genera and two engraulid genera along the North American east coast was facilitated by published illustrations and descriptions (Kuntz and Radcliffe 1917; Mansueti and Hardy 1967; Houde and Fore 1973) and reported spawning areas and times (Reintjes 1961; Higham and Nicholson 1964). Menhaden larvae collected north of Cape Lookout are presumed to be Brevoortia tyrannus, since B. smithi occurs mainly farther south and spawns inshore (Reintjes 1962). The areas of larval occurrence of menhaden overlap Atlantic herring. Clupea harengus harengus, in the north, and round herring, Etrumeus teres; Spanish sardine, Sardinella anchovia; and Atlantic thread herring, Opisthonema oglinum, in the south.

Clupeoid larvae less than 8 mm are difficult to distinguish because the median fins and other characters are not formed. However, pigmentation, body shape, and gut length are helpful in small larvae. Among clupeoid larvae the stage of development at a particular size and area of capture are helpful. For each comparable stage of larval development, menhaden are larger than anchovies, Spanish sardine, and Atlantic thread herring, and smaller than Atlantic herring. Only round herring show the same development with size as menhaden but are easily distinguished by the relative length of the snout at all sizes.

Menhaden were counted and total length measurements of larvae less than 12 mm long were made to the nearest 0.1 mm with an ocular micrometer in a dissecting microscope; those longer than 12 mm were measured with dividers and a steel rule or dial calipers to the nearest 0.5 mm. Samples containing more than 50 fish were usually randomly subsampled before measuring. To get a subsample of 25-50 larvae, the sample was floated in formaldehyde solution in a 150-mm petri dish scribed into quarters with two diameters; a random half or quarter of the dish was chosen for measuring. The process was repeated with the chosen fraction with samples of more than 200 specimens. When larvae showed slight damage, such as broken caudal rays, measurements were adjusted to approximate total length. Larvae identifiable, but too mutilated to be measured, were counted. For geographic distribution analysis, numbers of larvae at each station were adjusted to a standard tow as in Smith (1973) and Fahay (1974).

RESULTS

Geographic Distribution of Larvae

Menhaden larvae are more widely distributed than any other clupeoid in the northwest Atlantic. Larvae have been reported from Maine to Mexico in oceanic, estuarine, and fresh waters. South of Cape Hatteras Atlantic menhaden spawn in the cooler months (October to June), while along the Middle Atlantic states they spawn during the warmer months (June to November). Seasonal occurrences of larvae followed the annual northsouth migration of adults. Small larvae were first collected in June near Delaware Bay. By October larvae were present from southern New England to Chesapeake Bay. In late fall they were found from New York to Cape Lookout. During the winter and spring larger larvae were present from Chesapeake Bay to Cape Lookout.

Small menhaden larvae were collected throughout the year except in late spring, indicating nearly continual spawning (Figure 2). Menhaden hatch at about 3 mm (Mansueti and Hardy 1967), but we caught few less than 5 mm. This was probably due in part to our inability to identify with certainty small larvae and in part to their fragile, slender form which caused them to be extruded from our nets. The largest larvae we collected were 30 mm, about the size at which they enter estuaries and transform into juveniles (Lewis et al. 1972).

It is not reasonable to attempt to determine a growth rate for menhaden larvae from our data. Small menhaden less than 8 mm were collected from June through February. Thus, spawning took place in our sampling area for 6 mo of the year. This protracted spawning season and probable geographic movements of larvae preclude the possibility of determining growth rate from this survey.

Data associated with collections of menhaden larvae are presented in the Appendix Table. Their occurrences are illustrated in Figures 4-11. From the irregular horizontal and vertical distributions and highly nonnormal catch frequency curve (Figure 3), it appears that the larvae are very unevenly and probably patchily distributed. The location and density of patches may be related to local currents and water conditions on a smaller scale than we sampled. This discussion follows the sequence of spawning, i.e. starting in late spring

FIGURE 2.-Length-frequencies of menhaden larvae from the RV Dolphin survey, 1965-66.

1966. The cruises, however, began in December 1965. Thus, the cruises from December 1965 to May 1966 cover one spawning season and those from June 1966 to November-December 1966 cover the following season. In late June a few larvae were collected nearshore off Delaware Bay (Figure 4). These larvae were small (7.8-14.4 mm), indicating they had been spawned recently. Spawning may have occurred in Delaware Bay since the larvae we

FIGURE 3.-Frequency distribution of menhaden larval catches per haul.

caught were concentrated close to its mouth. The distribution of the collections indicates spawning was not widespread. Stations north of these collections were sampled about 10 days earlier, possibly accounting for the limited distribution we observed. The absence of larvae to the north in these earlier collections would indicate spawning had recently started. Temperatures in June in the area of capture ranged from 15° to 19°C, and salinity varied from 30.3 to $32.1^{\circ}/\infty$ (Figure 4). Hydrographic conditions within these ranges occurred widely along the coast during this cruise (Clark et al. 1969).

During our cruise in August there was evidence of limited spawning nearshore (Figure 5). A few small larvae, 5.6-10.5 mm, were taken off Long Island and New Jersey. Perhaps the earlier spawning in June was so limited that with dispersal during growth, insufficient larvae survived to be taken in our August sampling. Temperatures in the area of capture in August were warmer than in June, 18° to 22°C at the surface, and the seasonal thermocline was well developed about 15 m below the surface (Figure 5). Temperatures below the thermocline were less than 10°C. Larvae were collected only in the shallow net, indicating they were in the warm water above the thermocline. Salinity in the area of capture ranged from 30.1 to $31.0^{\circ}/\infty$.

In October 5,420 larvae were collected that ranged from 3.5 to 18.5 mm (Figure 2). The length-frequency distribution was skewed to the left (mean 7.3 mm; mode 6.5 mm). Larvae were more widespread and in greater concentrations than during any other cruise (Figure 6). They occurred from Martha's Vineyard to Currituck Beach, N.C., and were abundant from Long Island to Maryland, near the middle of the shelf. They occurred nearshore from southern New England to New Jersey and near Chesapeake Bay. The fish

FIGURE 4.-Distribution and abundance of menhaden larvae in the June cruise.

FIGURE 5.-Distribution and abundance of menhaden larvae in the August cruise.

were 8-12 mm in the northern part of the sampling range, from New York north. Fish in a broader size range, 4-12 mm, were present off New Jersey. Nearly all fish south of New Jersey were smaller, 4-8 mm.

In October the thermocline was breaking down but still present over much of the area, and surface temperatures were about 3° C cooler than in August (Figure 6). Salinity values were about the same as in August, mostly between 30.5 and $32.0^{\circ}/_{\circ\circ}$, except near the mouth of Chesapeake Bay where they dropped to $28.0^{\circ}/_{\circ\circ}$.

The cruise in late fall 1966 (Figure 7) shows a distribution pattern quite similar to the cruise in December 1965 (Figure 8). During both cruises, larvae occurred mostly nearshore from Long Island to North Carolina. They were most abundant near Cape Hatteras, where they were taken to the edge of the shelf.

In November 1966 there was a bimodal size distribution with one peak at 8 mm and the other at 20 mm (Figure 2). There were few larvae between 14 and 18 mm. In December 1965 the peak at 8 mm is similar to that in late fall 1966, but the second peak at 20 mm is not seen (Figure 2). Possibly this difference is due to year-to-year variation in spawning pattern in the area studied.

In the November and December cruises, small fish were found south of Delaware Bay and tended to occur at least 12 km offshore. Larger fish occurred mainly north of Chesapeake Bay and mostly within 15 km of shore. In transition areas between north and south and inshore and offshore areas, fish in a wide length range occurred at the same station and bimodal length-frequency curves were seen. This may indicate that spawning occurs in waves, and as the larvae grow they disperse from the area where they were spawned.

By late fall the thermocline was gone and surface isotherms roughly paralleled the coastline (Figures 7, 8). Larvae were taken over a wide range of temperature, from 7° to 25°C. Most collections were in water between 10° and 20°C. Salinity varied considerably between the two late fall cruises. In 1965, several patches of low saline water, less than $30^{\circ}/_{\circ\circ}$, were found mostly near the shore (Clark et al. 1969). However, in 1966 salinity throughout the area was greater than $31^{\circ}/_{\circ\circ}$, except immediately outside Chesapeake Bay. The distribution of larvae is quite similar between these

FIGURE 6.-Distribution and abundance of menhaden larvae and distribution of menhaden eggs in the October cruise. two cruises in spite of these differences in salinity.

In February menhaden larvae were taken from Virginia to Cape Lookout (Figure 9). They probably occurred farther south than we sampled since they were most abundant on our southernmost transect. Most larvae were taken between Cape Hatteras and Cape Lookout. Lengths presented a fairly symmetrical distribution with a peak at 13 mm (Figure 2). There is indication again that the larger fish were taken nearer to shore and farther north than the smaller fish. Few fish shorter than 8 mm were seen at this time, and the maximum length was 29 mm. Apparently, at about this size menhaden have either entered estuaries or can avoid our nets. In winter the temperature was 4°C at 11 of the 23 stations where menhaden were taken; it was less than 3°C at 4 stations (Figure 9). Water at these stations was practically isothermal with depth (Clark et al. 1969).

During April larvae occurred in approximately the same areas as in February (Figure 10). Fewer. larger larvae were taken between Chesapeake Bay and Ocracoke Inlet, N.C., than earlier. Larvae north of Cape Hatteras ranged from 21 to 29 mm. Off Ocracoke Inlet larvae were 11-19 mm. The larger larvae north of Cape Hatteras were taken nearshore; those farther south extended 37 km offshore. A bimodal length-frequency curve had peaks centered at 15 and 24 mm, although insufficient numbers of fish were collected to determine the statistical significance (Figure 2). By April, temperatures in the areas of capture were warmer than winter temperatures, above 8°C, and mostly between 10° and 12° (Figure 10). Salinity ranged from 30.3 to 35.6%/00.

In May a few large (25-26 mm) larvae were taken off Virginia, inshore near Chesapeake Bay (Figure 11). These were apparently remnants of the early winter spawning, the rest of the larvae having already entered estuaries. Water in the areas of capture had warmed to 13° to 17° C (Figure 11). Salinity was generally lower, from 28.4 to $31.2^{\circ}/_{\infty}$, due to spring freshening nearshore (Clark et al. 1969).

Temperature-Salinity Relations

The catches of menhaden larvae during all cruises in the shallow net were compared

FIGURE 7.-Distribution and abundance of menhaden larvae and distribution of menhaden eggs in the November-December 1966 cruise.

graphically with observed surface temperatures and salinities. Surface observations were thought adequate since most larvae were collected when hydrographic conditions were nearly uniform with depth and menhaden larvae were scarce below the thermocline. Mean temperatures and salinities within the sampling depth range were also compared with catches and showed patterns similar to those discussed here.

Observed surface temperatures varied from -1° to 28°C (Figure 12). At each of nine whole-degree intervals between 6° and 19°C, more than 30 stations were occupied. More than 40 stations were occupied at 10° and 14°C. Menhaden occurred at stations when temperatures were between 0° and 25°C. The curve of positive stations (those where menhaden were taken) was similar in shape and range to that of total stations. The numbers of larvae taken at each temperature were plotted on a log scale. This plot was slightly skewed to the right, with modal catch at 18°C. Catches of over 100 larvae were made at temperatures from 9.3° to 20.5°C, with most between 15.8° and 18.5°C.

Surface salinity varied from 23 to $38^{\circ/oo}$, with a mode at $31^{\circ/oo}$ (Figure 13). Positive stations occurred over the entire range of salinities, with a mode at $30^{\circ/oo}$. The larval catch curve, on a log scale, is similar in shape to the total station curve, with a mode at $31^{\circ/oo}$. At stations with salinities between 30 and $36^{\circ/oo}$, a total of at least 200 larvae were taken within each part-per-thousand interval.

Diel-Vertical Comparisons of Larval Catches

Comparisons were made of the catches of larvae in shallow and deep tows made during night and day. These comparisons are on the basis of the volume of water sampled, which was assumed to be constant among the tows. The use of parametric statistics was precluded by the highly nonnormal catch frequency curve (Figure 3). Of the 172 tows with menhaden larvae, 48 contained only 1 larva, and 11 tows contained more than 100 larvae. Of the 11 tows with more than 100 larvae, 7 were taken in shallow tows during daylight. Altogether menhaden occurred in 85 daylight tows and 87 nighttime tows (Table 3). The distribution of catches was not significantly different with time of day (chi-square test; P > 0.50). Day and night

FIGURE 8.-Distribution and abundance of menhaden larvae in the December 1965 cruise.

FIGURE 9.-Distribution and abundance of menhaden larvae in the February cruise.

FIGURE 10.-Distribution and abundance of menhaden larvae in the April cruise.

FIGURE 11.-Distribution and abundance of menhaden larvae in the May cruise.

FIGURE 12.-Relation between surface temperature to menhaden larval catch and sampling effort.

tows were combined to compare the distribution of catches by the shallow and deep nets. By the shallow net, menhaden were taken in 138 tows and by the deep net in 34 tows (Table 3). The distribution of catches was not significantly different in the two nets (P > 0.50). Comparisons of size of larvae between day and night tows with the shallow and deep nets showed no significant differences.

Eggs

We found menhaden eggs at only six stations, five from the October cruise and one from the late fall cruise in 1966 (Figures 6, 7). All but one sample contained less than 100 developing eggs. The exceptional sample was from 85 km off Delaware Bay in October where about 2,000 eggs were taken. Precise counts were not possible due to the poor state of preservation of the samples when they were examined. Eggs were collected in areas where small larvae were taken. Apparently menhaden spawn as large schools producing dense patches of eggs (Reintjes 1969). During the short incubation time (48 h), these patches do not become dispersed. Thus the distribution of menhaden eggs at sea is probably more uneven than that of larvae. Chance was a dominant factor in catching menhaden eggs so distributed in our survey.

Mid-Water Trawl Catches

Sampling by mid-water trawl during the cruises collected a few larval and adult menhaden. Sampling effort was good in areas where the catches were made, so they probably reflect the actual geographic distribution of menhaden subject to capture by this type of sampling (Clark et al. 1969). A few large larvae, 21-37 mm, were taken in August off the Chesapeake Bay area. Age-0 fish, 89-177 mm FL (fork length) (Reintjes 1969), occurred close to shore from southern New England to Chesapeake Bay in late fall 1966. These probably represent young fish migrating south after spending the summer in estuaries (June and Chamberlin 1959). Other catches included two large fish, 305 and 361 mm FL, close to shore off southern New Jersey in May, and several age-0 fish off Oregon Inlet, N.C., in June.

DISCUSSION

Much speculation has surrounded the distribu-

FIGURE 13.-Relation between surface salinity to menhaden larval catch and sampling effort.

tion of early stages of menhaden. Spawning times and places have been inferred from examination of gonads of adults (McHugh et al. 1959; Higham and Nicholson 1964) and nearshore and estuarine samples of larvae and juveniles (e.g. Richards 1959; Sutherland 1963; Pacheco and Grant 1965). Few studies have actually taken menhaden eggs and larvae to determine more directly the area of spawning (Reintjes 1961; Massmann et al. 1962). Controversy has concerned whether menhaden spawn in Chesapeake Bay (Hildebrand and Schroeder 1928) and whether there are two separate populations along the east coast, one spawning in spring and one in fall (Nicholson 1972). Annual variation in time of spawning and entry of larvae into estuaries may account for some of the confusion, since most studies have been short-termed and in a relatively small portion of the range of menhaden.

Caution needs to be exercised in analyzing the present data since they were collected during a single year and do not encompass the entire range of spawning of menhaden (Reintjes 1969). During summer larvae were taken from our inshore stations to our farthest offshore station and at our most northerly station. The possibility of spawning within estuaries is indicated by the presence of

TABLE 3.-Diel and depth distribution of menhaden larval catches and mean lengths

		Day			Night		Day and		
Larvae/tow	Shallow	Deep	Both	Shallow	Deep	Both	Shallow	Deep	All
				Numb	er of to	ws -			
1-2	29	9	38	34	2	36	63	11	74
3-4	7	3	10	7	4	11	14	7	21
5-20	18	3	21	18	6	24	36	9	45
> 21	15	1	16	10	6	16	25	7	32
Total tows	69	16	85	69	18	87	138	34	172
Mean larvae/tow	68.2	6.4	56.0	19.1	48.2	25.6	43.0	27,2	39.8
Mean larval length (mm)	8.3	8.8	8.3	9.0	6.9	8.2	8.5	7,1	8.3

small larvae near their mouths. In winter they were found at our southernmost stations. Therefore, spawning could have taken place inshore and offshore of our stations and farther north and south of our sampling.

Our results on area of spawning confirm the conclusions of Higham and Nicholson (1964) and Nicholson (1972) that menhaden spawn during both their northward spring migration and their southward fall migration. We conclude that spawning apparently continues in winter in the south, based on our catches around Cape Lookout. Midsummer spawning may have occurred north of our sampling area, or may have been inhibited in 1966 by water cooler than usual.

Harrison et al. (1967) postulated that bottom drift of waters off Chesapeake Bay influence the success of year classes of menhaden. During years when bottom drift was weak and southwesterly, poor year classes occurred. However, our data and that of Massmann et al. (1962) do not indicate a preference for bottom waters by larger menhaden larvae. Larvae entering the estuaries are found throughout the water column (Lewis and Mann 1971), and later, in the estuaries, they are found primarily in surface waters (Massmann et al. 1954). Possibly the factors affecting bottom drift also affect the success of year classes, but in an indirect way.

Reintjes and Pacheco (1966) reported on inlet and nursery area collections in Indian River, Del., made over a 6-yr period (1955-61). Among the years studied, the peak in larval abundance at the inlet occurred in all months from December through March. Larvae were taken at the inlet from September through June in most years. It appeared that when temperatures at the inlet dropped to 3°C, larvae in the area were killed. In four seasons, when large catches of larvae were made at the inlet between December and February and temperature later dropped below 3°C, larvae were scarce or absent in upstream nursery areas. However, larvae taken in years when temperature remained above 3°C and those taken after the critical low temperature period were later represented in collections upstream.

Due to the extreme year-to-year variability in time of entry at the inlet at Indian River, it is difficult to relate our catches to these data. The few small larvae taken near Delaware Bay in June would probably have entered the estuary in July, a month when Reintjes and Pacheco (1966) reported none. We made large catches in this area in October. Larvae were also present offshore in November and December. In February, larvae were not taken north of Virginia and water temperature close to shore between Chesapeake and Delaware bays was less than 0°C. From these data, it would appear that 1965-66 was dissimilar to any year studied by Reintjes and Pacheco (1966) with regard to menhaden larvae near Delaware Bay. Presumably during 1965-66 larvae could have been taken in abundance in late fall but would have been killed by cold water in February. Subsequently no larvae would have entered in winter or spring, but some might have appeared in early summer.

Menhaden larvae were taken off Chesapeake Bay in waters 1° to 15°C by Massmann et al. (1962). Herman (1963) reported them in Narragansett Bay from 1° to 22°C. The larvae we collected at temperatures below 3°C did not appear decomposed as would be expected had they been dead when captured. Lewis (1965, 1966) has studied the effects of subjecting menhaden larvae to low temperatures and a range of salinities in the laboratory. He has shown that moderate salinities (10-20°/00) enhance survival at low temperature as do lowered acclimation temperatures. At 7°C acclimation temperature, the lowest he used, and 2° to 4°C test temperatures, 50% mortality occurred in about 40 h at 24% / or. Salinities in our areas of capture were 31 to 35% -higher than those tested by Lewis (1966). If temperatures below 3°C in estuarine waters kill many menhaden (Reintjes and Pacheco 1966), it may be advantageous for larvae to remain in the ocean where temperature changes are more gradual. Menhaden entering estuaries are usually larvae less than 30 mm long, and in the estuary they rapidly transform by 38 mm (Lewis et al. 1972). Reintjes and Pacheco (1966) reported a few transforming specimens (greater than 34 mm) entering Indian River in May. That they are dependent on estuarine conditions for transformation is supported by the absence of transforming specimens and juveniles in our collections.

SUMMARY AND CONCLUSIONS

A total of 7,006 menhaden larvae were collected in 172, 0.5-h Gulf V plankton tows. The larvae were taken on eight cruises along the middle Atlantic coast throughout the year. Eggs were taken in a few tows in the fall. The catch distribution was nonnormal, with 48 tows catching only 1 fish and 1 tow catching 2,553 fish. No differences in larval catches or size were found in shallow and deep tows or during day or night. Small larvae, less than 8 mm, were taken from June through February, indicating a protracted spawning period. However, there was a seasonal shift in area of spawning. In late spring and summer limited spawning was occurring off New Jersey and New York. By early fall spawning was widespread from southern New England to Virginia. By late fall and early winter spawning was limited to areas between Delaware and North Carolina. Larger larvae were taken in the north in late fall and south of Delaware Bay in winter and spring.

Larvae occurred over a wide range of temperature, from 0° to 25°C. Several were taken in waters cooler than the 3°C limit found lethal in laboratory tests and inferred to be limiting in inlet sampling studies. Most larvae were collected at temperatures between 15° and 20°C. There was an inverse relationship between temperature and size of larvae.

Salinity seemed to have little influence on the distribution of larvae. They occurred at practically every salinity encountered and the frequency of salinities closely resembled the frequency of positive tows.

Our findings are similar to recent investigations of early life history of Atlantic menhaden based on inlet sampling of larvae, gonad studies, and scale annulus formation. It appears that spawning and early development at sea take place over a long period in a given coastal area, and the larvae resulting from this spawning may reach the inlets over a long seasonal time. In years with mild winters, successful immigration to estuarine areas may occur before the winter temperature minimum. However, under more severe conditions, when winter temperatures in the estuaries fall below 3°C, successful immigration may occur only as temperatures are increasing in spring because larvae entering estuaries during the fall may not survive the winter. This could account for some of the annual variation in year-class strength of Atlantic menhaden.

LITERATURE CITED

ANDERSON, W. W., J. W. GEHRINGER, AND F. H. BERRY.

1966. Field guide to the Synodontidae (lizardfishes) of the western Atlantic Ocean. U.S. Fish Wildl. Serv., Circ. 245, 12 p. BAIRD, S. F.

1873. Testimony in regard to the present condition of the

fisheries, taken in 1871. *In* Report on the condition of the sea fisheries of the south coast of New England in 1871 and 1872, p. 7-72. Rep. U.S. Comm. Fish Fish. 1871-1872, Part I.

- BIGELOW, H. B., AND W. C. SCHROEDER.
 - 1953. Fishes of the Gulf of Maine. U.S. Fish Wildl. Serv., Fish. Bull. 53, 577 p.
- CLARK, J. R., W. G. SMITH, A. W. KENDALL, JR., AND M. P. FAHAY. 1969. Studies of estuarine dependence of Atlantic coastal fishes. Data report I: Northern section, Cape Cod to Cape Lookout. R. V. Dolphin cruises 1965-66: Zooplankton volumes, midwater trawl collections, temperatures and salinities. U.S. Bur. Sport Fish. Wildl., Tech. Pap. 28, 132 p.
- CROKER, R. A.

1965. Planktonic fish eggs and larvae of Sandy Hook estuary. Chesapeake Sci. 6:92-95.

DE SYLVA, D. P., F. A. KALBER, AND C. N. SHUSTER, JR.

1962. Fishes and ecological conditions in the shore zone of the Delaware River estuary, with notes on other species collected in deeper waters. Univ. Del. Mar. Lab., Inf. Ser. Publ. 5, 164 p.

DEUBLER, E. E., JR.

1958. A comparative study of the postlarvae of three flounders (*Paralichthys*) in North Carolina. Copeia 1958:112-116.

DOVEL, W. L.

- 1967. Fish eggs and larvae of the Magothy River, Maryland. Chesapeake Sci. 8:125-129.
- 1971. Fish eggs and larvae of the upper Chesapeake Bay. Nat. Res. Inst., Univ. Md., Spec. Rep. 4, 71 p.

FAHAY, M. P.

1974. Occurrence of silver hake, *Merluccius bilinearis*, eggs and larvae along the middle Atlantic continental shelf during 1966. Fish. Bull., U.S. 72:813-834.

GOODE, G. B.

1879. The natural and economical history of the American menhaden. Rep. U.S. Comm. Fish Fish. 1877, Append. A, Part 1, p. 1-529.

HARRISON, W., J. J. NORCROSS, N. A. PORE, AND E. M. STANLEY.

1967. Circulation of shelf waters off Chesapeake Bight. Surface and bottom drift of Continental Shelf waters between Cape Henlopen, Delaware, and Cape Hatteras, North Carolina June 1963-December 1964. U.S. Dep. Commer., ESSA Prof. Pap. 3, 82 p.

HERMAN, S. S.

1963. Planktonic fish eggs and larvae of Narragansett Bay. Limnol. Oceanogr. 8:103-109.

HIGHAM, J. R., AND W. R. NICHOLSON.

1964. Sexual maturation and spawning of Atlantic menhaden. U.S. Fish Wildl. Serv., Fish. Bull. 63:255-271.

HILDEBRAND, S. F., AND W. C. SCHROEDER. 1928. Fishes of Chesapeake Bay. Bull. U.S. Bur. Fish. 43(1):1-366.

HOUDE, E. D., AND P. L. FORE.

1973. Guide to identity of eggs and larvae of some Gulf of Mexico clupeid fishes. Fla. Dep. Nat. Resour., Mar. Res. Lab., Leafl. Ser. 4, Part 1(23), 14 p.

JUNE, F. C., AND J. L. CHAMBERLIN.

1959. The role of the estuary in the life history and biology of Atlantic menhaden. Proc. Gulf Caribb. Fish. Inst., 11th Annu. Sess., p. 41-45.

KUNTZ, A., AND L. RADCLIFFE.

^{1917.} Notes on the embryology and larval development of

twelve teleostean fishes. Bull. U.S. Bur. Fish. 35:87-134. LEWIS, R. M.

- 1965. The effect of minimum temperature on the survival of larval Atlantic menhaden, *Brevoortia tyrannus*. Trans. Am. Fish. Soc. 94:409-412.
- 1966. Effects of salinity and temperature on survival and development of larval Atlantic menhaden, *Brevoortia tyrannus*. Trans. Am. Fish. Soc. 95:423-426.
- LEWIS, R. M., AND W. C. MANN.
 - 1971. Occurrence and abundance of larval Atlantic menhaden, *Brevoortia tyrannus*, at two North Carolina inlets with notes on associated species. Trans. Am. Fish. Soc. 100:296-301.
- LEWIS, R. M., E. P. H. WILKENS, AND H. R. GORDY.
- 1972. A description of young Atlantic menhaden, *Brevoortia tyrannus*, in the White Oak River estuary, North Carolina. Fish. Bull., U.S. 70:115-118.

Lunz, R.

- 1965. Annual report 1963-1964. Bears Bluff Lab., Contrib. 41, 10 p.
- MCHUGH, J. L., R. T. OGLESBY, AND A. L. PACHECO.
 - 1959. Length, weight, and age composition of the menhaden catch in Virginia waters. Limnol. Oceanogr. 4:145-162.
- MANSUETI, A. J., AND J. D. HARDY, JR.
 - 1967. Development of fishes of the Chesapeake Bay region. An atlas of egg, larval, and juvenile stages, Part I. Nat. Res. Inst., Univ. Md., 202 p.

MARAK, R. R., AND J. B. COLTON, JR.

- 1961. Distribution of fish eggs and larvae, temperature, and salinity in the Georges Bank-Gulf of Maine area, 1953. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 398, 61 p.
- MARAK, R. R., J. B. COLTON, JR., AND D. B. FOSTER.
- 1962. Distribution of fish eggs and larvae, temperature, and salinity in the Georges Bank-Gulf of Maine area, 1955. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 411, 66 p.
- MARAK, R. R., J. B. COLTON, JR., D. B. FOSTER, AND D. MILLER. 1962. Distribution of fish eggs and larvae, temperature, and salinity in the Georges Bank-Gulf of Maine area, 1956. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 412, 95 p.

MASSMANN, W. H., E. C. LADD, AND H. N. MCCUTCHEON.

1954. Postlarvae and young of menhaden (*Brevoortia tyrannus*) in brackish and fresh waters of Virginia. Copeia 1954:19-23.

MASSMAN, W. H., J. J. NORCROSS, AND E. B. JOSEPH.

1962. Atlantic menhaden larvae in Virginia coastal waters. Chesapeake Sci. 3:42-45.

MERRIMAN, D., AND R. C. SCLAR.

1952. The pelagic fish eggs and larvae of Block Island Sound. In Hydrographic and biological studies of Block Island Sound, p. 165-219. Bull. Bingham Oceanogr. Collect., Yale Univ. 13(3).

NICHOLSON, W. R.

1972. Population structure and movements of Atlantic menhaden, *Brevoortia tyrannus*, as inferred from back calculated length frequencies. Chesapeake Sci. 13:161-174.

NORCROSS, J. J., W. H. MASSMANN, AND E. B. JOSEPH.

1961. Investigations of inner continental shelf waters off lower Chesapeake Bay. Part II. Sand lance larvae, Ammodytes americanus. Chesapeake Sci. 2:49-59. PACHECO, A. L., AND G. C. GRANT.

1965. Studies of the early life history of Atlantic menhaden in estuarine nurseries. Part I.-Seasonal occurrence of juvenile menhaden and other small fishes in a tributary creek of Indian River, Delaware, 1957-58. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 504, 32 p.

PEARCY, W. G., AND S. W. RICHARDS.

1962. Distribution and ecology of fishes of the Mystic River estuary, Connecticut. Ecology 43:248-259.

PEARSON, J. C.

1941. The young of some marine fishes taken in lower Chesapeake Bay, Virginia, with special reference to the grey sea trout *Cynoscion regalis* (Bloch). U.S. Fish Wildl. Serv., Fish. Bull. 50:79-102.

PERLMUTTER, A.

1939. Section I. An ecological survey of young fish and eggs identified from tow-net collections. In A biological survey of the salt waters of Long Island, 1938, Part II, p. 11-71. N.Y. State Conserv. Dep., Suppl. 28th Annu. Rep., 1938, Salt-water Surv. 15.

REINTJES, J. W.

- Menhaden eggs and larvae from M/V Theodore N. Gill cruises, South Atlantic coast of the United States, 1953-54. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 393, 7 p.
- 1962. Development of eggs and yolk-sac larvae of yellowfin menhaden. U.S. Fish Wildl. Serv., Fish. Bull. 62:93-102.
- 1969. Synopsis of biological data on the Atlantic menhaden, Brevoortia tyrannus. U.S. Fish Wildl. Serv., Circ. 320, 30 p.

REINTJES, J. W., AND A. L. PACHECO.

1966. The relation of menhaden to estuaries. In R. F. Smith, A. H. Swartz, and W. H. Massmann (editors), A symposium on estuarine fisheries, p. 50-58. Am. Fish. Soc., Spec. Publ. 3.

RICHARDS, S. W.

1959. Pelagic fish eggs and larvae of Long Island Sound. In Oceanography of Long Island Sound, p. 95-124. Bull. Bingham Oceanogr. Collect., Yale Univ. 17(1).

SMITH, W. G.

- 1973. The distribution of summer flounder, *Paralichthys* dentatus, eggs and larvae on the continental shelf between Cape Cod and Cape Lookout, 1965-66. Fish. Bull., U.S. 71:527-548.
- SUTHERLAND, D. F.
 - 1963. Variation in vertebral numbers of juvenile Atlantic menhaden. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 435, 21 p.

TAGATZ, M. E., AND D. L. DUDLEY.

1961. Occurrence of marine fishes at four shore habitats near Beaufort, N.C., 1957-60. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 390, 19 p.

WARFEL, H. E., AND D. MERRIMAN.

- 1944. Studies on the marine resources of southern New England. I. An analysis of the fish population of the shore zone. Bull. Bingham Oceanogr. Collect., Yale Univ. 9(2), 91 p.
- WHEATLAND, S. B.
 - 1956. Pelagic fish eggs and larvae. In Oceanography of Long Island Sound, 1952-1954, p. 234-314. Bull, Bingham Oceanogr. Collect., Yale Univ. 15.
- WILKENS, E. P. H., AND R. M. LEWIS.
 - 1971. Abundance and distribution of young Atlantic menhaden, *Brevoortia tyrannus*, in the White Oak River estuary, North Carolina. Fish. Bull., U.S. 69:783-789.

APPENDIX TABLE-RV Dolphin 1965-66 ichthyoplankton survey. Data associated with Gulf V catches of Atlantic menhaden larvae.

CRUI SE	TOW	*********** L/ NUMBER		TOW START	LIGHT	WATER	***]	TEMPE	FATURE	(°C)	***	THERMOO	LINE	SAL INITY (0/00)	
STAT. D65 4	ПЕРТН (М)	TOTAL MEAS.	MEAN RANGE	DATE 1965 D M	TIME (FST)	CCND.	DEPTH (M)	RAP	NGE	MEAN	SURF	80T.	DEGREE	DEPTH (M)	RANGE MEAN
C 2	0-15	1 1	19.7	312	2353	N I GHT	27	8.2	8.2	8.2	8.2	8.3	NONE	-	30.0 30.4 30.2
с 1	9- 6	6 6	13.7 15.4 23.8	512	1458	DAY	11	7.7	7.7	7.7	7.7	7.8	NONE		29.0 29.1 29.1
D 2	0- 0	1 1	20.2	512	1557	DAY	18	7.9	8.0	7.9	8.0	7.9	NONE	-	29.0 25.6 29.3
D 4	18-24	1 1	16.9	512	1905	NIGHT	33	٤. 5	8.5	8.5	8.5	8.5	NONE	-	29.4 29.7 29.5
FI	0- 9	2 2	30.0 29.4 30.6	§12	1707	NIGHT	17	7.2	7.3	7.3	7.3	7.0	NONE	-	28.4 28.6 28.5
F 2	0- 9	1 1	23.3	912	1803	NIGHT	17	7.3	7.4	7.3	7.3	7.4	NONE	-	24.3 24.6 24.5
F 4	0-15	1 1	21.0	1012	0119	NIGHT	20	9.1	9.2	9.2	9.2	9.1	NONE	-	30.1 30.2 30.1
G 3	0- 6	6 6	11.9 10.6 13.7	1012	2302	NIGHT	18	9.8	10.0	9.9	10.0	9.5	NONE	-	30.1 30.4 30.3
G 4	0-15	2 ?	12.3 10.2 14.4	1012	2126	NIGHT	29	10.1	10.2	10.2	10.1	10.2	NCNE	-	31.8 32.2 32.0
H 3	0-6	2 2	12.1 10.2 14.0	1112	0812	DAY	23	10.8	10.9	10.5	10.8	10.9	NONE	-	28.3 28.4 28.3
H 4	0-15	2 2	11.9 10.9 12.8	1112	1237	DAY	25	10.7	10.7	10.7	10.7	10.7	NONE	-	28.1 30.0 29.2
J 2	0-3	1 1	17.4	1212	1900	NIGHT	9	9.8	10.3	10.C	9.8	10.8	NONE	-	30.3 30.8 30.6
J 3	0-6	5 5	16.5 13.7 18.9	1212	1030	DAY	16	10.0	10.9	10.5	10.0	10.9	NONE	-	30.5 32.1 31.4
J 4	0- 6	1 1	10.1	1212	0902	CAY	17	10.9	11.0	11.0	10.9	11.0	NONE	-	32.8 32.8 32.8
J 5	0-15	2 2	15.7 15.6 15.8	1212	0537	NIGHT	26	10.8	10.9	10.8	10.9	10.8	NONE	· -	32.5 34.0 33.1
КЗ	0-15	1 1	15.1	1312	0038	NIGHT	25	10.2	10.8	10.3	10.2	10.8	NONE	-	33.3 34.0 33.7
K 4	0-15	7 7	15.3 13.7 19.5	1312	0410	NIGHT	31	11.9	12.0	11.9	12.0	11.9	NONE	-	33.9 34.2 34.0
К4	18-24	3 3	13.6 11.4 15.0	1312	0410	NI GHT	31	11.9	11.9	11.9	12.0	11.9	NONE	-	34.3 34.5 34.5
K 5	0-15	3 3	14.1 13.4 15.1	1312	0607	N I GHT	35	11.3	11.5	11.3	11.5	11.3	NONE	-	32.5 32.9 32.6
11	0-5	1 1	15.2	1312	1939	NIGHT	18	11.3	11.5	11.4	11.3	11.7	NONE	-	33.8 34.6 34.2
13	0-15	1 1	18.3	1312	2152	NIGHT	35	12.1	12.4	12.3	12.4	12.2	NONE	-	34.1 34.2 34.2
13	18-24	7 7	12.5 9.1 15.9	1312	2152	NIGHT	35	12.2	12.2	12.2	12.4	12.2	NONE	-	33.9 34.1 34.0
м 1	0-3	19 18	18.4 12.3 21.3	1412	1838	NIGHT	13	12.4	12.4	12.4	12.4	12.5	NONE	-	34.1 34.4 34.2
M 2	0- 9	79 36	14.2 10.1 13.4	1412	1730	NIGHT	18	12.6	12.7	12.6	12.7	12.6	NONE	-	
м 3	0-15	131 77	10.6 5.1 16.3	1412	1553	DAY	20	12.7	12.8	12.7	12.8	12.7	NONE	-	33.2 34.5 33.6
м 4	0-15	55	12.3 9.5 14.2	1412	1445	CAY	26	13.0	13.1	13.1	13.1	12.8	NONE	-	34.1 34.5 34.2
M 4	18-24	1 1	11.9	1412	1445	DAY	26	12+8	13.0	12.9	13.1	12.8	NUNE		34.2 39.2 34.2
M 5	0-15	57 32	7.5 3.5 10.3	1412	1235	DAY	90	23-1	23.1	23.1	23.1	20.1	NUNE	-	
M 5	18-33	4 4	9.7 7.8 11.5	1412	1235	UAY	90	22.5	23.1	22.8	23-1	20.1	NUNE	-	
N 1	0- 6	55	15.3 12.5 19.0	1512	0005	NIGHT	19	14.3	14.4	14.3	14.4	14.3	NONE	-	34.6 34.8 34.7
N 2	0-15	206 91	6.2 2.9 15.2	1512	0058	NIGHT	24	18.4	18.8	18.5	18.4	19.4	NONE	-	35.1 35.8 35.5
N 3	0-15	10 10	8.2 4.9 11.2	1512	0341	NIGHT	25	17.5	17.5	17.5	17.5	17.8	NONE	-	35.3 36.5 35.8
N 4	0-15	36 32	7.5 4.1 12.7	1512	0520	NIGHT	45	19.1	20.6	20.1	20.6	17.6	NCNE	-	36.3 36.8 36.6
N 4	18-33	21 21	9.1 5.0 11.7	1512	052.0	NIGHT	45	17.6	18.9	18.2	20.6	17.6	NONE	-	36.1 36.2 36.1
N 5	0-15	172 49	8.2 3.9 11.2	1512	0900	CAY	128	20.5	20.5	20.5	20.5	17.0	NONE	-	36.3 36.3 36.3
N 5	18-33	49 45	9.6 5.3 12.7	1512	0900	DAY	128	19.9	20.4	20.2	20.5	17.0	NUNE	-	20.3 30.3 36.3
Ρ4	0-15	99	9.2 7.7 12.0	1512	1630	DUSK	34	22.4	23.2	23.0	23.2	19.3	NONE	-	36.9 37.5 37.1
P 4	19-33	2 2	9.2 8.3 10.1	1512	1630	DUSK	34	19.3	22.3	21.5	23.2	19.3	NONE	-	
P 5	0-15	3 3	9.5 8.7 10.7	1512	1335	DAY	82	25.4	25.4	25.4	25.4	23.5	NONE	-	37.4 37.8 37.6

APPENDIX TABLE-Continued.

~

		*** ***	*** LARVAE ******			TOW			*** TEMPERATURE		(°C)	***			SAL IN ITY		
CRUISE	TOW	NUMB	ER	LENGTHS		START	L I GHT	WATER						THERMOC	LINE	(0/0	0)
STAT.	DEPTH	TOTAL	ME AS .	MEAN RANGE	DATE	TIME	C OND .	DEPTH	RANC	GE	MEAN	SURF.	BOT.	DEGREE	DE PTH	RANGE	MEAN
D66 1	(M)			(MM TL)	1566	(EST)		(M)							(M)		
					DM												
H 2	0-5	2	2	21.1 19.4 22.9	72	0200	NI GHT	16	0.5	C.7	0.6	0.5	0.7	NONE	-	31.6 32.	0 31.8
Н 3	0- 6	1	1	15.5	72	0059	NIGHT	22	1.5	1.6	1.6	1.5	1.6	NONE	-	32.2 32.	4 32.3
J 5	0-15	1	1	23.5	72	1143	DAY	26	3.5	3.6	3.5	3.6	3.5	NONE	-	32.9 33.	0 33.0
K 1	0- 6	3	3	16.8 9.5 29.4	82	0138	NIGHT	15	1.5	1.6	1.5	1.6	1.5	NONE	-	30.9 31.	2 31.1
K 2	0-15	. 4	4	17.3 13.8 24.3	82	0038	NIGHT	25	1.5	1.9	1.6	1.8	2.1	NONE	-	31.2 32.	1 31.6
КЗ	0-15	1	1	17.0	72	2332	NI GHT	22	3.4	3.8	3.5	3.8	3.4	NONE	-	32.6 32.	6 32.6
К б	0-15	1	1	17.9	72	1938	NIGHT	50	14.4	14.8	14.7	14.4	13.2	NONE	-	34.9 35.	1 35.0
ι1	0- 5	6	6	22.3 17.0 29.1	82	0711	DAY	19	2.0	2.4	2.2	2.4	2.0	NONE	-	31.9 31.	9 31.9
12	0-6	4	4	19.6 15.9 28.0	82	0824	DAY	23	3.3	3.4	3.4	3.3	3.4	NONE	-	32.4 32.	4 32.4
15	18-33	1	1	17.0	8 2	1225	DAY	145	12.2	13.2	12.7	14.5	11.1	NONE	-	34.6 34.	9 34.7
L .	1.0 .0 .		•	11.0	υc	1623	DAT	14.5				144)		NONE		J400 J40	J J + + 1
M 1	0-6	3	3	23.6 17.4 27.4	82	1633	DAY	13	3.3	3.4	3.3	3.4	3.3	NONE	-	31.6 31.	6 31.6
M 2	0-6	2	2	18.9 17.7 20.0	82	1726	DUSK	20	3.7	3.8	3.8	3.7	3. 9	NONE	-	31.7 31.	7 31.7
MB	0-6	2	2	16.6 15.8 17.4	82	1822	NIGHT	20	3.9	3.9	3.9	3.9	4.0	NONE	-	32.3 32.	3 32.3
M 5	0-15	2	2	17.2 14.5 19.9	82	2018	N I GHT	139	12.2	17.0	16.0	17.0	10.0	STRONG	9-16	34.0 35.	1 34.7
N 1	0- 6	6	6	20.3 17.5 23.0	92	0034	N I GHT	19	5.5	5.8	5.6	5.5	6.4	NONE	-	31.3 31.	5 31 .4
N 2	0-15	5	5	13.9 11.5 18.0	92	0126	NIGHT	24	7.9	8.6	8.1	7.9	8.6	NONE	-	32.7 33.	1 33.0
N 3	0-15	49	49	13.7 7.1 29.8	92	0218	NIGHT	30	7.7	9.0	8.3	7.7	10-6	NONE	-	32.6 32.	9 32 -8
N 5	0-15	15	15	11.9 5.7 17.5	92	0 509	NIGHT	82	19.2 1	19-4	19.3	19.4	16.6	NONE	-	35.3 35.	5 35.5
N 5	19-33	6	6	11.5 8.6 13.4	9 2	0 50 9	NIGHT	82	18.5	18.8	18.6	19.4	16.6	NONE	-	35.3 35.	4 35 .4
		_	_						· ·								
P 1	0- 6	3	3	14.9 13.6 17.3	ς 2	1337	DAY	16	6.5	6.5	6.5	6.5	7.1	NONE	-	33.5 33.	5 33.5
PZ	0-6	Q	9	21.1 14.6 26.6	92	1244	DAY	17	7.2	7.6	7.4	7.6	6.5	NONE	-	33.2 33.	3 33.3
P 3	0-6	138	108	14.8 6.5 23.9	9 Z	1154	DAY	17	9.1	9.6	9.3	9.6	9.1	NONE	-	33.8 33.	9 33.8
P4	0-15	45	44	12.6 7.1 17.9	92	1033	DAY	31	14.1 1	17.0	15.8	17.0	13.1	WEAK	7-10	34.9 35.	4 35.2
P 5	0-15	21	21	10.1 7.0 16.0	S 2	0848	DAY	60	20.0 2	20.0	20.0	20.0	17.8	NONE	-	35.5 35.	6 35.5
P 5	19-33	5	5	10.5 6.5 15.4	92	0848	DAY	60	19.6 1	19.9	19.8	20.0	17.8	NONE	-	35.4 35.	5 35.5
066 3	(M)			(MM TL)	1966 D M	(EST)		(M)							(M)		
5 L	0-6	1	1	29.4	16 4	0825	CAY	19	8.9	8.9	8.9	8.9	8.5	NONE	-	31.8 31.	8 31.8
K 1	0- 6	2	2	27.3 25.3 29.3	194	1528	DAY	17	10.3	LO.4	10.4	10.3	10.4	NONE	-	31.0 31.	4 31.2
L 1	0- 5	1	1	25.0	20 4	0635	DAY	17	9.6 1	10.7	10.1	10.7	9.2	NONE	-	30.3 30.	7 30.4
M 1	0- 6	12	12	22.7 20.6 24.7	204	1001	DAY	16	11.3 1	11.6	11.5	11.6	11.0	NONE	-	30,1 30.	6 30.3
NI	0-15	3	3	15.2 14.1 17.0	20 4	1 753	DAY	21	10.7 1	12.2	10.9	12.2	10.7	WEAK	0-4	32.2 32.	6 32.4
N 2	0-6	1	1	14.0	20 4	1851	NIGHT	22	11.7	11.8	11.8	11.8	11.9	NONE	-	32.1 32.	1 32.1
N 3	0-15	ā	9	15.0 11.0 17.4	20 4	1 94 8	NIGHT	29	9.9 1	12.5	11.3	12.2	9.9	STRONG	6-10	31.7 32.	2 32.0
N 3	18-24	4	4	15.3 14.4 16.0	20 4	1948	NIGHT	29	9.9	10.0	10.0	12.2	9.9	STRONG	6-10	32.1 33.	9 32 .7
N 4	0-15	i	j	19.0	20 4	2125	NI GHT	49	20.9	21.0	21.0	21.0	18.5	NONE	_	35.5 35-	6 35.6
		-	-		•			• *									

FISHERY BULLETIN: VOL. 73, NO. 2

		** * * * * *	፡≄ቱ ኒለ	RVAE *	*******		TOW			*** TEMPE	RATURE	(°C) ***			SAL IN ITY
CRUTSE	тоу	NUMBE	R	LE	NGTHS		START	LIGHT	WATER				THERMOC	LINE	(0/00)
STAT.	DEPTH	TOTAL	MEAS.	MEAN	RANGE	DATE	TIME	COND.	DEPTH	RANGE	MEAN	SURF. BOT	DEGREE	DEPTH	RANGE MEAN
D66 5	(M)			(M!	M TL)	1966	(EST)		(M)					(M)	
						DM								•••••	
12	0- 6	1	1	25.0		21 5	0505	DAY	14	13.7 15.2	14-3	15.2 13.5	WEAK	3-4	28-4 31-2 30-0
.1.3	0- 6	ĩ	ĩ	25.0		21 5	0547	DAY	19	13.9 16.9	15.3	16.9 13.0	STRONG	1-5	25.9 30.7 28.6
0.	.,	•	•				••••	DA.		1307 1007		1007 1500	511040		2787 3081 2040
K 1	0- 6	1	1	26.0		21 5	2119	NIGHT	18	12.8 16.3	14.4	16.3 11.8	STRONG	1- 6	29 .7 30.4 30.1
		-	-			/				1000		1005 1100	51110110		
D66 7	(4)			(M	M T1 1	1966	(EST)		(M)					(M.)	
340				• • •		D M	(10)		,						
FI	0-3	1	1	13.7		29 6	0705	DAY	14	15.8 17.1	16 - 4	17.1 14.7	NONE	-	32.0 32.1 32.0
		-	-	12 .		2,0	0,00	0A.	• •		10.01		HOAL		52.00 5201 52.00
E 1	0- 6	11	11	9.5	7.8 14.4	28 6	0833	DAY	17	18.5 18.5	18.5	18 5 18 5	NONE	_	30 9 30 9 30 9
F 2	0- K	2	5	8 ๊ก	8.0 8 1	28 6	0017	DAY	24	18 5 18 7	18 6	18 7 14 9	NONE	_	30 3 30 4 30 5
· 6	0 0	4	2	0.0	0.0 0.1	20 0	0 717	DAT	24	10.5 10.7	1040	1041 1447	acac		30.33 30.83 30.9
D661.0	(4)			7 M	м ті і	1966	(EST)		6 M N					/M 3	
0001-0						1.00	12317		1,517					(11)	
81	0-15	1	1	5 6		6 9	1240	DAV	20	17 5 19 5	17 7	10 5 17 5	NONE	_	20 1 20 3 20 3
01	017	1	1	J •0		0 0	1477	UAT	20	11. 10. 1	T1 # 1	10.5 1755	NUNE	-	30 •1 30•3 30•2
C 1	0- 6	3	2	9 6	91 01	<u>د د</u>	7262	NICHT	10	10 8 20 6	20 5	20 6 12 2	STRONG	5-12	30 6 30 9 30 7
r 2	0-15	ĩ	,	77	001 701	70	0027	NICHT	20	12 2 20.0	10 3	20.0 12.03	JIKUNU	5-10	30 4 30 9 30 7
c 2	0-15	2	2		0 2 10 2	7 0	0037	NICHT	20	16 5 20+2	10.2	20.2 3.0	REAR CTRONG	3-19	30.0 30.8 30.7
1. 5	0-15	2	2	9.5	9.5 10.5	18	0139	NIGHT	32	14.5 20.5	10.0	20.5 1.9	STRUNG	11-22	30.6 30.7 30.7
D E	0-15	,		10 4			1616	CAV		20 1 22 2	71 E		CTRONC	14.10	
0,	0-15	1	1	10.0		0 0	1919	LAT	51	20.1 22.02	21.00	22.02 0.0	STRONG	14-14	30.9 31.0 30.9
D6612	(14)			f MI	M T13	1066	15571		6 M 1					(14)	
00017	())			1 PH	1.1	1900 D M	11311		(ri)					(1)	
A 2	0-15	,	,	• •		1510	0.200	NICHT	20	14 0 14 2	14 2	14 2 12 0	NONE		
	19-26	4	1	0.0 6 6	. 1 . 7	1510	0209	NIGHT	30	17 0 14.5	19.4	14.3 12.9	NUNE	-	
A 4	0-15		*	7.7	4.1 4.7	1510	0207	DAV	30	10-2 10-7	14 3	14.3 12.7	CTD ONC	30 35	
4 4	- 1-5	1	1	7. 7		1910	0015	UAI	47	14+2 14+3	14 • 2	14.5 10.1	STRUNG	50-55	51.0 51.5 51.2
0 2	0-15	15	16	12 7	4 0 10 7	1410	1027	NICHT	25	12 5 15 1	16 2	15 1 12 7	NONE	_	20 0 21 2 21 1
87	19-17	17	19	5 7	3 4 9 3	1410	1027	NICHT	35	12 7 12 6	12 2	15 1 1207	NONE	_	30 .7 31.3 31.1
0 2 7 0	0-15	24	22	11 7	5.0 0.2	1410	2024	NICHT		16 7 16 1	16 0	15 7 0 0	NONE	25.20	
	10-22	24	27	11.1	4.4 10.1	1410	2034	NIGHT	45	12.1 10.1	10.0	12.1 9.0	REAN	25-39	31.63 31.63 31.4
20	10-00	21		2.9	4.0 11.1	1410	2034	NIGHT	45	12.9 15.9	14.5	10.1 9.8	WEAK	25-39	31.4 31.0 31.3
84	0-15			9.1	1.1 11.5	1410	1306	UAY	60	15.4 15.6	15.4	15.6 8.0	STRUNG	29-42	30.7 31.0 30.9
54	18-33	2	2	4.8	9.7 10.0	1410	1306	DAY	50	13.8 15.5	15.3	15.6 8.0	STRUNG	29-42	30.9 31.6 31.3
8 7	10-15	9	9	13.1	9.3 16.2	1410	1138	LAY	71	14.9 15.2	15.0	15.2 (.4	STRUNG	26-42	30-7 31-0 30-8
45	13-55	4	3	5.5	0.9 9.7	1410	1138	UAY	/1	12.9 14.9	14 . 5	12.2 1.4	STRUNG	26-42	31.0 31.5 31.2
86	0-15	ı	1	9.5		1410	0750	UAY	81	15-1 15-2	15+1	15•Z 9•I	STRONG	53-46	51.5 31.7 31.6
~ ~	0.15	155				1210		0.414	25	16 7 16 0	15 6		C 7 0 0 0 0	10:00	
U Z	0-15	177	55	11.6	5.0 15.2	1310	0912	UAY	25	15. (15. 9	12.8	12.9 11.9	STRUNG	19-23	30.9 31.0 31.0
U.3	9-15	373	153	11.5	1.1 16.2	1310	1007	LAY	31	10.2 10.4	10.5	10.5 10.5	STRUNG	24-30	JI .U JI.Z JL.I
03	18-24	4	4	10.8	9.3 12.2	1310	1007	UAY	31	10.1 10.2	16.2	10.3 10.5	STRUNG	24-30	31.0 31.3 31.Z
C 4	0-15	19	13	11.3	5.4 17.4	1310	1133	DAY	38	15.7 16.0	15.8	16.0 9.1	STRUNG	25-32	30.9 31.0 30.9
Ç 4	18-33	1	0			1310	1133	DAY	38	5.7 15.6	13.6	16.0 9.1	STRONG	25-32	31.0 31.6 31.4

APPENDIX TABLE-Continued.

~

		******** LARVAE ********					TOW			*** TEMPE	RATURE	(°C) ***			SALINITY		
CRUT SE	TOW	NUM	BER	L	EN GT HS		START	LIGHT	WATER				THERMOC	LINE	(0/	00)	
STAT.	DEPTH	TOTAL	MEAS.	MEAN	RANGE	DATE	TIME	COND.	DEPTH	RANGE	MEAN	SURF. BOT.	DEGREE	DEPTH	R ANGE	ME AN	
1100 1 21	CONTOR					10/5	(<i>.</i>			
	(~)			()	19 (L)	1963 M (1	15517		(11)					(8)			
D 1	0- 6	2	2	7.6	5.1 10.2	610	0124	NI GHT	18	17.2 17.3	17.3	17.2 17.5	NONE	-	30.4 30	. 5 30.5	
D 2	0- 5	5	5	6.9	4.4 8.7	610	0213	NIGHT	23	17.0 17.1	17.0	17.1 17.0	NONE	-	30.5 30	.7 30.6	
D 3	0-15	39	33	6.9	4.1 10.1	510	0308	NI GHT	24	16.8 17.0	16.9	17.0 16.8	NONE	-	30.8 30	. 9 30.8	
D 4	0-15	24	17	8.1	4.7 12.8	1210	2336	NIGHT	27	16.3 16.4	16.4	16.4 15.4	NONE	-	30.8 31	.2 31.0	
D 4	18-24	105	41	6.3	4.7 12.8	1210	2336	NI GHT	27	15.4 16.2	15.9	16.4 15.4	NONE	-	31.0 31	.3 31.2	
D 5	0-15	11	10	7.8	5.0 10.0	1210	2204	NIGHT	36	16.5 16.6	16.6	16.6 11.0	WEAK	23-37	31.2 31	.3 31.2	
D 5	18-24	50	50	6.5	3.1 12.5	1210	2204	N I GHT	36	15.5 16.4	16.1	16.6 11.0	WEAK	23-37	31.2 31	.4 31.3	
D 6	0-15	17	17	12.0	9.3 13.7	1210	1801	NIGHT	54	16.4 16.4	16.4	16.4 7.4	STRONG	19-24	31.5 31	.8 31.7	
D 6	18-33	11	11	11.4	9.5 13.0	1210	1801	N I GHT	54	8.3 15.5	10.8	16.4 7.4	STRONG	19-24	31.1 31	.7 31.3	
E 1	0- 6	10	9	7.2	5.6 8.7	510	1 501	CAY	16	17.7 17.9	17.8	17.7 17.9	NONE	-	30.3 30	.6 30.4	
F 3	0-6	6	6	5.9	4.0 10.3	510	1323	CAY	22	17.4 17.4	17.4	17.4 16.9	NONE	-	30.8 30	.9 30-8	
F 4	0-15	3	2	11.5	10.0 13.0	1110	2034	N I GHT	29	16.4 17.2	17.0	17.2 13.C	STRONG	21-28	30.8 31	.3 31.0	
E 5	0-15	476	111	7.2	3.7 12.5	1110	2210	NI GHT	35	16.4 16.6	16.5	16.6 9.0	STRONG	22-31	31.2 31	.4 31.3	
E 5	18-24	563	99	6.6	2.9 13.7	1110	2210	N I GHT	35	15.3 16.4	16.0	16.6 9.0	STRONG	22-31	31.4 31	.4 31.4	
F 6	0-15	66	36	10.4	7.7 13.0	1210	0150	NIGHT	43	15.8 16.2	16.1	16.2 7.9	STRONG	19-24	31.2 31	. 5 31.4	
F 6	18-33	9	9	9.6	4.9 12.2	1210	0150	N I GHT	43	7.9 15.4	10.4	16.2 7.9	STRONG	19-24	30.9 31	.9 31.4	
E 7	18-33	4	4	10.3	10.0 10.5	1210	0352	NIGHT	65	11.0 17.1	15.7	17.2 6.2	STRONG	26-39	31.7 32	.3 32.1	
₣ 4	0-15	4	4	6.2	4.7 6.9	510	0227	N I GHT	22	17.7 18.0	17.8	18.0 17.7	NONE	-	30.8 30	.9 30.8	
F 5	0-15	18	16	6.9	5.0 11.4	410	2151	NIGHT	35	17.4 17.9	17.7	17.9 14.2	WEAK	18-24	30.7 30	.9 30 .8	
F 5	18-24	30	29	7.1	5.0 12.5	410	2151	NIGHT	35	14.9 17.0	16.1	17.9 14.2	WEAK	18-24	30.9 30	.9 30.9	
F 6	0-15	92	43	7.0	5.8 10.2	410	1953	NIGHT	54	16.4 17.3	17.0	17.3 6.8	STRONG	15-23	30.9 31	.2 31.1	
F 6	19-33	٩	6	7.2	6.9 7.6	410	1953	NIGHT	54	7.5 14.4	9.9	17.3 6.8	STRONG	15-23	30.8 31	.3 31.0	
F 7	0-15	426	38	6.6	3.1 8.5	410	1552	DAY	91	17.8 18.2	18.1	18.2 10.2	WEAK	14-42	31.6 31	.9 31.8	
F 7	18-33	2	2	5.7	5.8 7.6	410	1552	DAY	91	10.6 16.8	14.3	18.2 10.2	WEAK	14-42	31.4 31	.7 31.5	
G 3	0-15	1	1	11.6		310	2231	NIGHT	22	18.2 18.3	18.3	18.2 18.3	NONE	-	31.0 31	.0 31.0	
G 4	0-15	2553	116	6.4	2.7 10.5	410	0627	DAY	31	18.1 18.2	18.2	18.2 15.8	NONE	-	31.0 31	.1 31.0	
G 5	0-15	79	37	7.1	2.7 10.3	410	0816	CAY	51	17.4 18.0	17.8	18.0 9.4	STRONG	19-26	30.9 31	.0 30.9	
G 5	18-33	2	2	7.3	7.2 7.4	410	0816	CAY	51	10.9 16.9	12.9	18.0 9.4	STRONG	19-26	31.0 31	.2 31.1	
G 6	0-15	29	24	7.0	3.9 9.7	410	1209	CAY	85	19.1 19.4	19.2	19.1 11.7	STRONG	26-40	31.5 31	.9 31.7	
G 6	18-33	6	5	7.4	6.3 10.3	410	1209	DAY	85	15.9 19.5	18.7	19.1 11.7	STRONG	26-40	31.8 32	.3 32.1	
н 4	0-15	10	10	10.3	8.0 11.3	310	1114	DAY	28	19.3 19.4	19.3	19.3 19.4	NONE	-	30.0 30	.9 30.7	
H 5	0-15	1	1	7.3		310	0950	CAY	39	19.6 19.7	19.7	19.7 14.0	NONE	-	30.8 30	.9 30.9	
Н 5	18-33	5	5	7.4	6.9 8.0	310	0950	DAY	39	16.1 18.6	17.2	19.7 14.0	NONE	-	30.9 31	.1 31.0	
J 2	0-3	2	2	5.9	5.5 6.4	110	1351	DAY	11	21.6 21.6	21.6	21.6 21.2	NONE	-	27.8 29	.1 28.5	
J 3	0-5	2	2	3.9	3.5 4.4	110	1257	DAY	17	21.9 22.0	21.9	22.0 21.8	NONE	-	28.4 28	.8 28.5	
К ?	0-15	2	2	3.6	3.5 3.7	110	0825	DAY	22	21.4 22.0	21.9	22.0 18.9	WEAK	15-21	30.0 30	.7 30.2	
қ 3	0-15	11	10	6.4	4.5 7.7	110	0924	DAY	25	19.9 21.9	21.5	21.9 16.3	WEAK	12-22	29.9 30	.9 30.3	

	**************************************		TOW				*** TEM	PERATURE	(°C) ***			SAL IN ITY			
CRUT SE	TOW	NUMB	ER	LENGTHS		START	L I GHT	WATER				THE RMOCI	LINE	(0	/00)
STAT.	DEPTH	TOT AL	ME AS .	MEAN RANGE	DATE	TIME	COND.	DEPTH	RANGE	MEAN	SURF. BOT.	DEGREE	DEPTH	R ANGE	MEAN
D6614	(4)			(MM TL)	1966	(EST)		(M)					(M)		
					DM										
C 2	0-6	1	1	22.0	312	0645	DAWN	28	9.8 9	•9 9.9	9.8 9.9	NONE	-	32.9 3	3.0 33.0
С 3	0-15	1	1	21.5	312	0537	NIGHT	34	10.1 10	.3 10.1	10.3 10.1	NONE	-	33.0 3	3.1 33.1
n 1	0- 6	2	2	21.7 20.0 23.5	112	1854	NIGHT	14	9.4 9	.4 9.4	9.4 9.3	NONE	-	32.1 3	2.3 32.2
		-	-												
E 1	0-6	5	5	19.9 18.5 20.5	911	2249	NIGHT	11	12.5 12	.6 12.6	12.5 12.8	NONE	-	31.1 3	1.3 31.2
F 1	0-6	1	1	21.0	1111	0602	N I GHT	18	13.5 13	.5 13.5	13.5 13.5	NONE	-	31.4 3	1.8 31.6
F 2	0-6	3	3	20.7 19.5 21.5	1111	0515	NIGHT	20	13.6 14	.3 14.0	13.6 13.9	NONE	-	31.8 3	1.9 31.8
F 3	0-15	2	2	15.2 15.0 15.5	1111	0432	NI GHT	26	14.5 14	•7 14.6	14.7 14.2	NONE	-	32.5 3	2.8 32.6
G 1	0-6	100	55	20.7 17.0 25.0	1111	1604	EAY	10	14.5 15	.0 14.7	15.0 14.3	NONE	-	32.4 3	2.4 32.4
6.2	0-6	5	5	16.5 14.5 18.0	1111	1657	NIGHT	17	14.4 15	.0 14.6	15.0 14.0	NONE		32.6 3	2.6 32.6
63	0-15	5	5	18.6 15-0 24-0	1111	1753	NIGHT	16	15.2 15	.7 15.5	15.6 15.5	NONE	-	32.6 3	2.9 32.8
r. 4	0-15	í	ĩ	5.0	1111	1919	NIGHT	29	15.0 15	.5 15.4	15.4 13.0	NONE	-	32.9 3	3.1 33.1
Č 5	0-15	i	i	9.3	1111	2234	NIGHT	49	14.3 14	.8 14.6	14-8 10-5	STRONG	26-28	33.3 3	3.5 33.4
	517	•	•			1051		• •				0			
н 1	0-6	1	1	15.0	1211	1312	CAY	10	14.7 14	.9 14.8	14.9 14.7	NONE	-	32.0 3	2.2 32.1
н 3	0- 6	1	1	5.7	1211	1041	DAY	25	15.8 15	.9 15.9	15.8 15.3	NONE	-	32.6 3	2.8 32.7
н 4	0-15	2	2	13.7 13.5 14.0	1211	0918	DAY	29	14.9 15	.6 15.2	15.6 14.7	NONE	-	32.8 3	3.4 33.1
45	18-33	2	2	5.3 5.0 5.7	1211	0754	DAY	47	14.0 14	.3 14.2	15.3 14.0	NONE	-	33.8 3	3.9 33.9
н7	0-15	ī	ĩ	19.0	1211	0 5 0 3	NIGHT	134	14.5 15	.1 14.7	14.5 11.2	STRONG	43-52	33.8 3	4.6 34.0
J 2	0- 6	1	1	20.5	1311	0036	NIGHT	10	15.1 15	.3 15.2	15.1 15.2	NONE	-	31.7 3	2.0 31.8
J B	0-6	1	1	10.6	1311	0202	N I GHT	16	15.0 15	.2 15.1	15.2 15.3	NONE	-	32.3 3	2.4 32.4
J 4	0-15	6	6	9.3 7.4 12.5	1411	1348	DAY	22	14.9 15	•0 14.9	14.9 15.0	NONE	-	33.2 3	3.3 33.2
κι	0-6	17	17	15.1 4.4 22.0	1811	0842	DAY	15	14.5 14	.5 14.5	14.5 14.6	NONE		33.2 3	3.3 33.2
K 2	0-15	1	1	12.5	1811	0929	DAY	20	14.1 14	.7 14.4	14.2 14.7	NONE	-	32.3 3	3.8 33.2
× 3	0-15	ĩ	ĩ	6.0	1811	1022	DAY	24	14.7 14	.7 14.7	14.7 14.9	NONE	-	33.6 3	4-0 33-8
× 4	19-24	2	2	11 5 10.6 12 5	1911	0325	NIGHT	33	14.4 14	.6 14.5	14.7 14.5	NONE	-	34 .1 3	4-1 34-1
~ ~	0-15	2	<u>د</u>	12 1	1011	0155	NICHT	27	14 5 14	8 14 7	14.8 13.9	NONE	_	34.2 3	4. 6 36.3
K 2	0-15	L	L	19.1	1011	0199	NEGHT	57	14.9 14		14.0 13.7	NUME		J4 • C J	Lett Let
L 1	0-6	3	3	10.9 10.2 11.9	1711	0838	CAY	21	14.2 14	.4 14.3	14.2 15.1	NONE	-	31.0 3	1.6 31.2
L 2	0-6	2	2	13.7 10.5 17.0	1711	0754	DAY	21	15.0 15	.2 15.1	15.2 15.0	NONE	-	33.3 3	3.5 33.4
ι3	18-24	1	1	11.9	1711	0707	DAY	32	14.8 15	.0 14.9	15.1 15.0	NONE	-	33.3 3	3.8 33.5
м 1	0- 6	43	43	9.7 6.6 14.0	1611	1530	DAY	26	14.8 14	.9 14.8	14.9 14.7	NONE	-	33.4 3	3.5 33.5
N 2	0-6	67	37	8.0 5.0 11.4	1611	1440	DAY	20	14.9 15	.1 15.0	15.1 15.0	NONE	-	33.7 3	3.8 33.7
M 4	0-6	ĩo	10	9.8 6.5 11.4	1611	2339	NT GHT	41	17.5 17	.6 17.5	17.6 17.9	NONE	-	35.0 3	5.1 35.1
						/		•							
N 1	0-6	1	1	10.7	1611	1 0 3 4	CAY	25	16.4 16	.4 16.4	16.4 16.4	NONE	-	34.0 3	4.0 34.0
N 2	0-15	14	14	9.0 4.3 11.4	1611	0937	DAY	26	18.6 18	.8 18.7	18.8 18.9	NONE	-	35.5 3	5.6 35.6
N 3	0-15	3	3	7.2 5.1 11.1	1611	0833	CAY	30	19.3 19	.5 19.4	19.3 19.4	NONE	-	35.6 3	5.8 35.8