NOAA Technical Report NMFS SSRF-763

Climatology of Surface Heat Fluxes Over the California Current Region

Craig S. Nelson and David M. Husby

February 1983

NOAA TECHNICAL REPORTS

National Marine Fisheries Service, Special Scientific Report—Fisheries

The major responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for optimum use of the resources. NMFS is also charged with the development and implementation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, surveillance of foreign fishing off United States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through marketing service and economic analysis programs, and mortgage insurance and vessel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry.

The Special Scientific Report—Fisheries series was established in 1949. The series carries reports on scientific investigations that document long-term continuing programs of NMFS, or intensive scientific reports on studies of restricted scope. The reports may deal with applied fishery problems. The series is also used as a medium for the publication of bibliographies of a specialized scientific nature.

NOAA Technical Reports NMFS SSRF are available free in limited numbers to governmental agencies, both Federal and State. They are also available in exchange for other scientific and technical publications in the marine sciences. Individual copies may be obtained from D822, User Services Branch, Environmental Science Information Center, NOAA, Rockville, MD 20852. Recent SSRF3 are:

- 726. The Gulf of Maine temperature structure between Bar Harbor, Maine, and Yarmouth, Nova Scotia, June 1975-November 1976. By Robert J. Pawlowski. December 1978, iii +10 p., 14 figs., 1 table.
- 727. Expendable bathythermograph observations from the NMFS/MARAD Ship of Opportunity Program for 1975. By Steven K. Cook, Barclay P. Collins, and Christine S. Carty, January 1979, iv +93 p., 2 figs., 13 tables, 54 app. figs.
- 728. Vertical sections of semimonthly mean temperature on the San Francisco-Honolulu route: From expendable bathythermograph observations, June 1966-December 1974, By J. F. T. Saur, L. E. Eber, D. R. McLain, and C. E. Dorman, January 1979, iii +35 p., 4 figs., 1 table.
- 729. References for the identification of marine invertebrates on the southern Atlantic coast of the United States. By Richard E. Dowds. April 1979, iv +37 p.
- 730. Surface circulation in the northwestern Gulf of Mexico as deduced from drift bottles. By Robert F. Temple and John A. Martin. May 1979, iii+13 p., 8 figs., 4 tables.
- 731. Annotated bibliography and subject index on the shortnose sturgeon, Acipenser brevirostrum. By James G. Hoff. April 1979, iii + 16 p.
- 732. Assessment of the Northwest Atlantic mackerel, Scomber scombrus, stock. By Emory D. Anderson, April 1979, iv+13 p., 9 figs., 15 tables.
- 733. Possible management procedures for increasing production of sockeye salmon smolts in the Naknek River system, Bristol Bay, Alaska, By Robert J. Ellis and William J. McNeil. April 1979, iii+9 p., 4 figs., 11 tables.
- Escape of king crab, Paralithodes camtschatica, from derelict pots. By William L. High and Donald D. Worlund. May 1979, iii+11 p., 5 figs., 6 tables.
- 735. History of the fishery and summary statistics of the sockeye salmon, Oncorhynchus nerka, runs to the Chignik Lakes, Alaska, 1888–1966. By Michael L. Dahlberg. August 1979, iv+16 p., 15 figs., 11 tables.
- 736. A historical and descriptive account of Pacific coast anadromous salmonid rearing facilities and a summary of their releases by region, 1960-76. By Roy J. Whale and Robert Z. Smith. September 1979, iv +40 p., 15 figs., 25 tables.
- 737. Movements of pelagic dolphins (*Stenella* spp.) in the eastern tropical Pacific as indicated by results of tagging, with summary of tagging operations, 1969-76. By W. F. Perrin, W. E. Evans, and D. B. Holts. September 1979, iii +14 p., 9 figs., 8 tables.
- 738. Environmental baselines in Long Island Sound, 1972-73. By R. N. Reid, A. B. Frame, and A. F. Draxler. December 1979, iv +31 p., 40 figs., 6 tables.

- 739. Bottom-water temperature trends in the Middle Atlantic Bight during spring and autumn, 1964–76. By Clarence W. Davis. December 1979, iii +13 p., 10 figs., 9 tables.
- 740. Food of fifteen northwest Atlantic gadiform fishes. By Richard W. Langton and Ray E. Bowman. February 1980, iv +23 p., 3 figs., 11 tables.
- 741. Distribution of gammaridean Amphipoda (Crustacea) in the Middle Atlantic Bight region. By John J. Dickinson, Roland L. Wigley, Richard D. Brodeur, and Susan Brown-Leger. October 1980, vi+46 p., 26 figs., 52 tables.
- 742. Water structure at Ocean Weather Station V, northwestern Pacific Ocean, 1966-71. By D. M. Husby and G. R. Seckel. October 1980, 18 figs., 4 tables.
- 743. Average density index for walleye pollock, Theragra chalcogramma, in the Bering Sea. By Loh-Lee Low and Ikuo Ikeda. November 1980, iii+11 p., 3 figs., 9 tables.
- 744. Tunas, oceanography and meteorology of the Pacific, an annotated bibliography, 1950-78, by Paul N. Sund. March 1981, iii +123 p.
- 745. Dorsal mantle length-total weight relationships of squids *Loligo pealei* and *Illex illecebrosus* from the Atlantic coast of the United States, by Anne M. T. Lange and Karen L. Johnson. March 1981, iii +17 p., 5 figs., 6 tables.
- Distribution of gammaridean Amphipoda (Crustacea) on Georges Bank, b.
 John J. Dickinson and Roland L. Wigley. June 1981, iii +25 p., 16 figs., 1 table.
- 747. Movement, growth, and mortality of American lobsters, Homarus americanus, tagged along the coast of Maine, by Jay S. Krouse. September 1981, iii+12 p., 10 figs., 8 tables.
- 748. Annotated bibliography of the conch genus Strombus (Gastropoda, Strombidae) in the western Atlantic Ocean, by George H. Darcy. September 1981, iii +16 p.
- Food of eight northwest Atlantic pleuronectiform fishes, by Richard W. Langton and Ray E. Bowman. September 1981, iii +16 p., 1 fig., 8 tables.
- 750. World literature to fish hybrids with an analysis by family, species, and hybrid: Supplement 1, by Frank J. Schwartz. November 1981, iii +507 p.
- 751. The barge Ocean 250 gasoline spill, by Carolyn A. Griswold (editor). November 1981, iv +30 p., 28 figs., 17 tables.
- 752. Movements of tagged summer flounder, *Parallichthys dentatus*, off southern New England, by F. E. Lux and F. E. Nichy. December 1981, iii+16 p., 13 figs., 3 tables.
- 753. Factors influencing ocean catches of salmon, *Oncorhynchus* spp., off Washington and Vancouver Island, by R. A. Low, Jr. and S. B. Mathews, January 1982, by +12 p., 6 figs., 7 tables

Climatology of Surface Heat Fluxes Over the California Current Region

Craig S. Nelson and David M. Husby

February 1983

U.S. DEPARTMENT OF COMMERCE

Malcolm Baldrige, Secretary

National Oceanic and Atmospheric Administration John V. Byrne, Administrator

National Marine Fisheries Service

William G. Gordon, Assistant Administrator for Fisheries

The National Marine Fisheries Service (NMFS) does not approve, recommend or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to NMFS, or to this publication furnished by NMFS, in any advertising or sales promotion which would indicate or imply that NMFS approves, recommends or endorses any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchased because of this NMFS publication.

CONTENTS

Year to since	
Introduction	2
Empirical heat exchange formulae	
Error analysis	
Dependence of heat exchange estimates on computational methods	
Exchange processes computed from monthly mean atmospheric properties	11
Effects of variable exchange coefficients	14
Sea level ocean-atmosphere properties and their seasonal variability	14
Distribution of coastal stratus in relation to coastal upwelling.	
Seasonal variation of ocean-atmosphere heat exchange processes.	27
Spectral characteristics of heat exchange processes	
Summary and conclusions	
	31
	33
Charts 1-12. Monthly incident solar radiation.	
	46-5
Charts 25-36. Monthly latent heat flux	58-6
Charts 37-48. Monthly sensible heat flux	70-8
Charts 49-60. Monthly net heat exchange	82-9
	94
Appendix III. Monthly mean surface atmospheric properties	125
Figures	
1. Chart of the west coast of the United States showing the grid of 1-degree squares used for summaries of heat	~
fluxes.	2
2. Distribution of surface meteorological observations per 1-degree square	3
3. Standard errors of the means and numbers of observations for July.	0
4. Standard errors of the means and numbers of observations for December.	1
5. Linear regression of net heat exchange computed from mean monthly properties, Q _N (M), versus that computed	
The state of the s	11
6. Spatial comparison of net heat exchange values for July.	
7. Spatial comparison of net heat exchange values for December.	13
(1)	15
9. The effect of a variable exchange coefficient (C_E) on computations of latent heat flux (Q_E) for December	16
10. Mean monthly sea level pressure over the eastern North Pacific and west coast of North America during Feb-	
ruary, May, August, and November.	17
11. Long-term composite monthly windspeed distribution for June.	
12. Long-term composite monthly windspeed distribution for December.	19
and the same and t	20
and the same and t	21
15. Schematic diagram of typical summer stratus cloud boundary, sea level pressure, and sea surface temperature	
	22
16. Monthly anomalies of low cloud amount for lat. 40°N, 37°N, 33°N, 30°N, and 27°N at the coast and 10°	
	23
and the state of t	24
18. Mean cloud cover over the North Pacific Ocean on a 2.5° grid based on nephanalyses from meteorological	
	25
19. Mean annual cycles of heat exchange processes at lat. 50°N, 40°N, 34°N, and 27°N at the coast and 10°	100.00
offshore.	26
The state of the s	28
21. Power and coherence spectra of monthly mean net heat exchange estimates for 1950-72.	29
Table	
1. Monthly values of coefficient of determination and slope of regression line for linear regressions between heat exchange components estimated from monthly mean atmospheric properties, and those computed from indi-	

vidual reports....

Climatology of Surface Heat Fluxes Over the California Current Region

CRAIG S. NELSON and DAVID M. HUSBY1

ABSTRACT

Historical surface marine weather observations are used to compute large-scale atmosphere-ocean heat exchange components over the California Current region. Heat exchange components are summarized by 1° square areas and long-term months, and major features of the monthly distributions are described. The accuracy of the derived air-sea interaction variables and methods of computation are discussed.

The region off the west coast of the United States and Baja California is characterized by net annual heat transfer from atmosphere to ocean. Net oceanic heat gain reaches a maximum during summer off Cape Mendocino. Near the coast, surface heat flux is determined by a balance between incoming solar radiation and effective back radiation. In the offshore regions, high cloudiness reduces the magnitude of the short-wave radiative flux, and latent heat flux produces the largest heat loss. The principal seasonal and spatial variations in air-sea heat transfer are a consequence of coastal upwelling which contributes to relatively low cloudiness and high incident solar radiation near the coast, suppression of evaporative heat loss, and reversal of the sensible heat flux. Simplified heat budget calculations demonstrate the importance of advective processes in maintaining the seasonal heat balance in coastal upwelling regions. Nonseasonal fluctuations are evident in time series of heat exchange processes, but low frequency components are not well described by the surface marine data used in this study.

INTRODUCTION

Eastern boundary current regions, such as the area off the west coast of the United States and Baja California, are characterized by high organic production which supports large stocks of commercially important fishes, e.g., Pacific sardine, Sardinops sagax; northern anchovy, Engraulis mordax; and Pacific mackeral, Scomber japonicus. High productivity is favored by vertical and horizontal transfer of nutrients and by a shallow thermocline that typically lies above the compensation depth in these temperate zones. Wind-forced divergence of surface flow is the principal driving mechanism for vertical nutrient exchange near the coast (Wooster and Reid 1963). Thermohaline processes modify the density structure and vertical stability of the upper ocean and partially condition these waters for high primary productivity. Internal readjustment of mass, in response to both thermal and wind forcing processes, may contribute to large-scale changes in circulation offshore and may alter the normal seasonal patterns of alongshore flow near the coast.

Comparative studies of surface circulation and reproductive strategies of pelagic fish stocks in the California Current suggest that nonseasonal fluctuations in atmosphere-ocean exchanges of momentum, heat, and mass lead to wide variations in recruitment to coastal fish stocks of the region (Parrish et al. 1981). Anomalous wind forcing may adversely affect larval survival by inducing loss of epipelagic eggs and larvae through strong seaward surface transport. Recent laboratory and field experiments have also suggested that reproductive success of the northern anchovy is sensitive to dispersion of food strata by wind mixing events during early larval feeding (Lasker 1978). The corollary implies that a precondition for enhanced larval survival may be strong vertical stability in the upper water column and the absence of vigorous mechanical wind mixing at the surface. Because stability is strongly affected by ther-

mohaline processes, analyses of seasonal and nonseasonal atmosphere-ocean heat exchange processes may provide valuable indices to map favorable areas for larval survival.

Effects of climatic variability on stock recruitment have been observed in pelagic species in other eastern boundary currents, the North Sea, and the North Atlantic (Cushing 1975). Climatic change may be in the form of long-term fluctuations or year-to-year differences in the atmospheric forcing of the ocean. An important first step in modeling the fisheries-environment relationships in the California Current region is to determine the normal seasonal and spatial variability of the atmospheric forcing processes from which changes can be measured.

The California Current flows equatorward along the west coast of the United States between a cell of high atmospheric pressure to the west and a continental thermal low located over central California. Seasonal variations in the California Current appear to be related to fluctuations in wind stress and wind stress curl (Munk 1950; Reid et al. 1958; Hickey 1979). Nelson (1977) described the seasonal and spatial variations in wind stress and wind stress curl for the area off the west coast of the United States and Baja California. In addition to the wind-driven component of flow, a complete description of the California Current System must include the effects of atmosphere-ocean exchanges of heat and mass (evaporation – precipitation) on upper ocean circulation.

Summaries of large-scale heat exchange processes over the California Current have been made by Roden (1959) and Clark et al. (1974) based on monthly mean atmospheric properties within 5° latitude-longitude quadrilaterals. Wyrtki (1965) discussed the average annual values of heat exchange over the North Pacific Ocean north of lat. 20°S, computed from 2° square monthly mean atmospheric properties. The climate and heat exchange in a coastal upwelling region adjacent to the Pacific Northwest have been described by Lane (1965), who analyzed 11 yr of surface marine weather observations and computed monthly values of heat exchange components from 1953 to 1962. These summaries described the gross features of the large-scale heat exchange proc-

¹Southwest Fisheries Center Pacific Environmental Group, National Marine Fisheries Service, NOAA, c/o Fleet Numerical Oceanography Center, Monterey, CA 93940.

esses and characterized the region off the west coast of North America as an area of net annual oceanic heat gain. However, previous studies have not provided sufficient spatial resolution to delineate the critical areas of surface heat flux within the California Current region.

In this report we present the long-term climatological monthly mean distributions of heat exchange across the air-sea interface based on a summarization of historical surface marine weather observations over the California Current region. This study differs from previous work for this area by calculating monthly mean values on a 1° latitude-longitude grid and by computing the heat exchange components from individual surface marine weather reports archived in the National Climatic Center's (NOAA, Environmental Data and Information Service) Tape Data Family-11 (TDF-11). Roden (1974) evaluated the surface radiative and turbulent heat fluxes on a 1° latitude-longitude grid. However, Roden's distributions were derived from monthly mean surface temperature and wind analyses and satellite cloud cover data based on a 5° latitude-longitude grid and interpolated to the finer mesh grid. We used standard bulk aerodynamic formulae, referred to a neutrally stable atmospheric boundary layer (Malkus 1962), to evaluate the evaporative and conductive heat fluxes. A separate analysis was performed to evaluate the dependence of these flux computations on the turbulent exchange coefficients as functions of windspeed and atmospheric stability. The methods are similar to procedures employed by Bunker (1976) and Hastenrath and Lamb (1978) for investigations of surface heat flux in the North Atlantic and in the tropical Atlantic and eastern Pacific Oceans, respectively. The distributions of heat exchange components described in this report will provide basic input data for a future simulation model of large-scale variations in the California Current ecosystem.

PROCESSING OF DATA

Surface marine weather observations archived in the TDF-11 file consist of weather reports from teletype messages, ship logs, published ship observations, ship weather reporting forms, and various punched card decks obtained from foreign meteorological services. The sources of data and periods of coverage are tabulated in the TDF-11 documentation² and in Hastenrath and Lamb (1978). Over 1 million reports are within the California Current region and date from the mid-19th century through 1972. Individual reports were compiled by 1° squares within the geographical area outlined in Figure 1. The data grid extends from lat. 21°N to 50°N and parallels the coastline of British Columbia, the western United States, and Baja California. The grid extends 10° of longitude in the offshore direction, a distance ranging from 1,040 km at lat. 21°N to 717 km at lat. 50°N. Each 1° square is centered on a whole degree of latitude and longitude. Approximately 25% of the total available reports contain positions recorded to the nearest whole degree of latitude and longitude. The grid orientation used in this study reduces spatial bias which might be introduced by summarizing the data according to the more conventional Marsden square numbering

The observations contained in the TDF-11 reports vary markedly in methods and precision of measurement due to the changes in instrumentation and sampling techniques over the considerable time period covered by the data base. An individual surface weather report was used in the calculation of the heat exchange processes only if it contained all the properties needed to compute

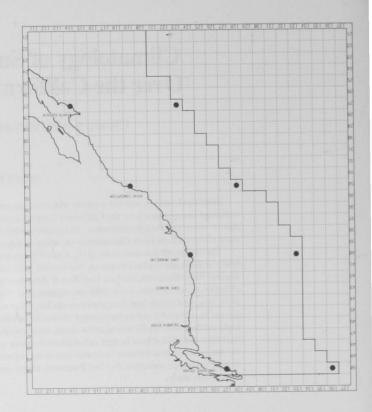


Figure 1.—Chart of the west coast of the United States showing the grid of 1° squares used for summaries of the surface heat fluxes. Large dots indicate squares for which the annual cycles of heat exchange processes are displayed in Figure 19.

the radiative and turbulent heat fluxes. Values for surface pressure, $P(\mathrm{mbar})$, sea surface temperature, $T_s({}^{\circ}\mathrm{C})$; air temperature, $T_s({}^{\circ}\mathrm{C})$; wet-bulb or dewpoint temperature, T_w or $T_s({}^{\circ}\mathrm{C})$; windspeed, $U_{10}(\mathrm{kn})$; and total cloud amount, $C(\mathrm{oktas})$, were extracted from the TDF-11 file and quality controlled with a single pass editor to remove gross errors. Windspeed and cloud amount were converted to units of meters per second and tenths before incorporating these variables in the heat exchange formulae.

A total of 560,210 reports were accepted for the heat exchange calculations. These data amounted to 57% of the available reports. Approximately 38% of the reports were rejected because one or more of the surface meteorological observations were missing. An additional 3-5% of the reports were deleted because of duplicate reports and errors in position or because observed or derived variables could not pass specified climatic checks. An entire report was removed if surface observations exceeded the following extreme value limits: pressure (P) < 945 mbar or > 1,055 mbar; windspeed $(U_{10}) > 100 \text{ m/s}$; air temperature $(T_a) < -10^{\circ}\text{C}$ or $> 40^{\circ}\text{C}$; wet-bulb temperature $(T_w) < -5$ °C or > 40 °C; sea temperature $(T_s) < -2$ °C or >35°C; and air-sea temperature difference $(T_a-T_s)<-30$ °C or >30°C. Wet-bulb and dewpoint temperatures were constrained to be less than or equal to the air temperature, and a valid estimate for total cloud amount (C), i.e., between 0.0 and 1.0, was required to accept the report. Cloud observations originally encoded as 9 (oktas) in the TDF-11 file indicated that the sky was obscured or cloud amount could not be determined. Consequently, these reports were also rejected. As a result of the editing procedures, the distributions of surface heat fluxes (Appendix I) and tables of monthly mean surface atmospheric properties (Appendix III) presented in this report are based on a common set of weather observations collected during the more restricted period from 1921 to 1972.

²National Climatic Center, Tape Data Family 11, NOAA/EDIS/NCC, Asheville, NC 28801.

Empirical Heat Exchange Formulae

The net heat exchange across the sea surface, Q_N , is the sum of the direct and diffuse radiation from sun and sky reduced by cloud cover and sea surface albedo, Q_S , the net long-wave or effective back radiation, Q_B , the latent heat flux, Q_E , and the sensible heat flux, Q_C , as expressed in Equation (1):

$$Q_N = Q_S - Q_B - Q_E - Q_C . \tag{1}$$

Few direct measurements of radiative and turbulent heat fluxes have been made at sea. Observations of short-wave, long-wave, and net long-wave radiation have been analyzed by Tabata (1964), Charnell (1967), Reed and Halpern (1975), Reed (1977), and Simpson and Paulson (1979) for widely separated locations in the eastern and central North Pacific Ocean. Friehe and Schmitt (1976) and Anderson and Smith (1981) have reviewed the few available direct eddy flux measurements of sensible and latent heat. Because direct measurements of air-sea heat transfers are not routinely available over the ocean, the radiative and turbulent heat fluxes are commonly parameterized by empirical equations which incorporate empirically determined coefficients and regularly observed atmospheric properties at the sea surface and at some standard height above the sea surface. All empirically derived heat exchange components discussed in this report are expressed in units of watts per square meter.

Net incoming short-wave radiation from sun and sky, corrected for cloud cover and sea surface albedo, was calculated according to the following equation:

$$Q_s = (1 - \alpha)Q_0 (1 - 0.62C + 0.0019h) \tag{2}$$

where α is the fraction of incoming radiation reflected from the sea surface, C is the observed total cloud amount in tenths of sky covered, and h is the noon solar altitude in degrees. The direct and diffuse radiation from a cloudless sky, Q_0 , was obtained from an harmonic analysis of the values tabulated in the Smithsonian Meteorological Tables (List 1949) for an atmospheric transmission coefficient of 0.7 (Seckel and Beaudry 1973). Reed (1977) determined that estimates of clear-sky insolation computed from the Seckel and Beaudry formula differed from measurements of short-wave radiation under cloudless skies by 4% or less.

The reduction of solar insolation due to the presence of clouds has been estimated by various formulae ranging from linear (Kimball 1928) to cubic functions (Laevastu 1960) of total cloud amount, regardless of cloud type, or by relationships expressing a dependence on both cloud amount and cloud type (Lumb 1964; Seckel and Beaudry 1973). The linear cloud correction formula suggested by Reed (1977) was adopted in this study. The total cloud amount reports in the TDF-11 file represent visual estimates of the fraction of the celestial dome obscured by clouds. Such highly subjective observations frequently contain significant error and may not warrant using higher order cloud correction formulae.

The linear cloud correction in Equation (2) is appropriate for cloud cover ranging from 0.3 to 1.0. The reduction in insolation was neglected for cloud amounts < 0.25 (i.e., 2 oktas), a procedure recommended by Reed (1977), who also indicated that this formula results in a random error of estimate less than $\pm 10\%$ for estimates of monthly mean insolation and $\pm 20\%$ for weekly means. Reed's linear correction is similar to a formula derived by Tabata (1964) which was shown to give excellent agreement with radiation measurements at Ocean Weather Station "PAPA" (OWS-P) at lat. 50°N, where stratus type clouds predominate. Simpson

and Paulson (1979) compared observations of incident solar radiation with predictions based on empirical formulae and demonstrated that Lumb's (1964) formula, which requires very reliable hourly observations of cloud amount and cloud type, was superior to Reed's linear correction formula for predictions averaged over 11 d. Predictions based on Reed's formula overestimated the 11-d mean incident solar radiation by 6%. The 11-d mean was 102.5 W/m², and the root-mean-square deviation between observations and predictions over the same 11 d, amounted to 16.7 W/m². Although cloud type observations are included in surface marine weather reports, we did not consider the additional cloud type information in the TDF-11 file to be sufficiently reliable to incorporate Lumb's more accurate formula in calculations of incident solar radiation.

Net short-wave radiation reaching the sea surface is the difference between incident solar radiation and the radiation reflected from the sea surface. Sea-surface albedo, α , was extracted from tables published by Payne (1972), as a function of atmospheric transmittance and mean daily solar altitude. Transmittance values were calculated by reducing the clear-sky atmospheric transmission coefficient of 0.7 used in this report by the linear cloud correction factor adopted from Reed (1977). In our calculations, albedo ranged from 0.04 in low latitudes during summer under cloudless skies to between 0.20 and 0.30 in higher latitudes during winter.

Effective back radiation is the difference between the outgoing long-wave radiation from the sea surface, proportional to the fourth power of the absolute sea surface temperature, and the incoming long-wave radiation from the sky, which depends on the water vapor content of the atmosphere and the type, density, and height of clouds. In this report we have adopted the modified Brunt equation (Brunt 1932) with the empirical constants of Budyko (1956) and the linear cloud correction formula of Reed (1976) to compute the net long-wave radiation:

$$Q_B = 5.50 \times 10^{-8} (T_S + 273.16)^4 (0.39 - 0.05e_a^{1/2}) (1 - 0.9C).$$
 (3)

The atmospheric vapor pressure, $e_a({\rm mbar})$, was computed from a formula given by List (1949:366) using the observed surface pressure, P, air temperature, T_a , and wet-bulb temperature, T_w . If any of the required variables were missing, but the dewpoint temperature, T_d , was present in the surface weather report, or if the archived wet bulb temperature was derived from a reported dewpoint temperature, as in TDF-11 Decks 110, 119, 185, 187, 196, and 281, then atmospheric vapor pressure was computed as the saturation vapor pressure at the dewpoint temperature using an integrated form of the Clausius Clapeyron equation (Murray 1967). In fewer than 12% of the reports, atmospheric vapor pressure was computed from the dewpoint temperature.

In previous studies of the large-scale surface heat flux in the eastern and central North Pacific Ocean (Roden 1959; Seckel 1970; Clark et al. 1974), effective back radiation was computed from the Berliand (Budyko 1956) formula which includes a nonlinear cloud factor and an additional term based on the air-sea temperature difference. Reed and Halpern (1975) demonstrated that the Berliand formula produces systematically higher values than those computed from the Brunt equation. Their estimates of net long-wave radiation predicted by Equation (3) were approximately 10 W/m² greater than measured daily mean values of 60-65 W/m² for two sites off the Oregon coast. Simpson and Paulson (1979) suggested that the formulae of Brunt and Berliand are equally satisfactory and may be used to predict daily values of net long-wave radiation with an absolute accuracy of 20 W/m².

The linear cloud factor in Equation (3) is appropriate for low stratocumulus clouds. Reed (1976) proposed an alternate linear correction (1–0.7C) which is more suitable for the higher clouds typical of the tropics. However, we could not discern any significant difference in seasonal cloud cover, by cloud type, which would allow us to use the alternate cloud factor in the lower latitudes of the study region.

The bulk aerodynamic formulae for turbulent fluxes of latent and sensible heat across the air-sea interface in a neutrally stable atmospheric boundary layer (Kraus 1972) can be expressed in the forms:

$$Q_{E} = \rho_{a} L C_{E}(q_{0} - q_{10}) U_{10}$$
 (4)

and

$$Q_{C} = \rho_{a} C_{p} C_{H} (T_{s} - T_{a}) U_{10}. \tag{5}$$

In these equations, ρ_a is the density of air, L is the latent heat of vaporization, c_p is the specific heat of air, C_E and C_H are experimentally determined exchange coefficients for water vapor and sensible heat, q_0 and q_{10} are the specific humidities of the air in contact with the sea surface and at 10 m or deck level, $T_s - T_a$ is the sea-air temperature difference, and U_{10} is the windspeed at 10 m or ship anemometer height. The equations are based on the assumption of a "constant flux" layer in the first few tens of meters above the sea surface, which allows the use of routine ship observations rather than measurements at the wave-perturbed, air-sea interface.

The specific humidities required in Equation (4) are not available in surface marine weather reports, but can be approximated from the relationship between specific humidity, q, and vapor pressure, e, expressed in Equation (6):

$$q \approx \epsilon \frac{e}{P}$$
, (6)

where ϵ is a known constant ratio of the molecular weight of moist air to dry air, equal to a value of 0.622. We assumed constant values for density $\rho_a=1.22~{\rm kg/m^3}$, latent heat of vaporization, $L=2.45\times 10^6~{\rm J/kg}$, and specific heat of air, $c_p=1.00\times 10^3~{\rm J/kg}$ per °C, and expressed the empirical exchange coefficients C_E and C_H , referred to the 10 m level, as constants equal to 0.0013 (Kraus 1972; Coantic 1974³; Anderson and Smith 1981). Substitution of these values and Equation (6), with $P=1,013.25~{\rm mbar}$, into Equation (4) yields the following formulae:

$$Q_{E} = 2.38(0.98e_{w} - e_{a})U_{10} \tag{7}$$

$$Q_C = 1.59(T_s - T_g)U_{10}. (8)$$

The saturation vapor pressure over pure water at the sea surface temperature, e_w (mbar), was computed from a formula given by Murray (1967) and multiplied by 0.98 to account for the effect of salinity (Miyake 1952).

Long-term monthly mean heat exchange components were computed from all available reports between 1921 and 1972 within each 1° square area. The appropriate average is defined in Equation (9):

$$(\bar{Q}_S, \bar{Q}_B, \bar{Q}_E, \bar{Q}_C, \bar{Q}_N) = \frac{1}{n} \sum_{i=1}^n (Q_S, Q_B, Q_E, Q_C, Q_N)_i$$

$$(9)$$

where n is the total number of reports within a particular 1° square

area and month. The values $(Q_S, Q_B, Q_E, Q_C, Q_N)_i$ were evaluated according to Equations (2), (3), (7), (8), and (1), respectively. Each individual report was weighted equally. Therefore, the mean values of the heat exchange components for each long-term month and 1° square are formed from a data set which is independent of all other months and squares.

Monthly mean heat exchange fields are presented in Appendix I and include incident solar radiation corrected for cloud cover and reflection, \bar{Q}_s (Charts 1 to 12); effective back radiation, \bar{Q}_B (Charts 13 to 24); latent heat flux, \bar{Q}_E (Charts 25 to 36); sensible heat flux, \bar{Q}_C (Charts 37 to 48); and net heat exchange across the air-sea interface, \bar{Q}_N (Charts 49 to 60). No attempt has been made to smooth the fields, either by removing data which do not appear to fit the distributions or by applying objective smoothing procedures. The mean heat exchange fields were contoured by computer, and "bull'seyes" in the contours, even where they may reflect erroneous data, were left in the charts as indications of the general degree of consistency in the composite distributions.

Error Analysis

Errors associated with the computations of large-scale air-sea interaction transfers described in this report reflect 1) nonconformities in the spatial and temporal distributions of the surface marine observations, 2) inadequacies in data quality, and 3) uncertainties in the empirical heat exchange formulae. Random and systematic errors in the marine surface data primarily result from improper instrument calibration and measurement techniques, and inaccuracies introduced by data reduction at sea or in the process of archiving different data sets in the common TDF-11 format. These sources of error may introduce large variance in the monthly distributions of surface heat flux which might otherwise be interpreted as actual seasonal or nonseasonal variability related to geophysical processes.

The spatial distribution of the TDF-11 reports is known to be biased to coastwise and transoceanic shipping lanes between major seaports. Figure 2 shows the distribution of total numbers of observations per 1° square area used in this study for the calculation of heat exchange processes. The actual numbers of observations per month at each grid point are tabulated in Appendix II and shown as auxiliary data in Figures 3 and 4 for the months of July and December, respectively. The highest density of reports exists in a zone along the coast approximately 300 km wide. The largest numbers of reports are in the area of the Southern California Bight. The numbers of observations per 1° square per month ranged from 7 off the coast of Washington in December to more than 2,400 off Los Angeles in March, August, and October. The influence of merchant vessel traffic between San Francisco and Hawaii is evident in a zone approximately 200 km wide extending offshore, with more than 200 observations/mo per 1° square. Approximately 29% of the 1° squares contained fewer than 50 observations/mo, primarily reflecting the sparse distribution of weather reports between lat. 20°N and 30°N at distances > 400 km from the coast of Baja California. Nearly 40% of the long-term composite means were based on between 100 and 500 observations/mo. More than 500 observations/mo were available in 5% of the 1° squares.

Nonuniform distributions in time introduce additional bias in the sample statistics for the composite monthly mean heat exchange processes. Although all acceptable surface marine weather reports between 1921 and 1972 were used in this study, approximately 70 to 80% of the observations were collected after 1950. Therefore, the long-term mean values more properly represent estimates for

³Coantic, M. 1974. Formules empiriques d'evaporation. Note de la Convention C.N.E.X.O./I.M.S.T. No. 74/951, 24 p., Xerox.

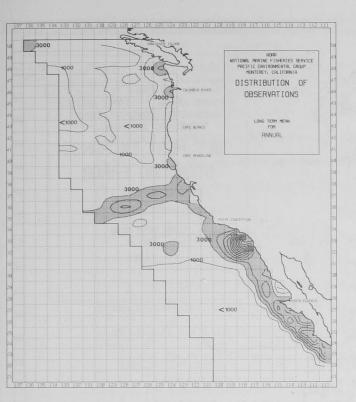


Figure 2.—Distribution of surface meteorological observations per 1° square.

The contour interval is 2,000 observations. Values > 3,000 are shaded.

the subpopulation extracted from the most recent 23 yr of data (1950–72). Seasonal bias is evident in a general tendency for fewer observations during winter than in summer, particularly in the 1° squares containing <100 observations/mo. The long-term means for June and July, for example, are based on approximately twice the number of observations as the mean values for December and January. However, along the shipping route from San Francisco to Hawaii, the summer means are based on from 10 to 20% fewer observations than the winter values. Within the relatively densely sampled coastal shipping lanes, the observations are approximately uniformly distributed in time, and exhibit only a slight tendency for the summer bias.

Inconsistency in the temporal and spatial sampling of surface atmospheric properties may introduce moderate to severe aliasing in the estimates of long-term monthly mean radiative and turbulent heat fluxes. Certain 1° square areas contained a disproportionately large number of observations per month with respect to the surrounding squares (Fig. 2). For example, the means for the 1° squares located at lat. 40°N, long. 124°W; lat. 46°N, long. 124°W; and lat. 48°N, long. 125°W were primarily based on 3hourly surface observations collected at the Blunts Reef, Columbia River, and Umatilla Lightship stations from 1970 to 1972. We noted a greater than order of magnitude increase in the numbers of observations per year, from <100 to more than 1,000, at these locations beginning in 1970. According to Quayle⁴, the lightship data, which may be of questionable quality, were not normally archived in the TDF-11 file and may have been included as the result of special contractual requests for these observations. Additional regions of dense spatial and temporal sampling at lat. 32°N, long. 124°W and lat. 50°N, long. 136°W exist as a result of the U. S. Navy radar picket ship program from 1960 to 1965. A particular consequence of these station-specific biases will be discussed in considering errors associated with computations of latent heat flux.

Areal averages of track-specific data, such as the TDF-11 reports, may be aliased if regions of relatively large spatial or temporal gradients are undersampled along narrow shipping lanes. It should be noted that this type of bias is not unique to the California Current region, and may be present in the summaries of Bunker (1976) and Hastenrath and Lamb (1978), who also used data from the TDF-11 file for computations of surface heat flux. Weare and Strub (1981) suggested that spatial and temporal biases in surface marine atmospheric data may contribute as much as 10% of the variance in long-term monthly mean flux estimates averaged over 5° squares. By averaging over 1° squares, we expect that the mean deviations resulting from spatial bias within a 1° square should contribute substantially < 10% to the long-term variance. Temporal biases in the long-term monthly means caused by nonuniform sampling within a month or by strong diurnal variations in surface atmospheric properties, e.g., cloud cover, should be similar to the estimates calculated by Weare and Strub (1981). These biases may contribute the same order of magnitude variance as errors associated with random or systematic measurement and archiving errors and uncertainties in the bulk formulae.

Calculations of net short-wave radiation, Q_s , reflect uncertainties in the estimates for cloudless sky radiation and sea surface albedo and an inability to accurately parameterize the combined effects of cloud amount, type, height, thickness, and opacity on insolation. We previously discussed the errors in estimating insolation under clear-sky and cloudy conditions based on studies conducted by Reed (1977) and Simpson and Paulson (1979). The uncertainties in Payne's (1972) values for sea surface albedo range from <7% for solar altitudes >25% to 25% for low solar altitudes, and may contribute from <0.5 to 10% of the error in individual estimates of Q_s .

The monthly distributions of insolation discussed in this report are based on values computed from individual reports of total cloud amount. This procedure assumes that a single estimate of cloudiness, regardless of time of day, is representative of the daily mean cloud cover. Synoptic meteorological observations are usually reported at 0000, 0600, 1200, and 1800 Greenwich Mean Time (GMT), which correspond to 1600, 2200, 0400, and 1000 Pacific Standard Time (PST). Even if equal numbers of reports were available from all four synoptic periods, which is certainly not the case, one-half of the estimates of cloud amount would be from nighttime observations. Alternatively, if only daytime estimates of cloud amount were used, as suggested by Tabata (1964), then the number of observations would be reduced by a factor of 2 or more, because in certain 1° squares nighttime observations predominate.

If the distribution of cloud amount during a 24-h period is uniform, then either daytime or nighttime observations may be used to reliably estimate the mean daily cloud amount. However, Tabata (1964) and Weare and Strub (1981) have shown a tendency for daytime estimates of cloud cover to be 0.1 greater than nighttime estimates at OWS-P and for a 5° square near the coast of Baja California. Further difficulties in correcting insolation for cloudiness are caused by the primitive nature of observing and reporting from ships. Because observations of total cloud amount are reported in oktas, or in tenths converted to oktas, random errors of 0.125 (1 okta) in individual estimates of cloud amount can be expected. Reed (1977) also suggested the possibility of up to 0.20 positive bias in visual estimates of cloud cover in comparison with satellite-derived values. An error of 0.125 in the linear cloud factor in Equation (2) would produce errors in short-wave radiation ranging from 8 to 10% for cloud amounts < 0.4 to 18% for total overcast. We estimate that the error in the long-term mean radiation

⁴R. G. Quayle, Chief, Applied Climatology Branch, National Climatic Center, NOAA, Asheville, NC 28801, pers. commun. April 1981.

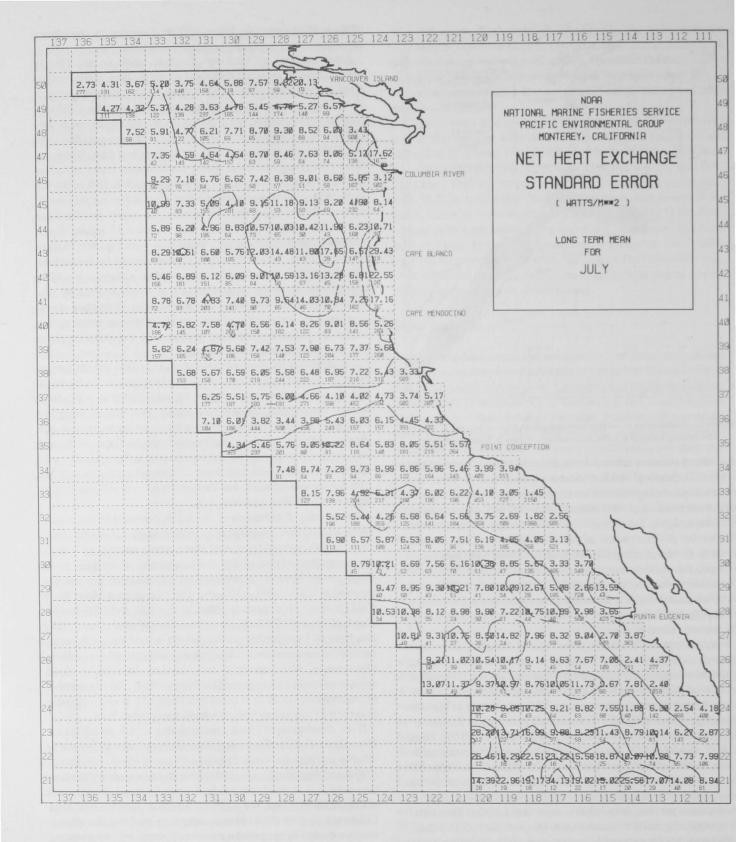
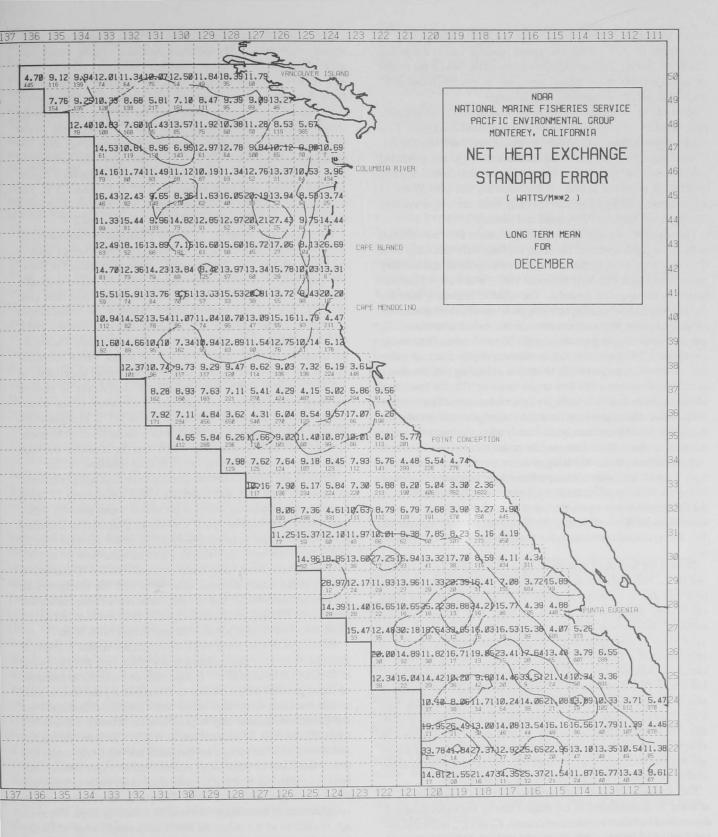



Figure 3.—Standard errors of the means and numbers of observations for July. The standard error of the mean for net heat exchange is plotted in units of W/m^2 and contoured at intervals of 5.0 W/m^2 . The number of observations used to compute the monthly mean in each 1° square is displayed below the value for the standard error.

gure 4.—Standard errors of the means and numbers of observations for December. The standard error of the mean for net heat exchange is plotted in units of W/m² d contoured at intervals of 10.0 W/m². The number of observations used to compute the monthly mean in each 1° square is displayed below the value for the indard error.

values shown in Appendix I (Charts 1-12) lies within 10% or approximately $\pm 25~W/m^2$ for typical summer values exceeding 250 W/m² in the 1° squares adjacent to the coast. Where the means are based on only a few observations per long-term month (i.e., fewer than 10), the uncertainty may be larger.

Most of the empirical formulae for computations of effective back radiation, Q_B , have been derived for overland conditions. Few verifications of the accuracy of the formulae have been made at sea. Comparisons between direct measurements of Q_B and predicted values based on Equation (3) in midocean and coastal regions established an upper bound on the accuracy of $\pm 20~\text{W/m}^2$ or approximately 20% of the observed daily mean net long-wave flux (Simpson and Paulson 1979; Reed and Halpern 1975).

The principal error in estimating Q_B again arises from uncertainties in the cloud correction term. However, net long-wave flux under clear skies may also depend on the distributions of temperature and humidity above the constant flux layer (Charnell 1967), which are not parameterized by the empirical formulae. The effect of neglecting humidity variations in the lower atmosphere may be comparable with that of variable cloud cover. Measurement errors in sea surface temperature, T_s , and near-surface vapor pressure, e_a , of 1°C and 1 mbar, respectively, contribute <3% to uncertainties in estimates of effective back radiation. However, an error of 0.125 (1 okta) in estimating total cloudiness introduces a relative error that ranges from <10% for low cloud amounts to more than 50% for high values of cloudiness. Thus, empirical formulae which have been derived for average conditions may not necessarily hold for estimates based on only a few observations. As the numbers of observations increase, the contribution of random errors will generally decrease, which suggests that the accuracy of the longterm mean net long-wave fluxes predicted from Equation (3) lies well within the 20% bound estimated by Simpson and Paulson (1979). In the California Current region, the loss of heat due to net long-wave flux varies from 20 W/m2 offshore to 50 W/m2 near the coast (Charts 13-24). The associated maximum errors would range from ± 4 to ± 10 W/

In western boundary current regions (Husby and Seckel 1975) and in the North Pacific trade wind zone (Seckel 1970), oceanic heat loss due to evaporative processes typically equals and often exceeds the heat gain due to incident solar flux. Along the west coasts of continents, however, latent heat flux is approximately the same order of magnitude as the effective back radiation, which is approximately a factor of 2 smaller than the incoming short-wave radiation. Near the west coast of the United States during summer, latent heat flux decreases by an order of magnitude and therefore may be more comparable in absolute magnitude with sensible heat flux. Although computations of latent heat flux from the bulk aerodynamic formula may contain large relative errors ranging from 20 to 60% (Clark 1967), the effect of data uncertainties on latent heat and net heat exchange computations may not be as serious as in the studies of Seckel (1970) and Husby and Seckel (1975).

The accuracy of latent and sensible heat flux computations is affected by uncertainties in the magnitudes of the experimentally determined turbulent transfer coefficients, C_E and C_H , and measurement errors in observations of sea, air, and wet-bulb temperatures and windspeed in the constant flux layer. Errors are also introduced if the assumptions which form the bases for the empirical formulae are not properly satisfied. Values of the neutral exchange coefficients referred to the 10 m level, as summarized by Friehe and Schmitt (1976), range from 0.0010 to 0.0016 with typical uncertainties of $\pm 20\%$. Variations in atmospheric stability and the assumption that the transfer coefficients for heat and water vapor are equal and independent of windspeed, increase the uncertainty in the magnitudes of the derived turbulent exchange processes.

Bunker (1976) compared monthly averages of surface meteorological observations obtained from merchant vessels within subareas surrounding ocean weather stations (OWS) with corresponding means formed from the assumed higher quality OWS data. Based on comparisons using more than 500 observations, the 95% probability departures for air, sea, and dewpoint temperatures were 0.15°, 0.12°, and 0.27°C, respectively. In our study, 95% of the 1° square means are based on fewer than 500 observations/mo, and for 55% of the mean values, the numbers of observations are <100. The standard errors of temperature corresponding to these long-term means are 0.3°, 0.2°, and 0.5°C. For averages formed from <10 observations, uncertainties in the mean temperatures typically can be >1°C and may exceed 2°C.

The magnitudes of the errors vary as a function of instrument calibration, observing technique, and the reporting schemes used in the historical data files. For example, temperature values in Decks 110 and 281, U. S. Navy observations 1920-51, were originally recorded to the nearest whole degree Fahrenheit, and later converted to degrees and tenths Celsius; whereas the temperatures archived in Decks 118 and 119, Japanese ship observations 1937-60, were reported to the nearest whole degree Celsius. Therefore, the temperature values derived from these decks, which constitute 18% of the total observations, contain an additional uncertainty of ±0.5°C (Husby 1980). Because of large uncertainty in random sampling errors, we have not corrected observations of sea surface temperature for a possible systematic bias of 0.7°C in engineroom injection temperatures (Saur 1963) or measurements of air temperature and wet-bulb temperature which may be modified by shipinduced air flow distortion at the 10 m level (Holland 1972)

Temperature errors contribute directly to uncertainties in estimating sensible heat flux and indirectly affect calculations of latent heat flux by introducing errors in the sea-air vapor pressure difference. Average deviations of 0.2 °C in sea-air temperature difference result in relative errors in sensible heat flux which decrease from 20 to 4% for temperature differences which increase from 1° to 5°C. A more characteristic temperature departure of 0.5 °C introduces relative errors which decrease from 50 to 10% for similar sea-air temperature differences. For monthly mean sea-air temperature differences of 1°C and windspeeds of 6 to 7 m/s, errors of ± 1 to ± 5 W/m² may be expected for sensible heat fluxes of 10 W/m².

An error of 0.5°C in sea surface temperature results in errors in the saturation vapor pressure over water which vary from 0.4 mbar at 10°C to 1.0 mbar at 25°C. Comparable errors occur in estimates of vapor pressure of the air due to erroneous psychrometric measurements. Long-term mean sea-air vapor pressure differences over the California Current region generally lie between 1.0 and 5.0 mbar. However, in the area off southern Baja California during fall and winter, high sea surface temperatures and relatively colder and drier continental air combine to produce sea-air vapor pressure differences exceeding 15 mbar for individual observations. Mean differences are generally < 10 mbar. Therefore, the possible error in computations of latent heat flux may be relatively large. For average deviations of 0.5 mbar, the uncertainty ranges from <4% for large vapor pressure differences to more than 40% at low values. The error associated with monthly mean values of \bar{Q}_E between 50 and 100 W/m² would be approximately \pm 10 W/m².

In Equations (7) and (8), the vertical fluxes of heat and water vapor have been parameterized as a function of the observed windspeed, U_{10} . Nelson (1977) discussed the sources of error in wind reports in the TDF-11 data file and also determined that <12% of the total wind reports consisted of measured, as opposed to estimated, quantities. Approximately 35% of the reports from the California Current region consisted of Beaufort wind force estimates

which were converted to equivalent 10 m windspeeds in knots and meters per second according to the international scale of 1946 (see List 1949:119). The standard deviation of the overall error of an estimated windspeed amounts to 0.58I, where I is the Beaufort interval (Verploegh 1967), and corresponds to ± 0.7 to ± 2.4 m/s for equivalent windspeeds of 0.9 m/s to 30.5 m/s. The remaining 53% of the observations were estimated windspeeds which did not agree numerically with the Beaufort wind force scale but typically were originally reported in 5-kn intervals for windspeeds > 20 kn. Therefore, the possible error associated with these estimates is approximately ± 1.3 m/s. An error of 1 m/s in estimating windspeed results in equivalent changes in the rates of evaporation and sensible heat transfer of 10 to 20% for the mean windspeeds of 5 to 10 m/s most commonly observed in the California Current region.

In using the historical surface marine weather reports, we have assumed that the wind observations were taken at a standard height of 10 m, or that the Beaufort force estimates were equivalent to windspeeds measured at this height. For surface winds which have been measured by shipboard anemometers, this assumption can be grossly inaccurate, since known anemometer heights vary from 7 to 37 m, the mean height being 21 m (Cardone 1969). If anemometer heights were known for the vessel reports comprising the 12% of the total observations which were measured as opposed to estimated quantities, a neutrally stable logarithmic wind profile could have been used to correct each observation from the measurement height to the 10 m reference level. Except for the relatively few anemometer heights from military and research vessels listed in Cardone's report, the anemometer heights for reports in the TDF-11 file cannot be readily determined. By assuming that windspeeds have been measured at 10 m, we possibly overestimate the turbulent fluxes by 12% for winds actually measured at 37 m and underestimate the fluxes by 3% for measurements taken at 7 m.

Conclusive verification of the derived rates of sensible and latent heat transfer and the associated accuracies of the bulk formulae has not been possible owing to the lack of extensive direct, over-water measurements of the temperature and moisture fluxes. On the basis of 30 eddy flux measurements of water vapor, Friehe and Schmitt (1976) concluded that latent heat flux is adequately described by the bulk formula (Equation (4)) with an uncertainty of 15 W/m² (standard deviation). The more numerous determinations of sensible heat flux also conform to the empirical equation with an uncertainty of approximately 3.8 to 8.4 W/m² (standard deviation). However, the direct measurements of sensible heat flux show a dependence on atmospheric stability and indicate a small positive flux of approximately 0.15 W/ m^2 , even when the value predicted from the term, $(T_s-T_a)U_{10}$, is zero. Although Laevastu's (1960) equation for the turbulent transfer of sensible heat predicts a nonzero flux for $U_{10} = 0$ m/s (but not for $(T_s - 1)$) T_a)=0°C), the expected values from the more commonly used formula (Equation (5)) may include a 1 to 2% bias in addition to random measurement errors. The results of Anderson and Smith (1981) generally confirm the bulk formulae with uncertainties of ± 10 to $\pm 25\%$, and demonstrate the applicability of Equation (4) to negative fluxes of water vapor (i.e., condensation).

Equations (7) and (8) are generally used to parameterize the loss of heat from ocean to atmosphere due to evaporative and convective processes. The reverse processes of condensation and sensible heat transfer to the sea are also predicted by the formulae. Negative values of $(T_s - T_a)$ are commonly measured in eastern boundary current regions during periods when coastal upwelling establishes a stable atmospheric boundary layer. Comparable negative sea-air vapor pressure differences $(e_w - e_a)$ are not observed as often. Over large regions of the oceans, vapor pressure decreases with height, although the opposite behavior can occur over cold water areas

(Roll 1965). Laevastu and Harding (1974) demonstrated a relatively rapid 5-h response of the properties of the surface air to changes in the properties of the sea surface. Therefore, in midlatitude and tropical regions away from coastal boundaries, the maximum atmospheric vapor pressure would be expected to correspond to the saturation vapor pressure at the sea-surface temperature, and evaporation would occur.

During spring and summer, modification of the atmospheric boundary layer by coastal upwelling processes produces stable stratification which is favorable for the formation of advection fog, particularly along the coasts of central and northern California and Oregon. When the contrast between warm, relatively moist air overlying a cooler sea surface is large, fog may persist even when the wind is strong. The resulting downward flux of water vapor transfers latent heat from atmosphere to ocean. A downward flux of moisture may also exist in a stable boundary layer in the absence of fog, as the data of Laevastu and Harding (1974) and Anderson and Smith (1981) demonstrate.

In a study of the heat exhange processes over the North Pacific trade wind zone, Seckel (1970) assumed that negative sea-air vapor pressure differences were due to erroneous observations of sea surface temperature, vapor pressure of the air, or both, and in such situations set the computed latent heat flux equal to 0. Over the California Current region, we found that 10% of the usable surface weather reports resulted in negative fluxes of latent heat. If these values were due to bad observations, then an approximately equal number of positive values should also be affected by poor quality observations, but we had no a priori reason to reject 20% of the data or possibly alias the long-term mean distributions by neglecting the rate of heat change through condensation, as Roden (1959) did in a previous study of the heat balance of the California Current region. However, additional quality control tests were implemented to remove unreasonably large negative and positive fluxes of both latent and sensible heat.

Editing procedures consisted of comparing observed surface properties with the average joint probability density functions of air-sea temperature difference versus windspeed and sea-air vapor pressure difference versus windspeed computed from the entire data set. Pairs of data values which fell outside a 1% bound of the joint probability density estimates were rejected. This method was relatively conservative, and <0.5% of the data was removed. The distributions could have been trimmed more severely. For example, in an earlier version of the flux calculations, we used Seckel's (1970) method and set the latent heat flux equal to zero for negative sea-air vapor pressure differences. Comparisons of the two sets of values showed that the ratio of the difference between the old and new values to the standard error of the mean of the recomputed data was consistently < 1.0, except in regions within 200 km of the coast during months when coastal upwelling occurs. We concluded that our results would not be severely distorted by using Equation (8) for computing both positive and negative latent heat fluxes, and might be more representative of actual surface layer conditions near the coast.

Our computations indicate an upward flux of latent heat (Appendix I, Charts 25-36) over the entire California Current region except at lat. 40°N, long. 124°W in May, July, August, and September when the mean fluxes are -0.6, -11.0, -12.1, and -8.7 W/m², at lat. 41°N, long. 124°W in July and August (-6.0 and -0.4 W/m²), and at lat. 43°N, long. 124°W in July (-18.2 W/m²). Negative (condensation) values may be expected for periods of several hours to a few days; however, it seems unlikely that latent heat transfer from atmosphere to ocean would be characteristic in a long-term monthly mean sense.

Even though we may have correctly predicted the relative effects of condensation, the magnitudes of the computed values may be in error. When latent (and sensible) heat is transferred to the ocean, high stability of the air close to the sea surface greatly inhibits turbulent transfer, perhaps reducing the flux to <10% of the corresponding magnitude for comparable conditions in an unstable boundary layer. To test the effects of such a reduction, we recalculated the values for the 1° squares adjacent to the coast between Cape Mendocino and Cape Blanco and reduced the magnitudes by 90% when the computed latent heat fluxes were negative. The resulting long-term monthly means for the 1° squares and months indicated above remained small, but positive, being $<10~{\rm W/m^2}$ in the mean.

Spatial and temporal biases also may have affected the calculations of latent heat flux. The long-term mean for July in the 1° square off Cape Blanco (lat. 43°N, long. 124°W) was computed from only 13 observations, of which nine values resulted in negative fluxes of latent heat. South of Cape Mendocino, observations from the Blunts Reef Lightship station consistently biased the long-term means by effectively weighting the computed fluxes for 1970 and 1971 by an order of magnitude more than for any other year. By removing the lightship data, the negative values of latent heat flux which appear at this location during summer (Chart 29 and Charts 31-33) could have been removed, and for July the mean value would have changed from -11.0 W/m² (condensation) to +5.5 W/m² (evaporation). Although we recognized that these biases existed, no attempt was made to systematically remove observations from those areas where densely sampled station data were apparent.

There are very few direct measurements of negative fluxes of water vapor (latent heat) and none which support a large reduction in the transfer across the air-sea interface under stable conditions. The data reported by Anderson and Smith (1981) suggested only a 12% and at most a 50% reduction in the transfer process (see their equations (7) and (8)) in a stable as opposed to an unstable boundary layer, for comparable values of moisture flux. Although the magnitudes of latent heat flux remain somewhat in doubt, our computations indicate that heat losses due to evaporation from the sea surface make a relatively unimportant contribution to the oceanic heat budget during summer in regions adjacent to the coast.

The net heat exchange across the sea surface, Q_N , is the difference of large numbers. Therefore, the uncertainty in Q_N may be substantially greater than the errors for the individual exchange processes. For example, during July off Monterey, Calif., the average value of \bar{Q}_N is 197 W/m². Conservative estimates of the errors in $\bar{Q}_S(10\%)$, $\bar{Q}_B(10\%)$, $\bar{Q}_E(15\%)$, and $\bar{Q}_C(15\%)$ result in a relative error of 17% in the estimate for \bar{Q}_N . At the same location in December, the error in \bar{Q}_N increases to 64% for a long-term mean value of -36.7 W/m².

The accuracy of each of the long-term monthly mean heat flux components was independently estimated by computing the standard error of the mean defined by:

$$SE_{\bar{Q}} = SD_{Q} / \sqrt{n}$$
 (10)

where $SE_{\bar{Q}}$ is the standard error of the mean for each heat exchange component (i.e., \bar{Q}_S , \bar{Q}_B , \bar{Q}_E , \bar{Q}_C , \bar{Q}_N), SD_Q is the corresponding sample standard deviation, and n is the number of observations. Large values of n and small values of SD_Q correspond to mean values \bar{Q} which closely approximate the population means. Although the computed standard errors reflect observational noise as well as nonseasonal variability, the distributions of $SE_{\bar{Q}}$ provide an overall view of the reliability of the long-term monthly heat flux estimates.

Standard errors of the means and the numbers of observations in each 1° square area and long-term month are tabulated in Appendix II. The standard errors are largest for $\bar{Q}_{\mathcal{E}}$ and $\bar{Q}_{\mathcal{S}}$ and smallest for $\bar{Q}_{\mathcal{C}}$

and \bar{Q}_B . The resulting standard errors of the means for \bar{Q}_N , (SE $_{\bar{Q}_N}$), range from 1.3 W/m² at lat. 33°N, long. 118°W in September (n=2,259) to 57.6 W/m² at lat. 22°N, long. 120°W in June (n=9). Distributions of minimum and maximum values of SE $_{\bar{Q}}$ generally conform to the pattern of observations shown in Figure 2.

The net heat exchange standard errors and the numbers of observations for July and December, respectively, are mapped in Figures 3 and 4. Minimum values of $SE_{\bar{Q}_N}$ coincide with the coastwise shipping lanes stretching from southern Baja California to Point Conception and with the transoceanic track between San Francisco and Hawaii. In the extreme northwest section of the grid, steady westerly winds and minimum sea-air vapor pressure differences contribute to low values of $SE_{\bar{Q}_N}$ in July (Fig. 3). Within these regions, the 95% probability of departure from the population mean is <10W/ m^2 .

High values of SE_{Q_N} occur along and offshore from the coast between Cape Mendocino and Cape Blanco (Fig. 3) and in the southwest section of the grid, and are associated with regions of sparse data, although sporadic sampling of intense winter storms may also lead to large values (Fig. 4). Values between 5 and 10 W/m² occur throughout a large portion of the summary area in July. In the offshore regions from lat. 21°N to 31°N and from lat. 40°N to 50°N, 95% probability departures frequently exceed 30 W/m² in December. Typical ratios of the standard error to the mean net heat exchange ($SE_{\overline{Q}_N}/\overline{Q}_N$) range from 0.01 to 0.27 in July, the average ratio being 0.05. In December, large values of $SE_{\overline{Q}_N}$ and small values of \overline{Q}_N result in ratios which vary in absolute magnitude from 0.04 to 34.8, with an average value of 0.71.

In areas outside of the primary shipping lanes, monthly mean distributions of \bar{Q}_N are based on approximately equal numbers of observations per 1° square. If there are no systematic sampling errors, then the relative magnitudes of the computed standard errors of the means should be related to the spatial and temporal variability in \bar{Q}_N . Figures 3 and 4 indicate a slight tendency for larger values of $SE_{\bar{Q}_N}$ in the northern section of the grid than in the southern area. The seasonal contrast is more apparent. The greater variability associated with winter surface atmospheric properties contributes to values of $SE_{\bar{Q}_N}$ which are 50 to 100% larger in December (Fig. 4) than in July (Fig. 3), which indicates that a large part of the monthly variance in \bar{Q}_N may be due to actual intramonth fluctuations rather than observational errors.

Limits on the absolute accuracy of the empirically derived heat transfers have not been well established by experimental data. Nevertheless we feel that the general coherence of the values mapped in Appendix I demonstrates that the fields are representative of the expected spatial and seasonal variability over the California Current region. Small-scale features and detail within a single 1° square area which are not supported by similar values in surrounding squares probably reflect observational "noise" and should be viewed with caution. Smoother distributions could have been produced by taking averages over 2° or 5° square areas as Wyrtki (1965) and Roden (1959) have done. However, 1° square resolution was retained to preserve detail in the distributions of the individual heat exchange processes, particularly within 300 km of the coast. The fine spatial resolution may be less meaningful for the offshore regions where the decrease in the number of observations per averaged value increases the uncertainty in the derived quantities.

DEPENDENCE OF HEAT EXCHANGE ESTIMATES ON COMPUTATIONAL METHODS

The procedures followed in this study involved computations of the heat exchange processes for each weather report, which were then averaged to form the long-term monthly mean values. Constant exchange coefficients, C_E and C_H , were used in Equations (4) and (5) to estimate the turbulent fluxes of latent and sensible heat. Different results might have been obtained if the radiative and turbulent fluxes had been calculated from monthly mean atmospheric properties or if the transfer coefficients for the turbulent fluxes had varied with windspeed or atmospheric stability. These aspects are discussed below.

Exchange Processes Computed from Monthly Mean Atmospheric Properties

Previous summaries of large-scale heat exchange processes have used mean monthly values of atmospheric and oceanic properties in the empirical formulae, primarily due to the lack of sufficient data to perform the calculations on shorter time scales. Malkus (1962) has shown that the use of mean monthly values can lead to underestimates of the turbulent heat fluxes. For the sake of comparability, we have assembled long-term monthly mean atmospheric properties (Appendix III) and used these values to recompute the heat exchange components.

Figure 5 shows a scatter diagram of all monthly gridpoint values of net heat exchange computed using mean monthly properties, $Q_N(M)$, versus the mean monthly net heat exchange computed from the individual synoptic weather reports, $Q_N(I)$. The slope of the least-squares regression of $Q_N(M)$ on $Q_N(I)$ is 1.02 and the coefficient of determination (R^2) between the two data sets is 0.99. Because the correlation for this regression may be artificially inflated by the seasonal cycle in both data sets, linear regressions were computed by month for each of the heat exchange components. Table 1 lists the coefficients of determination, significant above the 99% level, and slopes of the regression lines, each of which is based on 300 pairs of observations.

The mean heat transfers computed from the individual surface weather reports show a high degree of correlation with those computed from mean monthly atmospheric and oceanic properties. The highest correlations are found for \bar{Q}_B and \bar{Q}_S ($R^2 > 0.99$). The regressions for \bar{Q}_C show the lowest correlations and the greatest degree of seasonal variability (0.88 < $R^2 < 0.96$).

The slopes of the regression lines provide an estimate of the average differences between values of the radiative and turbulent fluxes computed by the two methods. The largest deviations occur for incident solar radiation. The monthly values, $Q_s(M)$, are from 1 to 18% larger than corresponding estimates, $Q_s(I)$, based on synoptic reports. A similar relationship between $Q_s(M)$ and $Q_s(I)$ has been demonstrated by Seckel (1970) and Husby and Seckel (1975). The correlations for latent and sensible heat exchange show that computations which use monthly mean properties consistently underestimate the turbulent fluxes by 1 to 8% for \bar{Q}_E and 3 to 13% for \bar{Q}_C , although in August, September, and October, the $Q_E(M)$ values are approximately 1% larger than $Q_E(I)$.

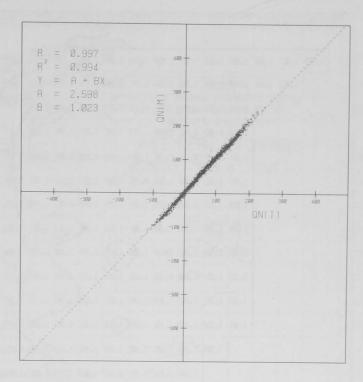


Figure 5.—Linear regression of monthly net heat exchange values computed from mean monthly meteorological properties, $Q_N(M)$, versus monthly net heat exchange computed from individual reports, $Q_N(I)$. Units are W/m^2 . The correlation coefficient is R=0.997 and the coefficient of determination is $R^2=0.994$. The dashed diagonal line represents the regression equation $Q_N(M)=2.598+1.023\ Q_N(I)$.

These differences are comparable with values of about 7% discussed by Malkus (1962) and are within the uncertainties of the determinations discussed earlier.

Estimates of net heat exchange computed by the two methods are well correlated (0.95 < R^2 < 0.98). Slopes > 1.0 indicate that the values based on monthly parameters, $Q_N(M)$, are consistently more positive than the monthly averages of individual estimates, $Q_N(I)$, although this generalization is not valid for all areas in all months. Distributions of the ratio $Q_N(M)/Q_N(I)$ are shown in Figures 6 and 7 for July and December, respectively. In July the values for $Q_N(M)$ are approximately 3% greater than those for $Q_N(I)$, except near the coast of southern Baja California, between Point Conception and Cape Blanco, and off Vancouver Island. The use of long-term monthly mean atmospheric properties results in 5 to 10% higher oceanic heat gain in these regions compared with the monthly means of synoptic estimates. During December, the ocean loses heat over the entire California Current region (Chart 60). Values of $Q_N(M)/Q_N(I)$ < 1.0 occur over approxi-

Table 1.—Monthly values of coefficient of determination (R^2) and slope (B) of regression line for linear regressions between heat exchange components $(\bar{Q}_S, \bar{Q}_B, \bar{Q}_C, \bar{Q}_N)$ estimated from monthly mean atmospheric properties, Q(M) and those computed from individual reports, Q(I).

		Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
0	R^2	0.998	0.997	0.993	0.991	0.991	0.991	0.994	0.989	0.990	0.995	0.998	0.999
Q_S	В	1.016	1.028	1.051	1.079	1.164	1.181	1.156	1.096	1.056	1.036	1.021	1.009
0	R^2	.997	.998	.998	.997	.998	.998	.999	.998	.996	.995	.997	.997
Q_B	B	1.003	1.000	1.003	1.003	.995	.993	.992	.989	.987	1.010	1.004	.996
0	R^2	.954	.968	.975	.986	.986	.980	.974	.962	.971	.972	.970	.963
Q_E	В	.929	.923	.961	.988	.987	.985	.988	1.022	1.007	1.012	.961	.926
0	R^2	.934	.881	.927	.924	.945	.955	.963	.955	.948	.931	.941	.909
Q_C	В	.953	.865	.939	.946	.966	.953	.944	.966	.926	.943	.960	.926
Q_N	R^2	.970	.957	.958	.952	.956	.963	.979	.958	.962	.974	.980	.965
	B	1.018	1.029	1.048	1.086	1.049	1.085	1.121	1.091	1.067	1.022	1.025	1.017

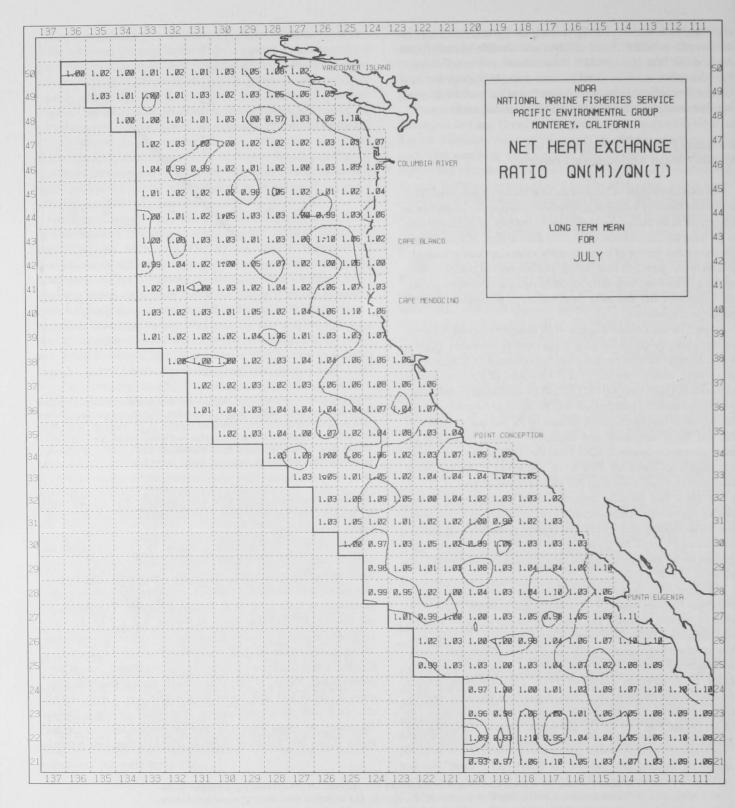


Figure 6.—Spatial comparison of net heat exchange values for July, estimated from mean monthly surface meteorological properties, $Q_N(M)$, versus that computed from individual reports, $Q_N(I)$. The nondimensional ratio $Q_N(M)/Q_N(I)$ is plotted and contoured at intervals of 0.05.

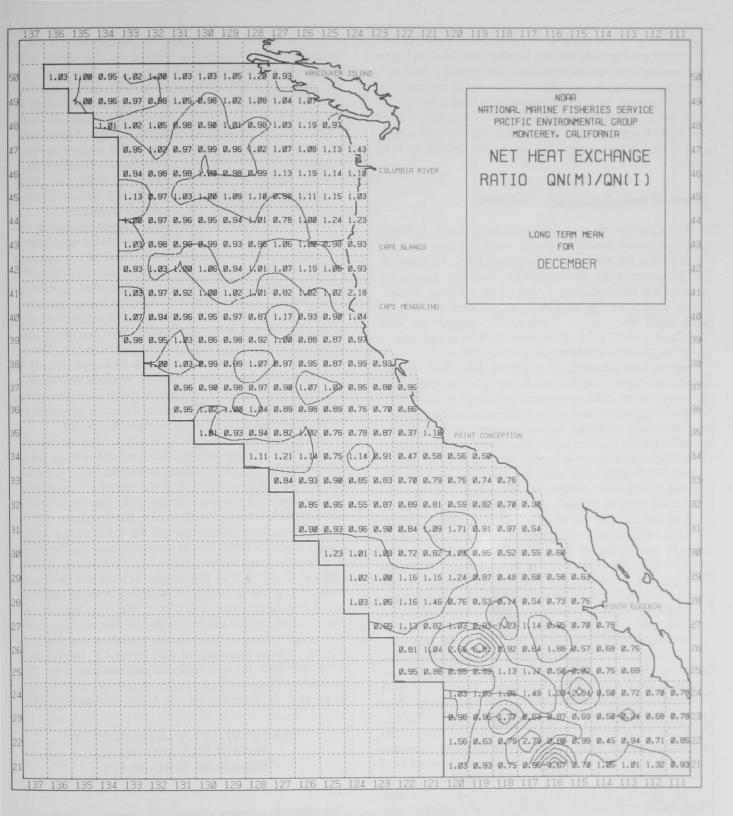


Figure 7.—Spatial comparison of net heat exchange values for December, estimated from mean monthly surface meteorological properties, $Q_N(M)$, versus that computed from individual reports, $Q_N(I)$. The nondimensional ratio $Q_N(M)/Q_N(I)$ is plotted and contoured at intervals of 1.0.

mately 60% of the data grid (Fig. 7) and imply less oceanic heat loss for the flux estimates computed from monthly mean variables. Higher heat loss would be expected over a large area adjacent to the Pacific Northwest. The high linear correlations between heat exchange components estimated from monthly mean atmospheric properties and those computed from synoptic reports imply that the principal spatial and temporal patterns evident in the charts in Appendix I are independent of the averaging methods used to compute the monthly mean fluxes.

Effects of Variable Exchange Coefficients

The empirical formulae which have been applied to studies of large-scale turbulent latent and sensible heat transfer vary primarily in the form of the exchange coefficients which have been used. In the derivations of the bulk aerodynamic formulae, it is usually assumed that the coefficients C_E and C_H are constants, approximately equal to the drag coefficient, C_D , for momentum transfer (Roll 1965). For example, Kraus (1972) suggested the value $C_F = C_H = C_D = 0.0013$. In recent years, however, a great deal of effort has gone into the determination of these bulk exchange coefficients and their dependence on windspeed, atmospheric stability, and the aerodynamic roughness of the sea surface as a function of the spectral shape of the ocean wave field (Davidson 1974). Until these coefficients have been accurately determined for all combinations of stability, windspeed, and sea conditions, the bulk exchange formulae are best regarded as dimensionally correct parameterizations which need further experimental verification (Pond 1975).

Busch (1977) discussed the results of recent research and described the work of Friehe and Schmitt (1976), who compiled data from several sources, including their own, and found that the exchange coefficient for the turbulent flux of latent heat was well described by $C_F = 1.32 \times 10^{-3} \pm 0.07 \times 10^{-3}$. The coefficient for sensible heat transfer could be approximated by $C_H = 1.41 \times 10^3 \pm 0.02 \times 10^3$ over wider ranges of windspeed and sea-air temperature differences. Their analyses suggested that the coefficient, C_E , was constant and larger than that for sensible heat transfer, C_H , for equivalent windspeeds, and demonstrated a dependence of C_H on atmospheric stability and windspeed. An extensive review of comparable data for momentum transfer (Garratt 1977) substantiates the windspeed dependence for the drag coefficient, C_D . The dependence of the transfer coefficients on atmospheric stability has been predicted by Deardorff (1968). Based on theoretical considerations and a review of experimental data, Coantic (footnote 3) recommended the values, $C_E = C_H = 1.3 \times 10^{-3}$ for windspeeds < 10 m/s and $C_F = C_H = (1.0 + 0.05 U_{10}) \times 10^{-3}$ for the range, $0 < U_{10} < 20$ m/s. Eddy flux measurements discussed by Anderson and Smith (1981) indicated a positive windspeed dependence for the neutral evaporation coefficient, $C_E = (0.55 + 0.083 \ U_{10}) \times 10^3$, for windspeeds of 5 to 11 m/s. No dependence of C_E on atmospheric stability was observed, although this result may have been influenced by the lack of numerous direct measurements in stable conditions. The corresponding temperature flux data showed a 40% increase in the coefficient for sensible heat transfer from $C_H = 0.82 \times 10^{-3}$ in a stable boundary layer to $C_H = 1.12 \times 10^{-3}$ for unstable conditions. Because there is large scatter in open ocean determinations of C_E and C_H , lack of agreement among individual observers, and a tendency for uncertainties in the flux estimates introduced by errors in the observed atmospheric properties to be larger than errors caused by variations in the exchange coefficients, we assumed identical and constant values for C_E and C_H in this study.

To investigate the possible effects of variable exchange coefficients on the turbulent transfer processes, the monthly mean fields of latent and sensible heat flux have been recomputed, and the constant values C_E and C_H in Equations (4) and (5) were replaced by coefficients which varied with windspeed and atmospheric stability. The linear relationship proposed by Coantic (footnote 3) was used to define the windspeed dependence of C_E and C_H , and Deardorff's (1968) empirical expressions, which are functions of the bulk Richardson number $(Ri)_B$, were adopted to parameterize the dependence of the exchange coefficients on stability. Neutral stability was assumed when the absolute value of the air-sea temperature difference was <1°C and the available data were further reduced by restricting the calculations to the range -0.2 < $(Ri)_B$ <0.1. In the following discussion we consider only the calculations for latent heat flux. Complete details will be reported elsewhere.

The combined effect of windspeed and atmospheric stability was computed as a percentage increase (decrease) in the magnitude of the monthly mean latent heat flux above (below) the corresponding value computed with a constant coefficient. Values corresponding to the percentage differences for June and December, respectively, are displayed in Figures 8 and 9. In June, the average percentage increase is between 10 and 15%, although in the region of the wind stress maximum between Point Conception and Cape Blanco (Nelson 1977), the computed increase may be larger than 25%. The corresponding evaporative heat loss increases from approximately 45 to 56 W/m². The winter distribution (Fig. 9) shows an alongshore gradient. South of Point Conception the average percentage increase is approximately 15%, while in the region adjacent to the Pacific Northwest differences >40% might be expected.

The principal difference between estimates of latent heat flux computed with a variable as opposed to a constant exchange coefficient, C_E , is caused by the windspeed dependence of C_E . Additional analyses were performed to identify the relative effects of atmospheric stability and windspeed. The results for June suggest a 10 to 20% increase in latent heat transfer due to the dependence of C_E on windspeed. Stability effects account for <5% of the overall change. Higher windspeeds and unstable conditions associated with transient winter storms produce larger differences. Stability effects account for a 10 to 15% increase in latent heat flux during winter, and the windspeed dependence of C_E contributes between 5 and 25% of the difference. The relative differences between estimates of latent heat flux computed with a constant exchange coefficient as opposed to a coefficient which depends on windspeed and stability, are larger than values of <5% reported by Dorman et al. (1974) at OWS-N, but more consistent with increases of 6 to 15% discussed by Husby and Seckel (1975) for OSW-V and with results for the North Pacific trade wind zone described by Seckel (1970).

SEA LEVEL OCEAN-ATMOSPHERE PROPERTIES AND THEIR SEASONAL VARIABILITY

The predominant factors influencing the seasonal variations in the air-sea interaction processes of the California Current region are the seasonal movements and changes in intensity of the subtropical high pressure system and the continental low pressure system and variations in the properties of the waters of the California Current. The variations in the atmospheric pressure centers modify the surface wind field and the distribution of cloud cover, and, through the action of the surface wind stress, induce upwelling at the coast during summer. Upwelling has a marked effect on the climate along the west coast of North America (Smith 1968).

Figure 10 shows the average monthly sea level atmospheric pressure distributions over the eastern North Pacific Ocean and the west coast of

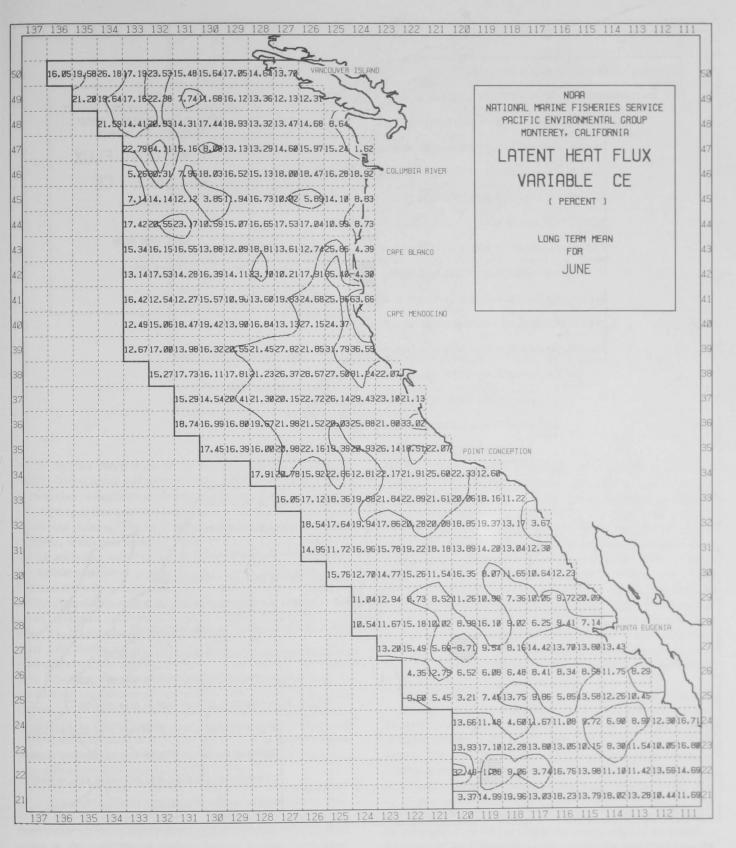


Figure 8.—The effect of a variable exchange coefficient (C_E) on computations of latent heat flux (Q_E) for June. Plotted values are the percentage increase (decrease) in latent heat flux above (below) that computed with a constant exchange coefficient. The contour interval is 10.0. Negative values are shaded.

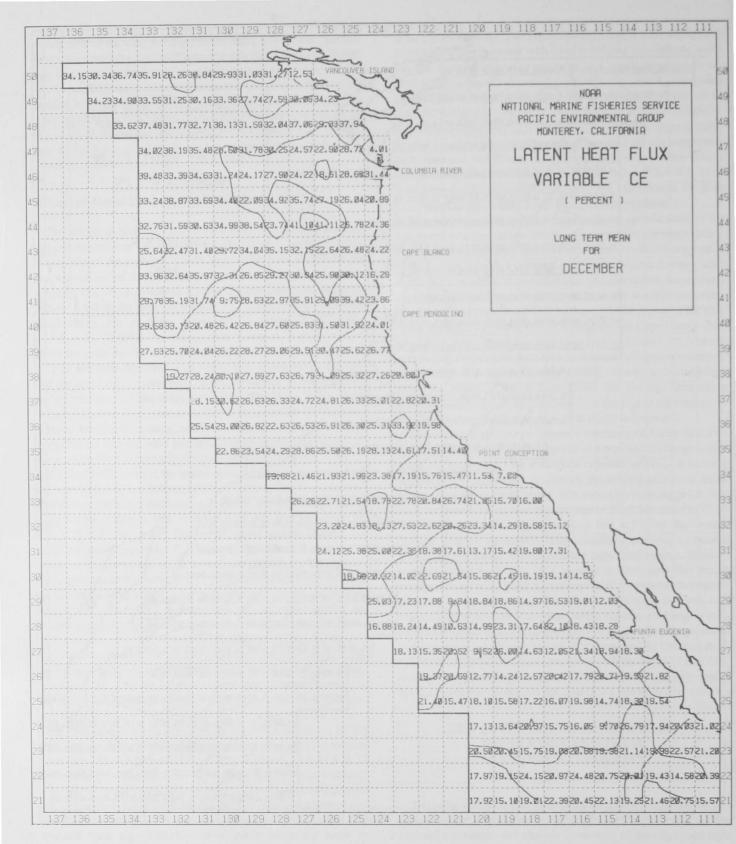


Figure 9.—The effect of a variable exchange coefficient (C_E) on computations of latent heat flux (Q_E) for December. Plotted values are the percentage increase (decrease) in latent heat flux above (below) that computed with a constant exchange coefficient. The contour interval is 10.0.

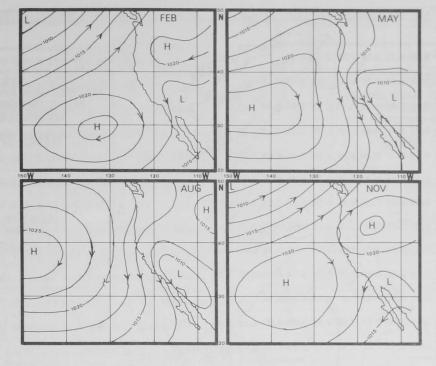


Figure 10.—Mean monthly atmospheric sea level pressure (mbar) over the eastern North Pacific and the west coast of North America during February, May, August, and November. The contour interval is 2.5 mbar (after Reid et al. 1958).

North America during 4 mo of the year (adapted from Reid et al. 1958). During spring and summer (May and August) the subtropical high reaches its maximum northward position and maximum pressure, and at the same time a thermal low pressure system develops over California and Arizona. The large high pressure area shunts migratory cyclones, which pass across the coasts of Washington and Oregon in the fall and winter, well to the north. For winds in geostrophic balance, the surface wind blows parallel to isobars as indicated by the arrow barbs on the isobars. Frictional effects in the planetary boundary layer deflect the surface winds toward low pressure. The composite monthly mean windspeed distributions for June and December, respectively (Figs. 11, 12) illustrate the character of seasonal changes in the surface wind field. During summer (Fig. 11), the region north of lat. 40°N shows relatively low windspeeds of 6 to 7 m/s over almost the entire area. Maximum windspeeds in excess of 9 m/s are found off Cape Mendocino. This offshore maximum is aligned parallel to the coast and maxima can be traced to the south as far as Punta Eugenia, at a distance of about 200 to 300 km from the coast. In contrast, during winter strong onshore winds north of lat. 40°N (Nelson 1977) blow at speeds of 9 to 11 m/s, while the area to the south experiences speeds of 5 to 8 m/s, with a somewhat disorganized pattern (Fig. 12).

During the summer, relatively strong alongshore equatorward winds induce an offshore transport of surface water due to the rotation of the earth acting upon the oceanic response to equatorward wind stress. Conservation of mass requires replacement by convergence in the equatorward surface flow or compensation from below, giving rise to an upwelling of water from intermediate depths along the coast. This upwelling forms a large area of relatively cold water along the coasts of Oregon and California. Figures 13 and 14 show the long-term composite sea surface temperature fields for the months of June and December, respectively, which have been computed from historical surface marine data. The California Current brings relatively cold, freshwater along the west coast of the United States as a branch of the North

Pacific Current, which is deflected to the south by the North American continent. In December (Fig. 14) the coldest water is found at the northernmost latitudes, but as the current is deflected to the south the isotherms bend to the south and colder water is found along the coast relative to the water farther offshore. As the water continues south it is warmed by mixing with warmer water offshore and an increase in solar radiation. In June (Fig. 13) cold water is evident at the northerly latitudes, but a large area of cold water (11°-13°C) exists along the coasts of Oregon and northern California. Another region of relatively cool water is found near the coast of Baja California, north of Punta Eugenia. Such conditions persist off Oregon and northern California through September. During the summer, the only possible source for this cold water is from below, because warmer sea surface temperatures occur to the north.

Nelson (1977) described the seasonal variation of the alongshore component of wind stress and discussed the northward progression of the maximum alongshore wind stress from April and May off the coast of Baja California to July and August off Cape Mendocino and Cape Blanco. The movement of this alongshore wind stress maximum, which is an indicator of conditions favorable for upwelling, is the result of the northward shift and strengthening of the subtropical high pressure center and the coincident development of the continental thermal low. An important characteristic of this dome of high pressure is that the atmospheric circulation around the eastern edge of the system is divergent and large-scale subsidence occurs. The combination of the large-scale subsidence of warm air from aloft and the upwelling of cold water along the coast results in the formation of a strong low-level inversion in the marine atmospheric boundary layer. This inversion suppresses deep cloud formation and greatly inhibits precipitation. The effect of the large-scale subsidence is noted in the true desert climate of Baja California, particularly south of Punta Eugenia, and in the almost complete lack of rainfall along the coasts of California and Oregon during summer. Within 10 to 20 km of the coast, upwelling influences the

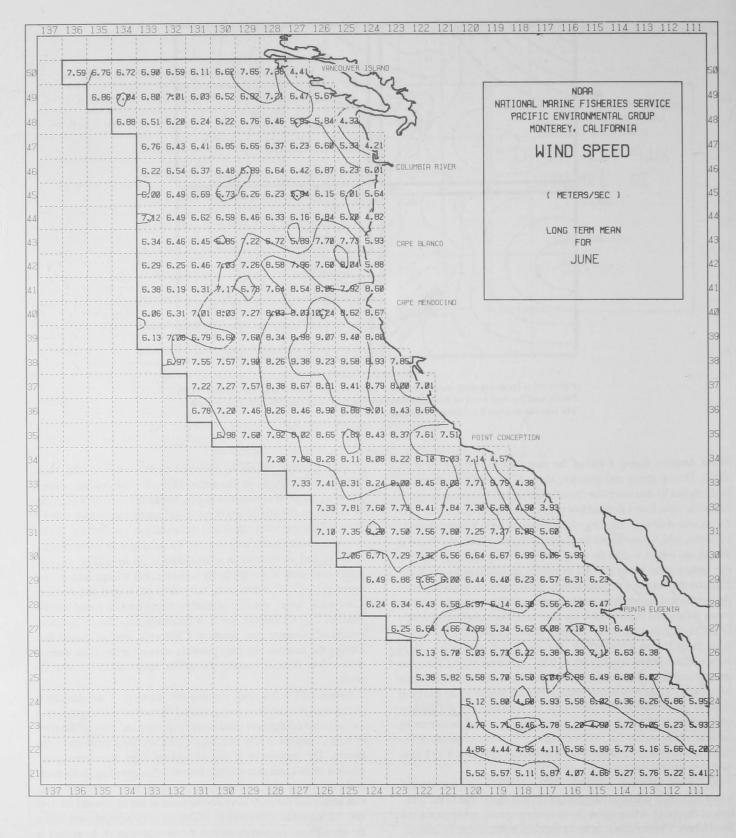


Figure 11.—Long-term composite monthly mean windspeed (m/s) distribution for June. The contour interval is 1.0 m/s.

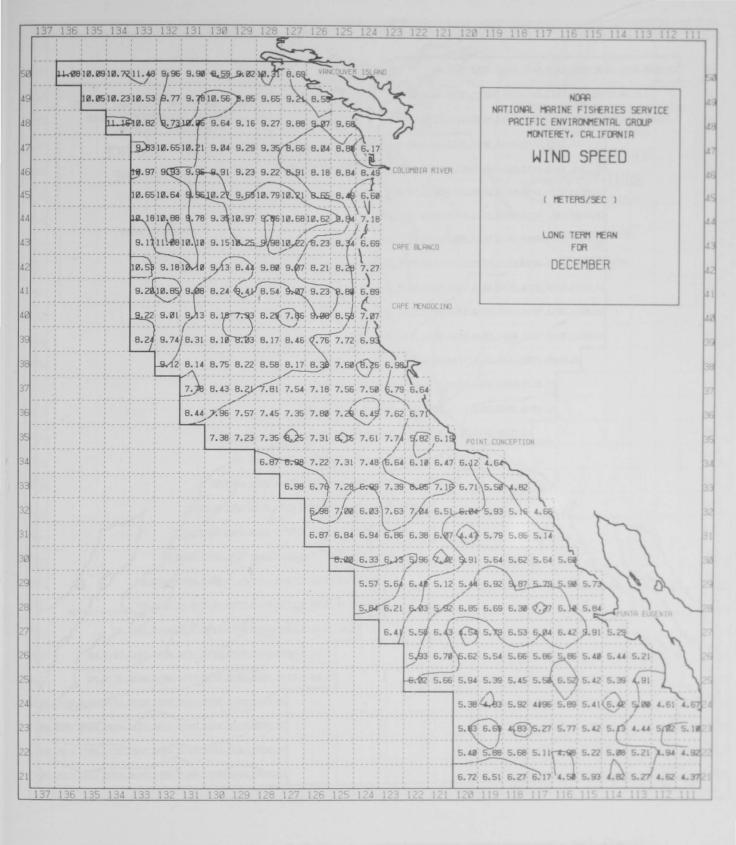


Figure 12.—Long-term composite monthly mean windspeed (m/s) distribution for December. The contour interval is 1.0 m/s.

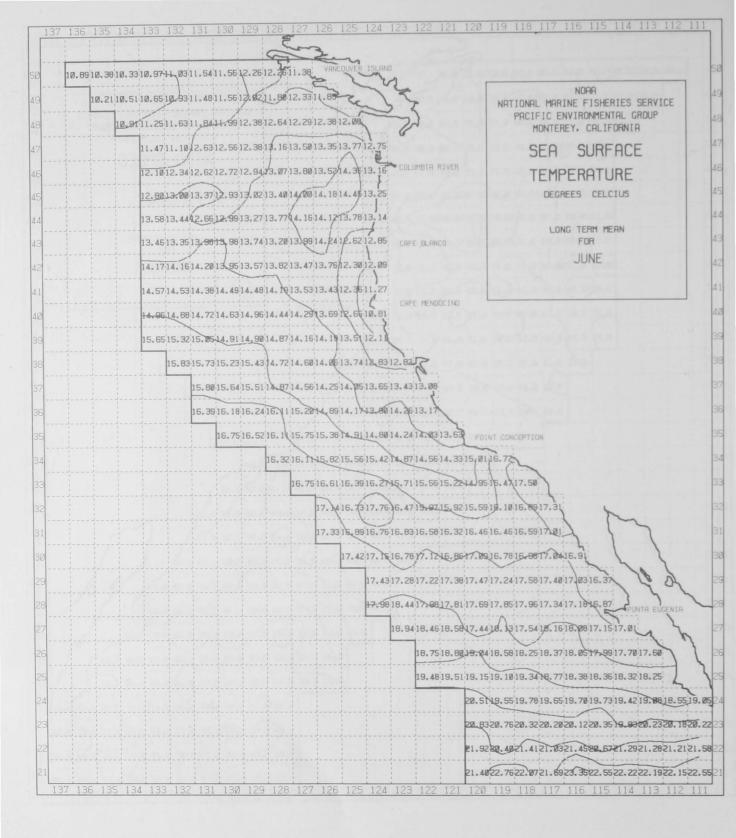
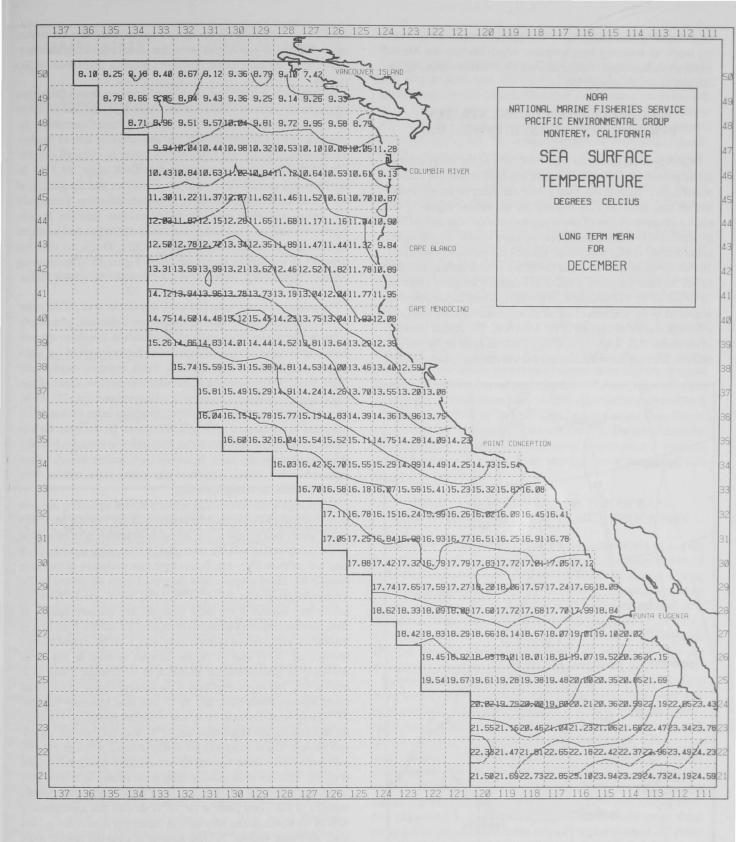



Figure 13.—Long-term composite monthly mean sea surface temperature (°C) distribution for June. The contour interval is 1.0°C.

 $\textbf{Figure 14.--Long-term composite monthly mean sea surface temperature (°C)} \ \ distribution for \ December. \ The contour interval is \ 1.0°C.$

local climate by contributing to the formation of low stratus clouds and fog below the boundary layer inversion, which lies between 300 and 500 m above the surface. Farther seaward the cloud deck breaks up into cumulus clouds (Neiburger 1960).

DISTRIBUTION OF COASTAL STRATUS IN RELATION TO COASTAL UPWELLING

From May to September the coasts of California and Baja California are influenced by an extensive deck of low-level stratus and stratocumulus clouds. These clouds have a profound effect on the short-wave and net long-wave radiation reaching the sea surface. Figure 15 displays a schematic pattern of this stratus region which was derived from analysis of early satellite photographs by Gerst (1969). Typical surface isobar and sea surface temperature patterns are included in the figure. The wedge-shaped area of stratus clouds has its northern terminus near lat. 40°N; Gerst found that it was most frequently located between lat. 35°N and 41°N. The boundaries of this stratus cloud deck appear to be controlled by the direction of the air flow, the sea surface temperature gradients, and the divergence of the wind field. The coastal boundary of the stratus deck is known to undergo diurnal shifts in the onshore-offshore direction due to the land-sea thermal contrast, which results in

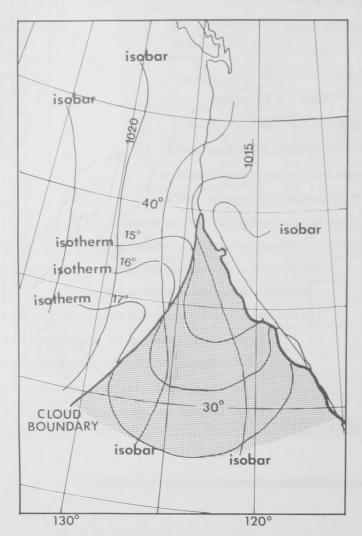


Figure 15.—Schematic diagram of the typical summer pattern of low stratus clouds and the corresponding surface pressure and sea surface temperature patterns (after Gerst 1969). The region of the stratiform cloud mass is shaded. Typical summer values of sea surface temperature (°C) and surface pressure (mbar) are indicated on the chart. The contour intervals are 1.0 °C for temperature and 2.5 mbar for pressure.

the afternoon dissipation of clouds in a narrow zone adjacent to the, coast. The diurnal variation of the stratus cloud cover along the coast appears to be strongest in the Southern California Bight south of lat. 34.5°N.

Neiburger et al. (1945) distinguished between stratus formation processes in southern California and those in central and northern California. Abrupt turning of the coastline at Point Conception, the presence of the Channel Islands, and the extensive area of shallow water influencing the sea temperatures along the coast all contribute to the different nature of the stratus south of lat. 34.5°N. In northern and central California, the formation and dissipation of the stratus was thought to be an advective phenomenon. Frequently the subtropical high pressure center extends into the Pacific Northwest and the winds along the coasts of Oregon and northern California become northeasterly (Lane 1965). This is the situation depicted by the surface isobar pattern in Figure 15. The resulting offshore flow of dry, warm air is not favorable for stratus formation.

The presence of cool, upwelled water in a narrow zone, of the order of 50 km, adjacent to the coasts of Oregon and California, particularly in the vicinity of prominent capes and headlands, is thought to enhance the low level cloudiness and often promotes the formation of fog when the prevailing air flow brings relatively warm, moist air over the cold water. Tont (1975) described a relationship between low values of percent possible sunshine measured at San Diego airport (lat. 32° 44′N, long. 117°10′W) and high values of an upwelling index (Bakun 1973) computed for a location 2° of longitude offshore. He attributed the low values of percentage sunshine during May and June to relatively heavy cloud cover along the coast. Relatively high surface salinity values measured at the Scripps Institution pier during these months were assumed to indicate strong upwelling.

To investigate the relationship between coastal upwelling and low level cloudiness we compared the annual cycles of monthly anomalies of low level cloud amount at several locations known to be influenced by coastal upwelling with the anomalies in 1° squares situated 10° of longitude offshore (Fig. 16). In this figure the deviations of the mean monthly low cloud amounts from the annual mean are plotted for the 1° coastal squares at lat. 40°N, 37°N, 33°N, 30°N, and 27°N and for the offshore squares at the same latitudes. The offshore squares all show positive anomalies during some or all of the months from May to September, with seasonal changes of up to 0.2. At the coastal squares between lat. 30°N and 37°N, the summer increase in low cloud amount is the greatest and the amplitude of the seasonal change is as large as 0.3. The larger amplitude of the seasonal change in low cloud cover between Punta Baja, lat. 30°N, and near Monterey Bay, lat. 37°N, may be attributed to the effects of coastal upwelling. However, the region near Cape Mendocino, lat. 40°N, does not show any significant changes in low cloud amount during summer, although this area experiences the coldest sea surface temperatures during this season (Fig. 13). This lack of an increase in the mean stratus cloud cover may be due to the frequent offshore flow of air (Lane 1965). The monthly statistics of low cloud cover at lat. 40°N showed that approximately 40% of the reports during May through September were coded as clear (i.e., no clouds visible). A large number of clear-sky reports could result from a predominance of reports taken in the afternoon if there were strong diurnal variation in the cloud cover. However, the longterm composite low cloud amounts for the 1° square at lat. 40°N did not show statistically significant differences between the morning (1000 PST) and afternoon (1600 PST) synoptic observation times. The

⁵Lee, T. F. 1979. Diurnal variations of coastal stratus. Pacific Missile Test Center, TP-80-02, Point Mugu, Calif., 51 p.

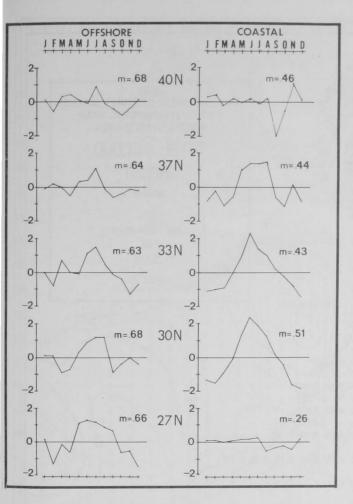


Figure 16.—Monthly anomalies of low cloud amount (tenths) for lat. $40\,^{\circ}N$, $37\,^{\circ}N$, $33\,^{\circ}N$, $30\,^{\circ}N$, and $27\,^{\circ}N$ in the $1\,^{\circ}$ squares near the coast and $10\,^{\circ}$ offshore. The mean annual low cloud amount from which the anomalies were computed is indicated in each plot by the value (m).

coastal cloud cover near Punta Eugenia at lat. 27°N shows very little seasonal change, reflecting the coastal desert climate of southern Baja California, with cloud cover < 0.3 throughout the year.

Although the annual cycles of low cloud cover show local maxima at locations corresponding to the sites of upwelling along the central and southern California coasts, the long-term composite monthly total cloud cover distributions reveal spatial minima in cloud cover at the coast, coincident with areas of cold upwelled water. Figure 17 displays the composite monthly mean total cloud cover for July. Cloud cover values of about 0.5 of sky obscured are found in the Cape Blanco-Cape Mendocino area and south of Point Conception. Beyond 200 to 300 km from the coast, cloud cover varies from 0.7 to 0.8 of sky covered. The low cloud cover south of Punta Eugenia, < 0.4, is a permanent feature associated with the persistent offshore flow of dry continental air. The pattern of cloud minima at the coast during summer is substantiated in a number of recent climatological atlases, e.g., U.S. Naval Weather Service Detachment (1977) and U.S. Department of Commerce and U.S. Air Force (1971). Figure 18 displays the composite mean cloud cover over the North Pacific on a 2.5° latitude-longitude grid for July derived from a compilation of satellite images during the period 1965 to 1972. Sopleths are labeled in units equivalent to oktas of sky covered. Values of 3 to 3.5 oktas along the coasts of Oregon and California and off the coast of Baja California are equal to cloud cover of 0.4 to 0.45

of sky covered. These estimates are independent of the surface marine data.

Simon (1977) analyzed mean cloudiness in an area off California from May to September 1975 using 6-hourly photographs from the geostationary satellite SMS-2. He found a minimum cloudiness zone off the coasts of northern and central California, which was closely associated with a region of maximum divergence in the surface winds, particularly during July. The seasonal variation of the minimum cloudiness line appeared to follow the variations of the summer "monsoon" circulation along the California coast. The minimum mean cloudiness values near 0.5 may reflect the tendency for cloudiness in the 1° squares to be either clear or completely overcast, as noted by Simon in his analysis.

A relative minimum in cloud cover and cool sea surface temperatures at the coast during summer increase the short-wave radiation and decrease the net long-wave radiation reaching the sea surface, cause sensible heat flux to the ocean, and reduce the loss of heat from evaporation. In July, cloud cover increases from 0.5 of sky covered near the coast, between lat. 39°N and 44°N, to 0.8 of sky covered offshore (Fig. 17). This change in cloud cover results in a 25% decrease in short-wave radiation, from approximately 275 W/m2 near the coast to 205 W/m2 offshore (Appendix I, Chart 7). In this same region, vapor pressure and sea surface temperature increase in the offshore direction as well. The observed zonal gradients in cloud cover, vapor pressure, and sea surface temperature lead to a 55% reduction in computed back radiation, from 40 W/m2 between Cape Mendocino and Cape Blanco to 18 W/m², 10° of longitude offshore (Chart 19). The net effect of the onshore-offshore gradients in cloud cover is to produce a relatively large net radiative flux to the ocean near the coast in comparison with the areas farther offshore.

SEASONAL VARIATION OF THE OCEAN-ATMOSPHERE HEAT EXCHANGE PROCESSES

The mean annual cycles of the various components of surface heat flux presented in Appendix I are shown in Figure 19 for the eight 1° squares indicated in Figure 1. Four of the locations along the coast were chosen to illustrate the effects of coastal upwelling on the heat fluxes and to show the range of conditions from near Vancouver Island (lat. 50°N, long. 127°W) to Punta Eugenia (lat. 27°N, long. 114°W). The other four locations are 10° of longitude offshore from the coastal squares, and were selected to show the contrast of open ocean conditions.

Radiation from sun and sky is a function of the seasonal variation in the declination and altitude of the sun and the cloud cover at a particular location. In the range from lat. 20°N to 50°N, the incoming radiation from a cloudless sky reaches maximum values at all latitudes in mid-June and minimum values in December. The effects of the larger mean total cloud cover in the offshore squares during nearly all months is evident in the smaller \bar{Q}_s values (curve 1) at the offshore locations, except at lat. 50°N where the coastal square experiences greater cloud cover during winter. During summer (Appendix I, Charts 6-8) the gradient in cloud cover from about 0.8 of sky obscured in the offshore region to about 0.5 at the coast amounts to a 15 to 20% increase in incident solar radiation at the coast. The onshore-offshore difference is even greater at lat. 27°N where the coastal desert climate results in a persistent low mean cloud cover of < 0.4. The effects of an alongshore gradient in cloud cover near Punta Eugenia are particularly evident in June and July (Fig. 17; Charts 6, 7). A 30% increase in incident solar radiation is realized, and Q₅ varies from 220 W/m² north of lat. 29°N to 290 W/m2 just south of Punta Eugenia. A relatively constant cloud cover throughout the year is evident in the smooth sinusoidal varia-

⁶Sadler, J. C., L. Oda, and B. J. Kilonsky. 1976. Pacific ocean cloudiness from satellite observations. UHMET 76-01, Dep. Meteorol., Univ. Hawaii, 137 p.

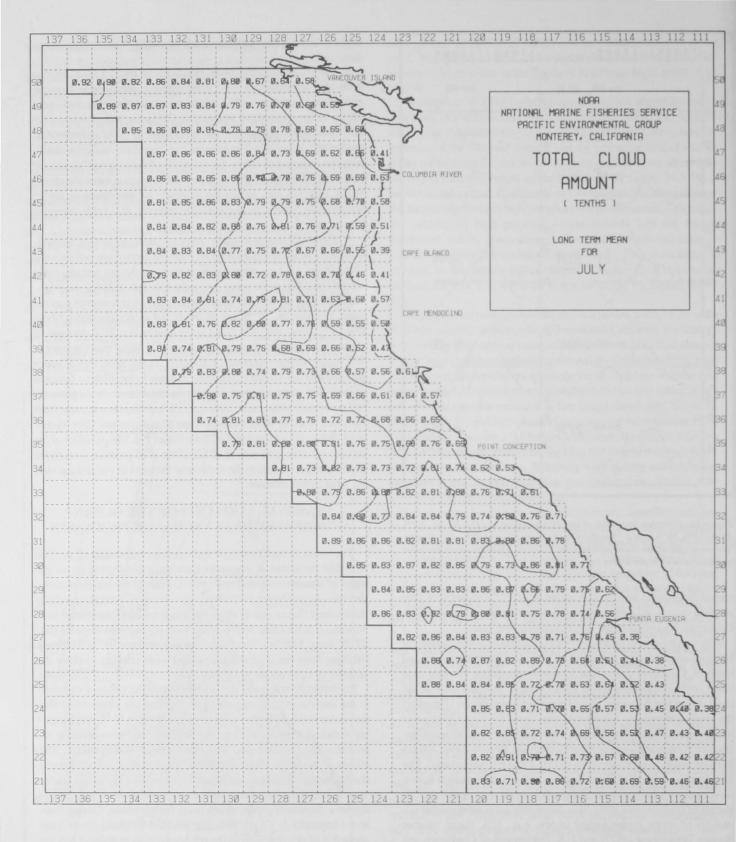
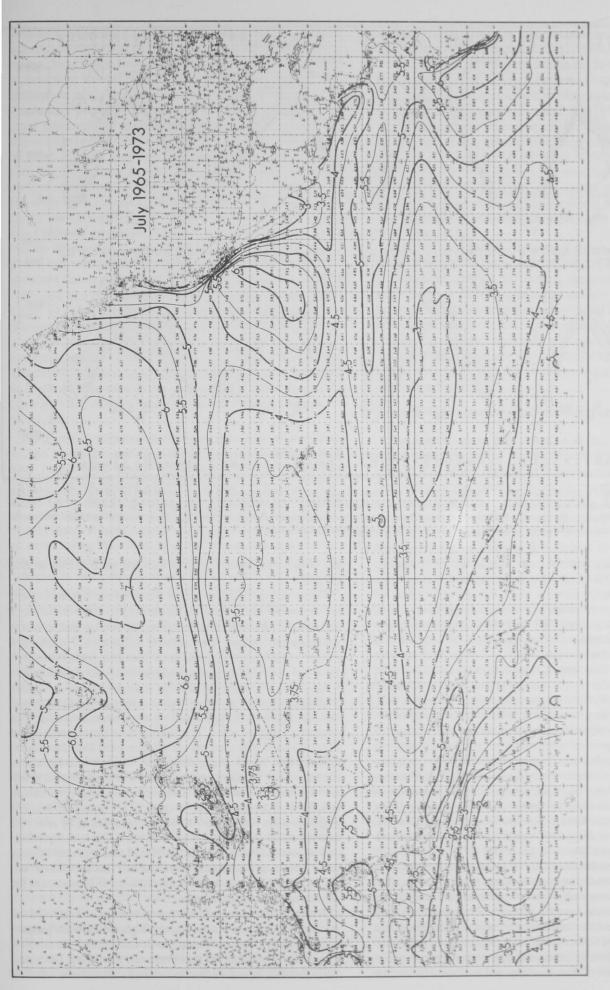



Figure 17.—Long-term composite monthly total cloud amount (tenths) distribution for July. The contour interval is 0.1.

an total cloud cover (oktas) over the North Pacific Ocean for July derived from nephanalyses of meteorological satellite photographs during the period 1965-73. The 2.5° latitude-longitude grid extends from 30°S to 60°N latitude and from 105°E to 75°W longitude. The contour inteval is 0.5 okta (after Sadler et al. 1976),

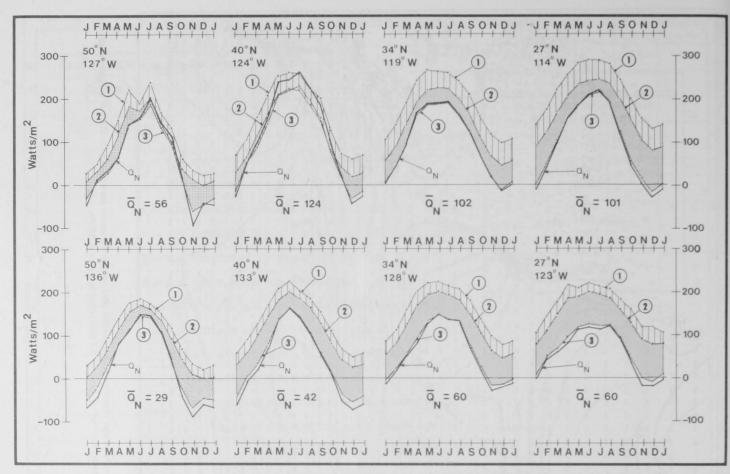


Figure 19.—Mean annual cycles of heat exchange processes for the 1° squares at lat. 50°N, 40°N, 34°N, and 27°N near the coast and 10° offshore. The upper row displays 1° square values at the coast and the lower row displays the offshore exchange processes. 1 denotes values of \bar{Q}_S ; 2 denotes $\bar{Q}_S - \bar{Q}_B$; 3 denotes $\bar{Q}_S - \bar{Q}_B - \bar{Q}_E$, and the heavy line denotes $\bar{Q}_N - \bar{Q}_B - \bar{Q}_E - \bar{Q}_C$. The hatched regions between 1 and 2 denote the magnitude of \bar{Q}_B and the stippled regions between 2 and 3 indicate the magnitude of \bar{Q}_E . The annual mean net heat exchange (\bar{Q}_N) is indicated for each location. Units are W/m².

tion of solar radiation at the coastal square at lat. $27^{\circ}N$ with the minimum value of 131 W/m^2 in December and the maximum value of 290 W/m^2 in June.

The annual range of monthly \bar{Q}_s values is larger in the coastal upwelling areas off northern California and Oregon than in the corresponding squares offshore, which primarily reflects the effect of relatively low cloud cover in summer when the input of solar radiation is the highest. The range is largest near the coast at lat. 40°N and 50°N where values range from <50 W/m² in winter (Chart 12) to more than 200 W/m² in summer (Chart 6). The lack of well-defined maximum in solar radiation in the offshore squares at lat. 27°N and 34°N is indicative of the extensive area of low-level stratocumulus clouds previously discussed.

The hatched areas between the two topmost curves for each location in Figure 19 indicate the annual cycles of heat loss due to effective back radiation, \bar{Q}_B . This term shows little seasonal or latitudinal variation over the entire California Current region. However, there is a tendency for lower values in summer (Chart 18) than in winter (Chart 24), except near the coast between San Francisco (lat. 38°N) and Vancouver Island (lat. 50°N). The principal gradients in the distributions of \bar{Q}_B are zonal and reflect the sharp increase in mean cloud cover offshore reduces the magnitude of the net long-wave flux emitted from the sea surface to approximately 20 W/m². Near the coast the estimated heat loss exceeds 50 W/m². The effects of horizontal variations in cloud cover on \bar{Q}_B are enhanced, but to a lesser extent, by corresponding increases in atmospheric vapor pressure in the offshore direction, and moderated by warmer

sea surface temperatures offshore with respect to conditions near the coast.

The annual cycles of latent heat flux from ocean to atmosphere are shown in Figure 19 by the stippled regions between curves 2 and 3. Variations in the latent heat flux are related to fluctuations in windspeed and sea-air vapor pressure differences. The principal seasonal variations in \bar{Q}_{E} occur in the nearshore areas particularly between Cape Mendocino and the Columbia River. In this region, the presence of cold upwelled water at the sea surface in summer cools the air, lowers the vapor pressure of the air close to the saturation vapor pressure at the sea surface temperature, and effectively suppresses latent heat flux. This effect is noted by minimum values of latent heat flux in a narrow coastal zone from Cape Mendocino to Vancouver Island during June, July, August, and September (Charts 30-33). In this region the latent heat flux is lowered to values of <5 to 20 W/m². In certain locations the turbulent flux may actually be from atmosphere to ocean (i.e., condensation). The nearshore areas south of lat. 40°N are characterized by relatively constant values of \bar{Q}_E , about 50 to 70 W/m², except in the upwelling regions south of Punta Baja (lat. 30°N) and south of Punta Eugenia (lat. 27°N) in spring and summer. Latent heat flux decreases to values of 30 to 40 W/m² at these locations due to the depression of the sea-air vapor pressure difference.

Seasonal variations in \bar{Q}_E are less pronounced in the offshore regions. Higher mean windspeeds and larger sea-air vapor pressure differences contribute to evaporative fluxes which are 30 to 100% greater in winter (Chart 36) than in summer (Chart 30). Horizontal gradients of \bar{Q}_E lie in a southwest-northeast direction and values of

latent heat flux are approximately 20 to 40 W/m² larger in southern and offshore sections of the grid than in the northern and inshore regions. Values range from about 30 to 60 W/m2 north of lat. 40°N to about 60 to 100 W/m² south of lat. 30°N. The observed spatial distributions of Q_E primarily result from systematic variations in sea-air vapor pressure differences and to a lesser extent from horizontal gradients in windspeed. Monthly mean winds are, at most, only twice as large off the Pacific Northwest compared with values off Baja California. However, mean sea-air vapor pressure differences are 2 to 4 times greater in the southern region than in the northern section and 2 to 3 times larger offshore than near the coast. The north-south contrast is particularly evident in winter (Charts 25-27) when the atmospheric circulation off the coast of southern Baja California contributes to relatively large mean sea-air vapor pressure differences $(e_w - e_a > 10 \text{ mbars})$. During summer (Charts 30-32), east-west gradients in \bar{Q}_E are enhanced by the reduction in latent heat flux near the coast due to the local effects of upwelling.

Sensible heat flux between ocean and atmosphere is depicted in Figure 19 by the difference between curve 3 and the heavy line denoting \bar{Q}_N . The magnitude of \bar{Q}_C is virtually negligible over much of the California Current region due to the small sea-air temperature differences ($\bar{T}_s - \bar{T}_a < 1.0\,^{\circ}\text{C}$) over the area during most of year. The sensible heat flux from ocean to atmosphere ranges from near 0 to 20 W/m² over most of the grid with the higher heat losses ($\bar{Q}_C > 30 \text{ W/m²}$) during winter in the northern latitudes (Charts 37, 38, 47, 48).

The largest \bar{Q}_C values occur during summer in the area adjacent to Cape Mendocino and Cape Blanco, when upwelling of cold water causes mean air-sea temperature differences to exceed 1.5°C; the ocean receives a sensible heat gain of up to 30 W/m² (Charts 42-45). Sensible heat gains are <5 W/m² during late spring and summer along the coast of Baja California and values of 5 to 10 W/m² extend over broad regions from Point Conception to Vancouver Island during May, June, July, and August. In a region off the coast of Washington, high vertical stability associated with the Columbia River freshwater plume (Barnes et al. 1972) may contribute to relatively warm sea surface temperatures and, consequently, to sensible heat loss in this area (Charts 41-43).

The net heat gain or loss across the sea surface, \overline{Q}_N , is indicated by the heavy lines in Figure 19. The annual mean net heat exchange is characterized by heat transfer to the ocean over the entire region, a feature previously described by Wyrtki (1965). The annual net heat gain is much larger near the coast than offshore as a result of small heat losses by turbulent heat fluxes and the greater input of solar radiation due to the lower relative cloud cover during summer. The ocean loses heat to the atmosphere over the entire area only in December (Chart 60).

Over most of the California Current region the net heat exchange is determined by a balance between the incident solar radiation and the heat losses due to effective back radiation and latent heat flux. In the offshore regions the largest heat loss term is the latent heat flux, \bar{Q}_E , while along the coast the effective back radiation, \bar{Q}_B , is the largest heat loss term. Seasonal variations in the components contributing to oceanic heat loss are largest in the coastal upwelling regions off northern California and Oregon and to a lesser extent off the coasts of Baja California and Vancouver Island where the presence of cold upwelled water in late spring and summer reduces the turbulent flux of latent heat and causes sensible heat gain to the ocean, thereby increasing the heat input to the ocean.

The coastal upwelling zones along the west coast of the United States and Baja California experience the largest net annual heat gain as a result of the combined effects of the increase in incident solar radiation in regions of minimum cloudiness and the decrease in heat losses by turbulent fluxes. The net annual heat gain is largest off Cape Mendocino with a mean value of 124 W/m². Seasonal variations in the net heat exchange within the 1° squares adjacent to the coast are graphically portrayed in the time series isogram displayed in Figure 20. The coastal zone north of lat. 47°N is characterized by net heat losses of more than 100 W/m² during December and January and net heat gains of 200 W/m² during July. The coastal upwelling zone between lat. 38°N and 44°N shows net heat gains of 200 to 250 W/m² during July and relatively small heat losses of 20 to 40 W/m² during winter. The coastal square at lat. 34°N, southeast of Point Conception, experiences net heat gain during nearly the entire year with maximum heat gain > 180 W/m² during May, June, and July.

There are considerable latitudinal differences in the annual cycles of net heat exchange along the coast of Baja California. The region near Punta Baja (lat. 30°N) is characterized by a relatively small maximum net heat gain during summer of about 150 W/m² due to high cloud cover (0.8) during June and July. The area south of Punta Eugenia (lat. 27°N) is influenced by a less extensive cloud deck and shows much higher net heat gain, >200 W/m², during spring and summer (Charts 53-56), which may mask the effects of coastal upwelling on sea surface temperatures in this area (Bakun and Nelson 1977).

Spectral Characteristics of Heat Exchange Processes

The monthly mean data described in this report resolve the annual cycle. However, marine biological communities must respond to a wider spectrum of atmosphere-ocean variations on time scales ranging from a few days to several years. Relatively rapid diurnal and "event scale" fluctuations (i.e., periods of 1-10 d) contribute to turbulent mixing and dispersion of biological microstructure. Lower frequency "climatic" variations, which appear as long-term trends or periodicities, or as intervear differences, affect fisheries over much broader space and time scales. Year-to-year fluctuations in the timing, amplitude, and spread of the seasonal production cycle in major spawning regions may induce significant changes in recruitment of year classes to the fisheries (Cushing 1975). Annual differences in the character of the production cycle are environmentally controlled and related to changes in the stability of the upper water column which is enhanced by an increase in solar radiation and a decrease in wind strength.

Available ship reports are unevenly distributed in space and time. Therefore, it is generally not possible to construct consistent time series of air-sea interaction processes for large regions and preserve fine spatial resolution, by applying the simple space and time averaging methods which were used to assemble the long-term monthly means. Where the density of reports is large, e.g., within 300 km of the coast south of Point Conception, statistically significant monthly mean values might be computed over fairly long periods. A few time series of air-sea interaction processes have been produced, either by compositing ship reports in 5° square blocks (Clark et al. 1974) or by making use of objectively analyzed meteorological products (Bakun 1973) which have a spatial resolution of approximately 3°. Analyses of these data show wide variations in space and time. However, the errors associated with the low frequency, nonseasonal fluctuations are generally unknown, and there is little coherence or persistence in the monthly anomaly patterns of the heat exchange processes (Clark et al. 1974).

Seasonal and nonseasonal fluctuations in net heat exchange, Q_{ss} , were investigated at a few selected locations in the Southern Cali-

NOAR - NATIONAL MARINE FISHERIES SERVICE PACIFIC ENVIRONMENTAL GROUP MONTEREY, CALIFORNIA

NET HEAT EXCHANGE

(WATTS/M**2)

LONGSHORE TIMESERIES

GRID SECTION (1) LONG TERM MEAN

60-48,412.2631.5962.86139.7155.0197.2144.4109.514.24-95.0-48.650 4.027.2996.86164.5182.8212.0165 1000.30157.0186.3179.4141.073.96-11.273.0-134 47-44.0-34.742.7082.07163.3172.6223.8162.987.6328.20-8.74-30.24 46-26.0-4.5143.5785.12197.7185.7203.1175.7113.624.67-8.18-58.4 45-57,5 4,4529.4390.24197.0175.6209.5178.\$101.726.92-33.4-67.74 44-47,9-13,656,671(18.3155.4194(8218.6)67.5114.864.21-15.3-41.34 43 34.9-6.5565.3996.61148.9186.8299.0181.7168.357.54 42-38.3-36.878.59 (10.8) 69.8221.1236.3189.2 (21.658,66 41-18.7-9.4879.44714.0201.6245,9240.8200.9126. 40-27.050.1297.54150.1238.0243.5262.0224.6)84 39-23.2)4.6064.24130.8185.8223.9222.4202.1162.848,66-0/23-37.5 38-9.9635.9476.99121.9179.7204.2793.2161.8125.754.53 9.74-34.4 37-17.120.9492.49144(5166.2190.6196.9156(8116.459.41 8.43-36.73 36-9.9318.8378.50128.7170.7193.5182.7166,5100.658.76 4.43-29.73 8529.30/73.75145.1173.7194.2184.6146.8111\344\8718.10-20.7 4443.4292.97166.4188.3186.7190.3161.6123.069.0118.09-13.634 2.5734.2675.10125.5751.8161.7172.8143.5113.160.09 7.08-28.33 8218.0958.0892.91132.3 (60.9170.5169.3158) 8120.766.5928.02 9.5233 8115.3643.9984.98124.1139.3146.5159.8128.6105(362.7315.39-13.53 6.8444.7781.64134.3143.1147.1160.4138.6111.454.8416.57-9.1038 8.3860.1675.16/125.7/169.2162.4182.8157 290,0757.50 6.61-23.0 3.6443.0888.09144/3172.2181.9192.0179.7019.947/37 0.73-30.1 7-11,340.0695.75158.6183.9208.3218.6180.8 17/643.61 2,92-28.5 -8.2448.9297.3815.1181.0208.9220.7/76.5108.329.85-6.29-37.52 6.2944.1791.85145.7178.2194)5212.4165.5125. 54.13-1)17-27.2 1 0247 7098 89147 1169 8205 0206 0152 2117 841 95 17 7-31 1 7.8443.7787.82140.5162.2184.8803.9158 2113 153 05 0.2448.7995. 2139.0156.8163.1196.1159.0110.258.6611.71 19.948.0686.4383.30145.1160.0190.2156.5129.365.8010.61 7.86

Figure 20.—Seasonal cycle of net heat exchange near the coast. Means of net heat exchange were computed by month for the 1° squares immediately adjacent to the coast. Units are W/m2. The contour interval is 50.0 W/m². Negative values are shaded and indicate net heat loss from ocean to atmosphere.

fornia Bight (lat. 32°N, long. 117°W; lat. 32°N, long. 118°W; lat. 32°N, long. 119°W) and near Punta Eugenia (lat. 27°N, long.

114°W; lat. 27°N, long. 115°W). A 23-yr time series (1950-72) of monthly values was computed for each 1° square. For these particular grid points, the computed values were based on an average of 10 to 30 observations/mo. Spectrum analysis was used to demonstrate the predominance of the annual cycle and to possibly identify other frequency bands accounting for substantial variance.

Power spectra of Q_N at each location (Fig. 21A, B) show strong peaks at frequencies representing the annual cycle and suggest lesser peaks corresponding to a semiannual component. Referring to the 95% confidence limits for 10 degrees of freedom, it is clear that the variance associated with the annual cycle is at least an order of magnitude larger than the average level of variance at lower or higher frequencies. Within the Southern California Bight (Fig. 21A), no significant long period fluctuations are apparent. Near Punta Eugenia (Fig. 21B), there is a general increase in spectral energy density at low frequencies, from a relative minimum at a frequency corresponding to a 2-yr cycle to a relative maximum for periods exceeding 8 yr. This feature is also evident in power spectra of monthly anomalies of \bar{Q}_N (Fig. 21C), for which the seasonal variation in the time series has been removed by subtracting out the long-term (1950-72) monthly mean values. The increase in variance at low frequencies reflects the general 2- to 6-yr persistence in the sign of the annual Q_N anomalies at these locations.

Time series of net heat exchange may be characterized by large interannual differences, persistence, and long-term trends. However, these features may not be spatially coherent. Coherence functions were computed to test the significance of correlations between time series of Q_N in adjacent 1° squares. In the Southern California Bight (Fig. 21A), coherency squared consistently exceeds the 95% significance level for 10 degrees of freedom only in the frequency band from 0.06 to 0.11/ mo (0.7 to 1.3/yr). The spread over several frequency bands reflects the nonsinusoidal shape of seasonal fluctuations which tend to have a faster rate of change in spring and fall than in summer or winter. Near Punta Eugenia (Fig. 21B), coherency squared is significant (95% level) at frequencies corresponding to semiannual and annual periodicities and at frequencies < 0.03/mo (0.4/yr). Low frequency coherence remains significant at the 95% level after seasonal variations have been removed (Fig. 21C). The lack of significant coherence between adjacent squares in the Southern California Bight probably reflects the large uncertainty in net heat exchange calculations based on surface observations archived in the TDF-11 file, but also may be related to significant spatial variations over distances < 200 km in this region.

These data demonstrate the relatively large amplitude of the annual cycle in midlatitude atmospheric properties, which suggests that the long-term monthly mean heat exchange fields (Appendix I) represent the expected seasonal variability. More extensive time series calculations have been published by Clark et al. (1974). However, the wide variations and lack of persistence in patterns of net heat exchange anomalies computed from their data, in addition to our own results, support the conclusion that merchant vessel data may not always be sufficiently reliable to compute statistically significant indices of the month-to-month or interannual variations in air-sea interaction processes (Husby 1980).

Heat Budget of a Coastal Upwelling Region

The principal processes affecting the seasonal variation of air-sea heat transfer over the California Current are related to seasonal changes in the atmospheric circulation patterns which modify the cloud cover and the oceanic circulation. Coastal upwelling has a marked effect on the turbulent fluxes of heat, particularly off north-

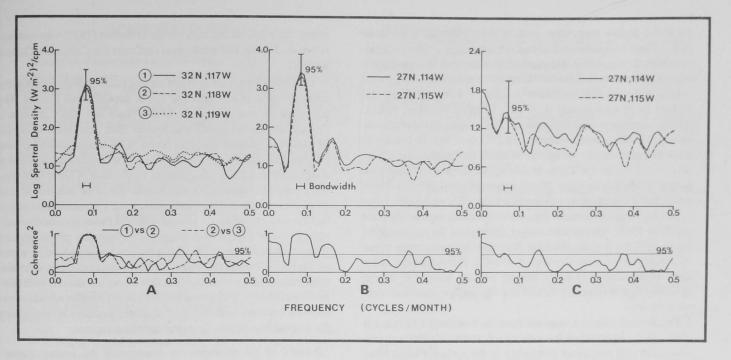


Figure 21.—Power and coherence spectra of monthly mean net heat exchange estimates for 1950-72. Spectra are plotted for time series at A) lat. 32°N, long. 117°W; lat. 32°N, long. 118°W; lat. 32°N, long. 119°W and B) lat. 27°N, long. 114°W; lat. 27°N, long. 115°W. Spectra of the monthly anomalies from the long-term monthly means at lat. 27°N, long. 114°W and lat. 27°N, long. 115°W are displayed in Figure C.

ern California and Oregon. On an annual time scale the entire region experiences net heat gain to the ocean. Previous summaries have shown that the North Pacific Ocean gains heat primarily on the eastern side (Wyrtki 1965), and we have shown that the net heat gain reaches a maximum in the coastal upwelling region off northern California as a consequence of relatively low cloudiness and a change in sign of the turbulent heat fluxes at the sea surface due to the presence of cold water during summer. In the absence of a climatic increase in the mean sea surface temperature along the coast (i.e., in a steady state balance), this net annual heat gain must be balanced by mixing and cold advection, i.e., the influx of cold water into the region, either by horizontal or vertical motions.

In the region of maximum offshore Ekman transport between Cape Mendocino and Cape Blanco, the amplitude of the annual cycle of sea surface temperature is suppressed (Bakun et al. 1974). Near the coast, the difference between minimum and maximum temperatures is <3°C. From May to September, \overline{T}_s increases at a mean rate of 0.5°C/mo. In the offshore areas, the seasonal range of sea surface temperature exceeds 6°C and \overline{T}_s increases at a rate >1.5°C/mo during summer. In the California Current, maximum sea surface temperatures occur in September, well after the period of maximum net oceanic heat gain in June and July. However, the maximum in the annual cycle of \overline{Q}_N corresponds directly to the maximum rate of change in surface temperature.

The equation of conservation of heat for an incompressible fluid, expressed in terms of mean temperature, \bar{T} , is given by:

$$\frac{\partial \overline{T}}{\partial \overline{t}} = \frac{\overline{Q}_{N}}{\rho_{0}c_{P}z} - \overrightarrow{\overline{V}}_{H} \bullet \nabla_{H} \overline{T} - \overline{w} \frac{\partial \overline{T}}{\partial z} + A_{H} \nabla_{H}^{2} \overline{T} + A_{\overline{z}} \frac{\partial^{2} \overline{T}}{\partial z^{2}}$$
(11)

where $\partial/\partial t$ is the local time rate of change with time scales large compared with the averaging time; \overline{Q}_N is the mean net heat exchange across the sea surface which heats a column of water extending from the surface to a depth z; ρ_0 is density; c_p is the specific heat of water at constant pressure; $\overrightarrow{V} = \overrightarrow{ui} + \overrightarrow{vj}$ is the mean horizontal velocity; \overrightarrow{w} is the mean vertical velocity component

(positive upward); ∇_H and ∇^2_H are the horizontal gradient and Laplacian, respectively; and A_H and A_Z are the horizontal and vertical coefficients of eddy thermal conductivity. Assuming a constant mixed layer depth, the terms in Equation (11) express a balance between the local change of temperature (heat content) and those changes resulting from radiative and turbulent heat fluxes across the air-sea interface and horizontal and vertical advection and diffusion (i.e., mixing).

To test the general validity of our heat exchange calculations we applied Equation (11) to the upper 30 m of the water column in a 3° square adjacent to Cape Mendocino and centered at lat. 40°N, long. 125°W. The terms were evaluated by month and averaged over the "upwelling season" from May to September to obtain a mean seasonal heat budget appropriate for this region. We used climatological surface and subsurface temperature data (Robinson 1976) to estimate the local change, the horizontal and vertical gradients, and the second derivatives of temperature. Mean east and north components of velocity were obtained from seasonal distributions of surface currents based on ship drift observations (Stidd 1974).

During summer, the mean net heat flux, \bar{Q}_N , across the air-sea interface is $180 \, \text{W/m}^2$. To calculate the equivalent rate of change in temperature, we used the constant values $\rho_o = 1.0 \times 10^3 \, \text{kg/m}^3$, $c_\rho = 4.180 \times 10^3 \, \text{J/kg}$ per °C, and $z = 30 \, \text{m}$. This mean surface flux equals a temperature increase at the rate of $3.7 \, ^{\circ}\text{C/mo}$. However, the local change of temperature in the upper 30 m is only $0.6 \, ^{\circ}\text{C/mo}$. The excess heat input at the surface must be balanced by horizontal and vertical advection and diffusion.

We estimated mean zonal and meridional temperature gradients of -7.4×10^3 and -3.6×10^3 °C/km, respectively. The corresponding second derivatives were 4.7×10^5 °C/km² in the east-west direction and 2.0×10^5 °C/km² in the north-south direction. Combining these values with mean east and north velocity components of -2.0 and -10.0 cm/s and assuming a horizontal eddy diffusion coefficient of 100 m²/s (Bathen 1971) gives a mean horizontal advection ($-V_H \bullet \nabla_H \overline{T}$) of -1.3 °C/mo and mean horizontal diffusion ($A_H \nabla A_H^2$) of 0.02 °C/mo. The sign of the advection term implies cold advection which is consist-

ent with a surface temperature gradient from southwest to northeast (Fig. 13) and an equatorward surface current with an offshore component (Pattullo et al. 1969). At a depth of 30 m the vertical second derivative of temperature is -8.0 × 10⁴ °C/m². The approximate scale for the vertical eddy diffusion coefficient is $A_{\rm H}/A_{\rm Z}=1.0\times10^{-6}$ (Pond and Pickard 1978); consequently $A_z = 1.0 \times 10^4 \text{m}^2/\text{s}$. Therefore, vertical mixing, as parameterized in Equation (11), leads to a loss of heat at the base of the water column at the rate of 0.2°C/mo. From the balance of terms in Equation (11), we inferred mean vertical temperature advection $(-\bar{w}\partial \bar{T}/\partial z)$ of -1.6°C/mo. In this region, the mean vertical temperature gradient in the upper 30 m is approximately 0.05 °C/m. These values imply a mean (upward) vertical velocity of 32 m/mo, which lies within the range of estimates for coastal upwelling regions (Wooster and Reid 1963). Similar heat budget calculations for an upwelling region off Cabo Bojador (Bowden 1977) yielded substantially larger 10-d mean vertical velocities (e.g., 4-10 m/d). The magnitudes of the terms in Equation (11) imply that the primary balance in coastal upwelling regions is between surface heat flux and horizontal and vertical advection.

The vertical velocity computed from the heat budget equation is considerably larger than the mean open ocean vertical velocity associated with horizontal divergence in the surface Ekman layer (Yoshida and Mao 1957). We used the approximate relationship,

$$\overset{-}{w} \approx \frac{\overrightarrow{k \bullet (\nabla \bullet \tau)}}{\rho_{o} f}, \tag{12}$$

where $\overrightarrow{k} \bullet (\nabla \bullet \overrightarrow{\tau})$ is the vertical component of wind stress curl, and f is the Coriolis parameter, and distributions of wind stress curl (Nelson 1977) to independently compute a mean upwelling velocity of 5 m/mo. The heat budget calculations would be consistent with this estimate of \overrightarrow{w} if the surface heat flux, \overline{Q}_N , were distributed from the surface to a depth of 50 m.

The uncertainty in each of the terms in Equation (11) may be as large as the error in \bar{Q}_N , which we estimated to be 15 to 70%. Roden (1959) estimated an error of 50% in calculating the horizontal advection term from observed velocity components and temperature gradients. In addition, the physical basis for parameterizing vertical mixing as a function of a constant eddy coefficient, A_7 , and the vertical second derivative of temperature, $\partial^2 \overline{T}/\partial z^2$, is not well founded. Therefore, the computed vertical eddy diffusion may grossly underestimate the effects of mixing at the base of the mixed layer (Niiler and Kraus 1977). In our heat budget calculations, an order of magnitude increase in Az would have resulted in an approximate balance between heat gain at the surface and heat loss by horizontal advection and vertical mixing, without the requirement for vertical advection. Because of the uncertainties associated with heat budget calculations, the "balance" which we computed may have been fortuitous. However, these calculations demonstrate that our values of net surface heat exchange are not inconsistent with independent estimates of temperature advection and diffusion.

SUMMARY AND CONCLUSIONS

Distributions of long-term composite monthly atmosphereocean heat exchange processes have been presented for the California Current region over a 1° latitude-longitude grid. The monthly fields represent summarizations of the radiative and turbulent heat fluxes computed from individual surface marine weather reports archived in the National Climatic Center's TDF-11 data file. This report complements the earlier work of Nelson (1977) who summarized wind stress and wind stress curl over the California Current region.

The climatological fields of surface heat fluxes provide insight to the important areas of heat gain and loss in the California Current. The region off the west coast of the United States and Baja California is characterized by net annual heat transfer from atmosphere to ocean. Maximum net oceanic heat gain occurs in the coastal upwelling zone off northern California as a consequence of relatively low cloud cover compared with offshore distributions, suppression of latent heat flux, and a reversal of the sensible heat transfer due to the presence of cold water during summer. These same features (i.e., maximum net oceanic heat gain, low cloudiness, and small turbulent fluxes in coastal upwelling regions) are evident in all major eastern boundary current systems (Hastenrath and Lamb 1978). Maximum heat loss occurs during winter off the Pacific Northwest. Simplified heat budget calculations demonstrate that our values of surface heat flux are not inconsistent with independent estimates of horizontal and vertical temperature advection and show the important contribution of advective processes in determining the seasonal heat balance in coastal upwelling regions.

Because of the heterogeneous character of the surface marine weather observations, relatively large errors are associated with empirical estimates of the radiative and turbulent heat fluxes. Nonrandom distributions of reports, sampling errors, fair-weather bias, and methods of computation introduce uncertainties which cast doubt on the validity of heat exchange estimates derived from merchant vessel data. Reasonable estimates of the error in each heat exchange component (e.g., 10%) lead to errors in the long-term mean net heat exchange, \bar{Q}_N , ranging from 10 to 70%. Our analyses indicate that the principal spatial and temporal features of surface heat flux over the California Current region (e.g., maximum oceanic heat gain near the coast during summer) are independent of computational methods which use monthly mean properties and variable exchange coefficients in the empirical formulae as opposed to individual observations and constant coefficients. Spectrum analyses of representative time series of \bar{Q}_N show a general absence of variance at low frequencies and demonstrate the large signal-to-noise ratio of the annual cycle in midlatitude regions. The lack of coherence between time series in adjacent 1° squares is partially explained by the errors in monthly heat flux estimates, even in densely sampled areas.

The results of this study will be useful in modeling mean seasonal variations in the thermal structure of the California Current. For the purpose of indicating anomalies from the long-term means, however, further research in marine boundary layer processes is needed to place narrower confidence limits on the derived atmosphere-ocean exchanges. Because the largest relative errors are associated with heat exchange components which also have the largest absolute magnitudes (i.e., Q_s and Q_E), more extensive experimental studies in the open ocean and in the coastal boundary zone must be conducted 1) to improve the empirical formulae for short-wave radiation by using more objectively measured parameters (e.g., satellite observations of cloud cover), and 2) to evaluate the moisture flux parameterization for wider ranges of atmospheric stability and windspeed. With the increased application of air-sea interaction research to global climatic and fisheries problems, there is also an urgent requirement for consensus on the empirical formulae and methods of computation to be used. Although the absolute magnitudes of the long-term monthly mean values cannot be precisely fixed, the spatial and temporal consistency of independent estimates of surface heat exchange indicate that the geographical patterns (Appendix I) are realistic and significant.

ACKNOWLEDGMENTS

Invaluable discussions and advice on all aspects of atmosphereocean heat exchange were provided by G. R. Seckel, Pacific Environmental Group, NMFS, NOAA. R. W. Garwood, Naval Postgraduate School, suggested the editing procedures which were used to refine calculations of latent and sensible heat flux. C. N. K. Mooers, Naval Postgraduate School, kindly reviewed the revised manuscript. Historical surface marine data and electronic computing and plotting facilities were provided by the U. S. Navy, Fleet Numerical Oceanography Center, Monterey, Calif.

LITERATURE CITED

ANDERSON, R. J., and S. D. SMITH.

1981. Evaporation coefficient for the sea surface from eddy flux measurements. J. Geophys. Res. 86:449-456.

BAKUN, A.

1973. Coastal upwelling indices, west coast of North America, 1946-71. U.S. Dep. Commer., NOAA Tech. Rep. NMFS SSRF-671, 103 p.

BAKUN, A., D. R. McLAIN, and F. V. MAYO.

1974. The mean annual cycle of coastal upwelling off western North America as observed from surface measurements. Fish. Bull., U.S. 72:843-844.

BAKUN, A., and C. S. NELSON.

1977. Climatology of upwelling related processes off Baja California. Calif. Coop. Oceanic Fish. Invest. Rep. 19:107-127.

BARNES, C. A., A. C. DUXBURY, and B.-A. MORSE

1972. Circulation and selected properties of the Columbia River effluent at sea. In A. T. Pruter and D. L. Alverson (editors), The Columbia River estuary and adjacent ocean waters, p. 41-80. Univ. Wash. Press, Seattle.

BATHEN, K. H.

1971. Heat storage and advection in the North Pacific Ocean. J. Geophys. Res. 76:676-687.

BOWDEN, K. F.

1977. Heat budget considerations in the study of upwelling. In M. Angel (editor), A voyage of discovery, p. 277-290. Pergamon Press, N.Y.
BRIINT D.

1932. Notes on radiation in the atmosphere. I. Q. J. R. Meteorol. Soc. 58:389-420.

BUDYKO, M. I.

1956. The heat balance of the earth's surface (Teplovoi balans zemnoi poverkhnosti). Gidrometeorologicheskoe izdatel'stvo, Leningrad, 255 p. (Transl. 1958, 259 p.; Off. Tech. Serv., U. S. Dep. Commer., Wash., D.C., PB 131692.)

BUNKER, A. F.

1976. Computations of surface energy flux and annual air-sea interaction cycles of the North Atlantic Ocean. Mon. Weather Rev. 104:1122-1140.

BUSCH, N. E.

1977. Fluxes in the surface boundary layer over the sea. *In* E. B. Kraus (editor), Modelling and prediction of the upper layers of the ocean. Proceedings of a NATO Adv. Study Inst., p. 72-91. Pergamon Press, Oxford.

CARDONE, V. J.

1969. Specification of the wind distribution in the marine boundary layer for wave forecasting. N.Y. Univ., Dep. Meteorol. Oceanogr., Geophys. Sci. Lab. TR-69-1, 131 p.

CHARNELL, R. L

1967. Long-wave radiation near the Hawaiian Islands. J. Geophys. Res. 72:489-495.

CLARK, N. E.

1967. Report on an investigation of large-scale heat transfer processes and fluctuations of sea-surface temperature in the North Pacific Ocean. Ph.D. Thesis, Mass. Inst. Tech., Cambridge, 148 p.

CLARK, N. E., L. EBER, R. M. LAURS, J. A. RENNER, and J. F. T. SAUR.

1974. Heat exchange between ocean and atmosphere in the eastern North Pacific for 1961-71. U.S. Dep. Commer., NOAA Tech. Rep. NMFS SSRF-682, 108 p.

CUSHING, D. H.

1975. Marine ecology and fisheries. Cambridge Univ. Press, N.Y., 278 p. DAVIDSON, K. L.

1974. Observational results on the influence of stability and wind-wave coupling on momentum transfer and turbulent fluctuations over ocean waves. Boundary-Layer Meteorol. 6:305-331. DEARDORFF, J. W.

1968. Dependence of air-sea transfer coefficients on bulk stability. J. Geophys. Res. 73:2549-2557.

DORMAN, C. E., C. A. PAULSON, and W. H. QUINN.

1974. An analysis of 20 years of meteorological and oceanographic data from Ocean Station N. J. Phys. Oceanogr. 4:645-653.

FRIEHE, C. A., and K. F. SCHMITT.

1976. Parameterization of air-sea interface fluxes of sensible heat and moisture by the bulk aerodynamic formulas. J. Phys. Oceanogr. 6:801-809.

GARRATT, J. R.

1977. Review of drag coefficients over oceans and continents. Mon. Weather Rev. 105:915-929.

GERST, A. L.

1969. Correlation of sea surface temperatures with cloud patterns off the west coast of North America during the upwelling season. M.S. Thesis, Naval Postgrad. School, Monterey, Calif., 124 p.

HASTENRATH, S., and P. J. LAMB.

1978. Heat budget atlas of the tropical Atlantic and eastern Pacific Oceans. Univ. Wisconsin Press, Madison, 90 p.

HICKEY, B. M.

1979. The California Current system—hypotheses and facts. Prog. Oceanogr. 8:191-279.

HOLLAND, J. Z.

1972. Comparative evaluation of some BOMEX measurements of sea surface evaporation, energy flux and stress. J. Phys. Oceanogr. 2:476-486.

HUSBY, D. M.

1980. A comparison of surface heat flux estimates from Ocean Weather Station V and merchant vessels in its vicinity in the western North Pacific region, 1956-1970. J. Phys. Oceanogr. 10:971-975.

HUSBY, D. M., and G. R. SECKEL.

Large-scale air-sea interactions at Ocean Weather Station V, 1951-71.
 U.S. Dep. Commer., NOAA Tech. Rep. NMFS SSRF-696, 44 p.

KIMBALL, H. H.

1928. Amount of solar radiation that reaches the surface of the earth on the land and on the sea, and methods by which it is measured. Mon. Weather Rev. 56:393-398.

KRAUS, E. B.

1972. Atmosphere-ocean interaction. Oxford Univ. Press, Lond., 275 p.

LAEVASTU, T.

1960. Factors affecting the temperature of the surface layer of the sea. Commentat. Physico-Math. Soc. Sci. Fenn. 25, 136 p.

LAEVASTU, T., and J. M. HARDING.

1974. Numerical analysis and forecasting of surface-air temperature and water vapor pressure. J. Geophys. Res. 79:4478-4480.

LANE, R. K.

1965. Climate and heat exchange in the oceanic region adjacent to Oregon. Ph.D. Thesis, Oregon State Univ., Corvallis, 115 p.

ASKER, F

1978. The relation between oceanographic conditions and larval anchovy food in the California Current: Identification of factors contributing to recruitment failure. Rapp. P.-V. Réun. Int. Explor. Mer 173:212-230.

LIST, R. J.

1949. Smithsonian meteorological tables. 6th rev. ed. Smithson. Misc. Collect. 114, 527 p. (Publ. 4014.)

LUMB, F. E.

1964. The influence of cloud on hourly amounts of total solar radiation at the sea surface. Q. J. R. Meteorol. Soc. 90:43-56.

MALKUS, J. S.

1962. Large-scale interactions. In M. N. Hill (editor), The sea, Vol. 1, p. 88-294. Intersci. Publ., N.Y.

MIYAKE, Y

1952. A table of the saturated vapour pressure of sea water. Oceanogr. Mag. 4:95-118.

MUNK, W. H.

1950. On the wind-driven ocean circulation. J. Meteorol. 7:79-93.

MURRAY, F. W.

1967. On the computation of saturation vapor pressure. J. Appl. Meteorol. 6:203-204.

NEIBURGER, M.

1960. The relation of air mass structure to the field of motion over the eastern North Pacific Ocean in summer. Tellus 12:31-40.

NEIBURGER, M., C. G. P. BEER, and L. B. LEOPOLD.

1945. The California stratus investigation of 1944. U.S. Dep. Commer., Wash., D.C., 84 p.

NELSON, C. S.

1977. Wind stress and wind stress curl over the California Current. U.S. Dep. Commer., NOAA Tech. Rep. NMFS SSRF-714, 87 p.

NIILER, P. P., and E. B. KRAUS.

1977. One-dimensional models of the upper ocean. *In* E. B. Kraus (editor), Modelling and prediction of the upper layers of the ocean. Proceedings of a NATO Adv. Study Inst., p. 143-172. Pergamon Press, Oxford.

PARRISH, R. H., C. S. NELSON, and A. BAKUN.

1981. Transport mechanisms and reproductive success of fishes in the California Current. Biol. Oceanogr. 1:175–203.

PATTULLO, J. G., W. V. BURT, and S. A. KULM.

1969. Oceanic heat content off Oregon: its variations and their causes. Limnol. Oceanogr. 14:279-287.

PAYNE, R. E.

1972. Albedo of the sea surface. J. Atmos. Sci. 29:959-970.

POND, S.

1975. The exchanges of momentum, heat and moisture at the oceanatmosphere interface. *In Numerical models of ocean circulation*. Proceedings of a symposium held at Durham, New Hampshire, October 17-20, 1972, p. 26-38. Natl. Acad. Sci., Wash., D.C.

POND, S., and G. L. PICKARD.

1978. Introductory dynamic oceanography. Pergamon Press, Oxford, 241 p.

REED, R. K.

1976. On estimation of net long-wave radiation from the oceans. J. Geophys. Res. 81:5793-5794.

1977. On estimating insolation over the ocean. J. Phys. Oceanogr. 7:482-485.

REED, R. K., and D. HALPERN.

1975. Insolation and net long-wave radiation off the Oregon coast. J. Geophys. Res. 80:839-844.

REID, J. L., JR., G. I. RODEN, and J. G. WYLLIE.

1958. Studies of the California Current system. Calif. Coop. Oceanic Fish. Invest., Prog. Rep., 1 July 1956 to 1 January 1958, p. 27-57.

ROBINSON, M.

 Atlas of North Pacific Ocean monthly mean temperatures and mean salinities of the surface layer. Nav. Oceanogr. Off. Ref. Publ. 2, 194 p.

RODEN, G. I.

1959. On the heat and salt balance of the California Current region. J. Mar. Res. 18:36-61.

1974. Thermohaline structure, fronts, and sea-air energy exchange of the trade wind region east of Hawaii. J. Phys. Oceanogr. 4:168-182.

ROLL, H. U

1965. Physics of the marine atmosphere. Acad. Press, N.Y. 426 p.

SAUR, J. F. T.

1963. A study of the quality of sea water temperatures reported in logs of ships' weather observations. J. Appl. Meteorol. 2:417-425. SECKEL, G. R.

1970. The Trade Wind Zone Oceanography Pilot Study Part VIII: Sea-level meteorological properties and heat exchange processes July 1963 to June 1965. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 612, 129 p.

SECKEL, G. R., and F. H. BEAUDRY.

1973. The radiation from sun and sky over the North Pacific Ocean. (Abstr. O33.) EOS, Trans. Am. Geophys. Union 54:1114.

SIMON, R. L.

1977. The summertime stratus over the offshore waters of California. Mon. Weather Rev. 105:1310-1314.

SIMPSON, J. J., and C. A. PAULSON.

1979. Mid-ocean observations of atmospheric radiation. Q. J. R. Meteorol. Soc. 105:487-502.

SMITH, R. L.

1968. Upwelling. Oceanogr. Mar. Biol. Annu. Rev. 6:11-46.

STIDD, C. K.

1974. Ship drift components: means and standard deviations. Scripps Inst. Oceanogr. Ref. Ser. 74-33, 57 p.

TABATA, S.

1964. Insolation in relation to cloud amount and sun's altitude. In K. Yoshida (editor), Studies on oceanography, p. 202-210. Univ. Tokyo Press, Tokyo.

TONT, S. A.

1975. The effect of upwelling on solar irradiance near the coast of southern California. J. Geophys. Res. 80:5031-5034.

U.S. DEPARTMENT OF COMMERCE and U.S. AIR FORCE.

1971. Global atlas of relative cloud cover 1967-70, based on data from meteorological satellites. Wash., D.C., 237 p.

U.S. NAVAL WEATHER SERVICE DETACHMENT.

1977. U.S. Navy Marine Climatic Atlas of the World, Vol II., North Pacific Ocean. Rev. ed. Director, Nav. Oceanogr. Meteorol., NAVAIR 50-1C-529, 388 p.

VERPLOEGH, G.

1967. Observation and analysis of the surface wind over the ocean. Mededelingen en Verhandelingen No. 89, Meteorologisch Institut, Koninklijk, Netherlands, 67 p.

WEARE, B. C., and P. T. STRUB.

1981. The significance of sampling biases on calculated monthly mean oceanic surface heat fluxes. Tellus 33:211-224.

WOOSTER, W. S., and J. L. REID, JR.

1963. Eastern boundary currents: In M. N. Hill (editor), The sea, Vol. 2, p. 253-280. Intersci. Publ., N.Y.

WYRTKI, K.

1965. The average annual heat balance of the North Pacific Ocean and its relation to ocean circulation. J. Geophys. Res. 70:4547-4559.

YOSHIDA, K., and H.-L. MAO.

1957. A theory of upwelling of large horizontal extent. J. Mar. Res. 16:40-54.

APPENDIX I

Monthly Surface Heat Flux Distributions

Long-term composite monthly mean surface heat flux distributions are displayed in Charts 1-60. Charts 1-12 are the monthly values of incident solar radiation corrected for cloud cover and reflection, Charts 13-24 the monthly effective back radiation, Charts 25-36 the monthly latent heat flux, Charts 37-48 the monthly sensible heat flux, and Charts 49-60 the monthly net heat exchange across the sea surface. Values are plotted in units of watts per square meter. The distributions are contoured with a contour interval of 25 W/m², except in Charts 13-24 and Charts 37-48 where a contour interval of 10 W/m² has been used. Positive values denote oceanic heat gain in Charts 1-12 and Charts 49-60 and oceanic heat loss in Charts 13-48. Negative values are shaded and indicate heat transfer from atmosphere to ocean in Charts 37-48 and heat loss from ocean to atmosphere in Charts 49-60.

The month is indicated in the figure legend in the upper right corner of the charts. The long-term mean monthly values were computed for the approximate time period 1921 to 1972. Scattered reports were available between 1921 and 1940 but the bulk of the data was collected after 1945. The coastline configuration is superimposed on the grid as a visual aid and does not represent a conformal mapping.

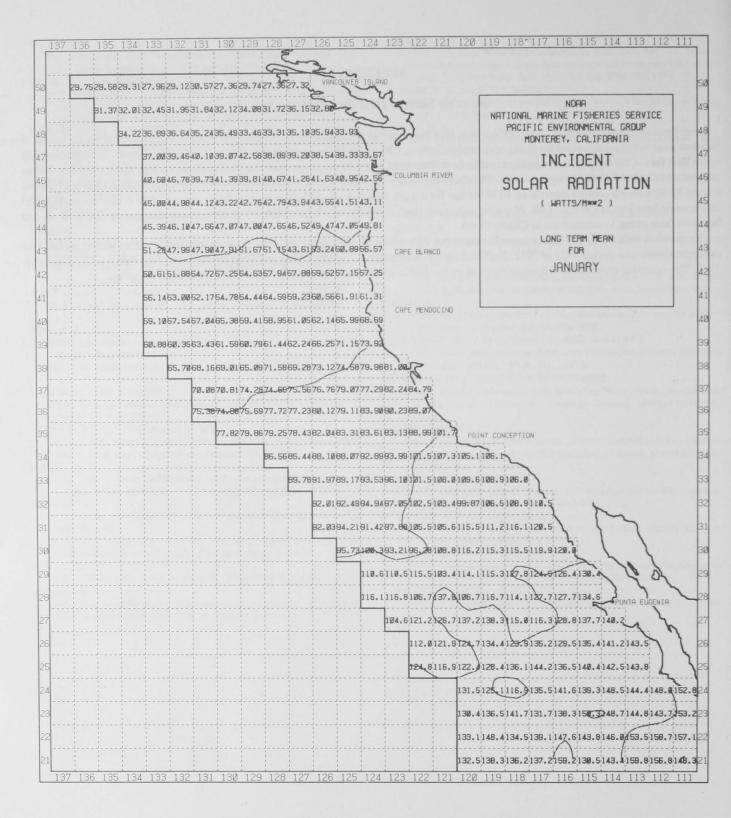


Chart 1.—Composite monthly mean incident solar radiation for January.

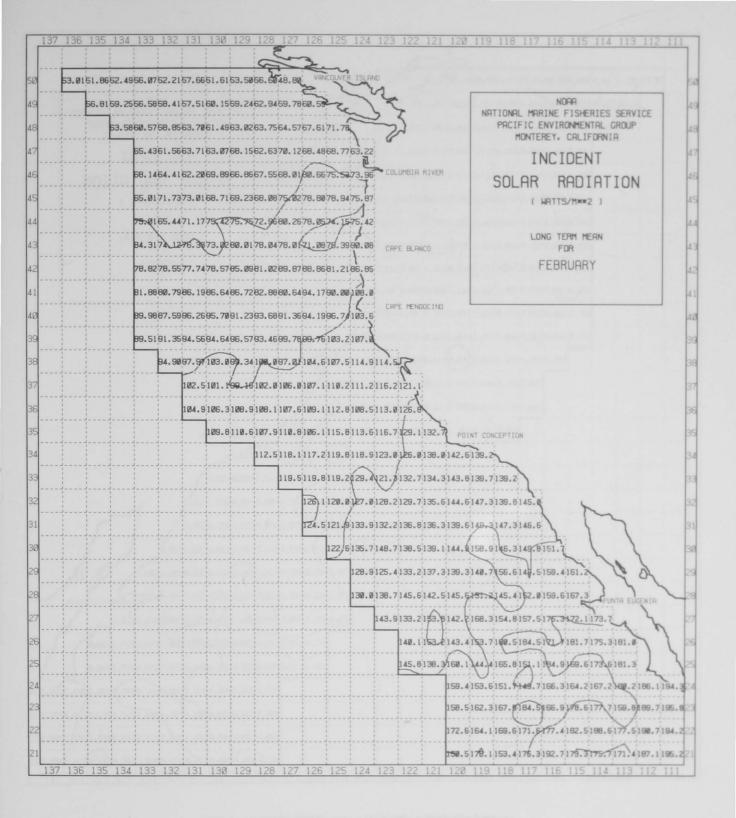


Chart 2.—Composite monthly mean incident solar radiation for February.

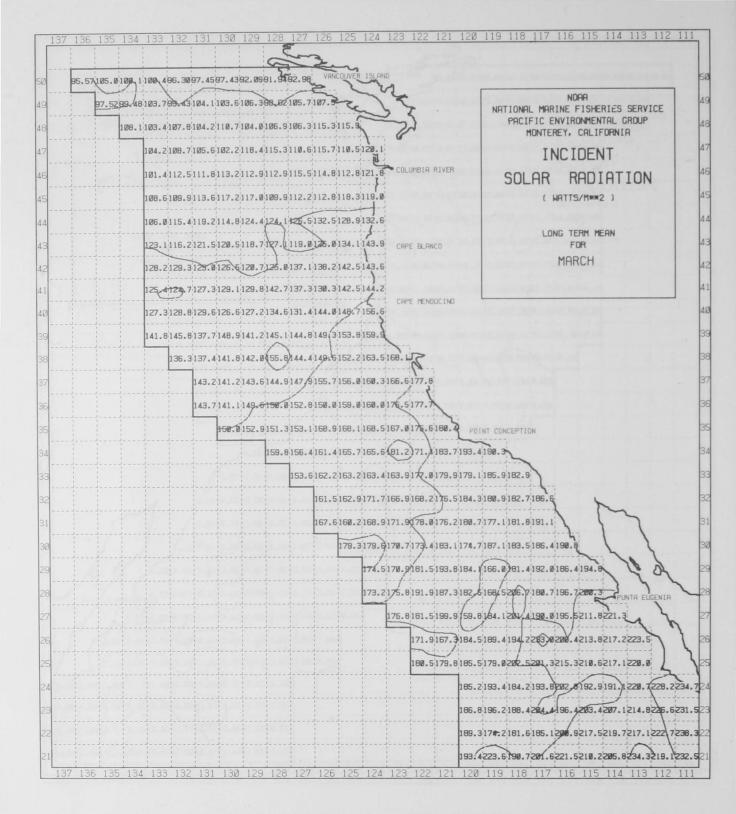


Chart 3.—Composite monthly mean incident solar radiation for March.

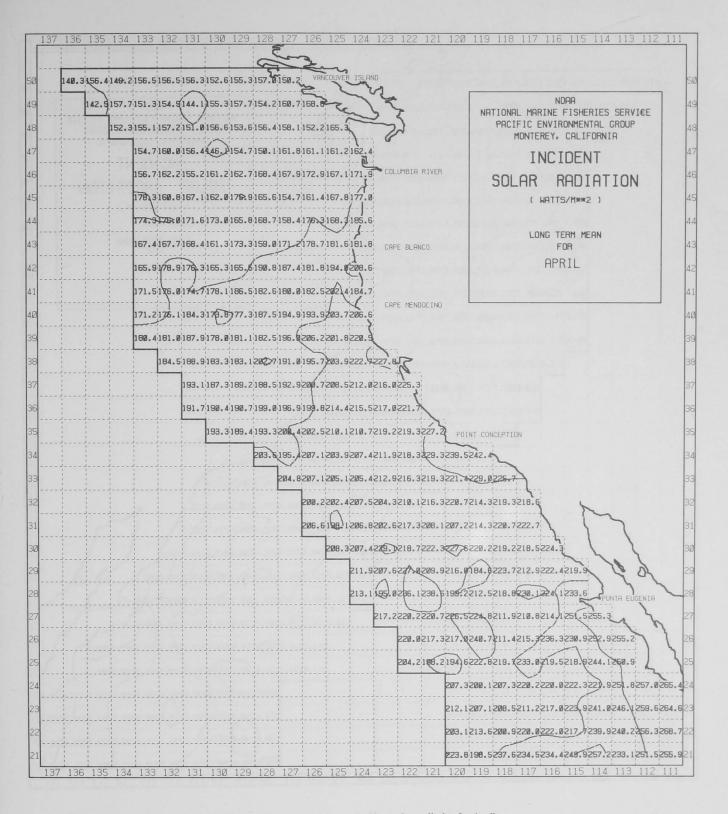


Chart 4.—Composite monthly mean incident solar radiation for April.

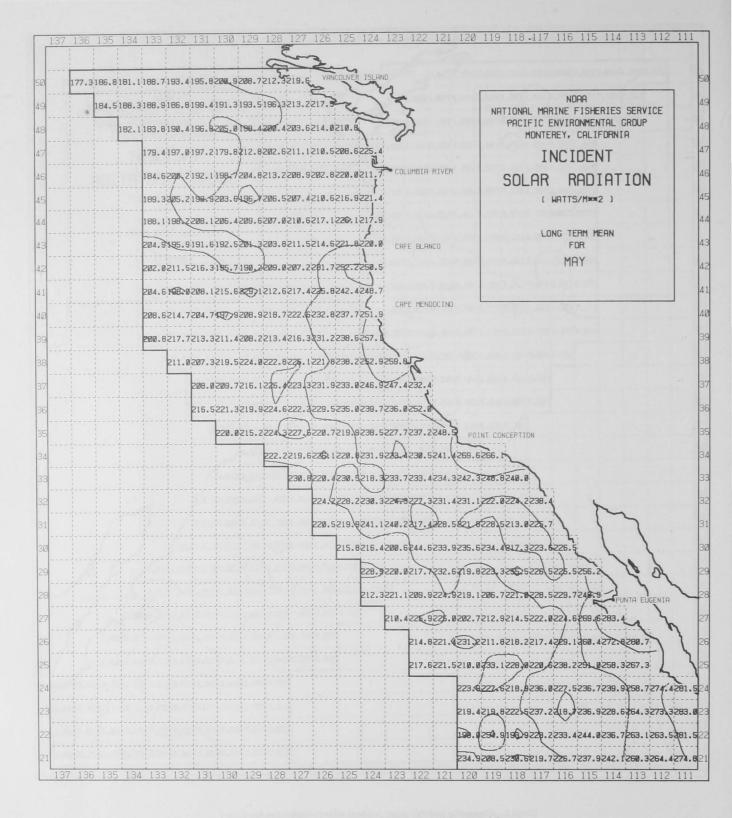


Chart 5.—Composite monthly mean incident solar radiation for May.

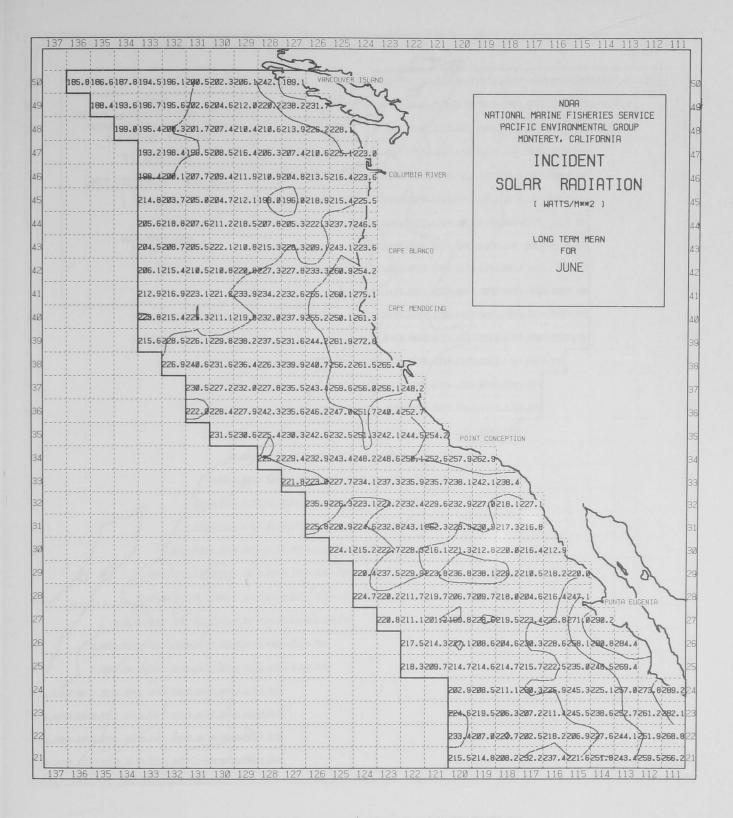


Chart 6.—Composite monthly mean incident solar radiation for June.

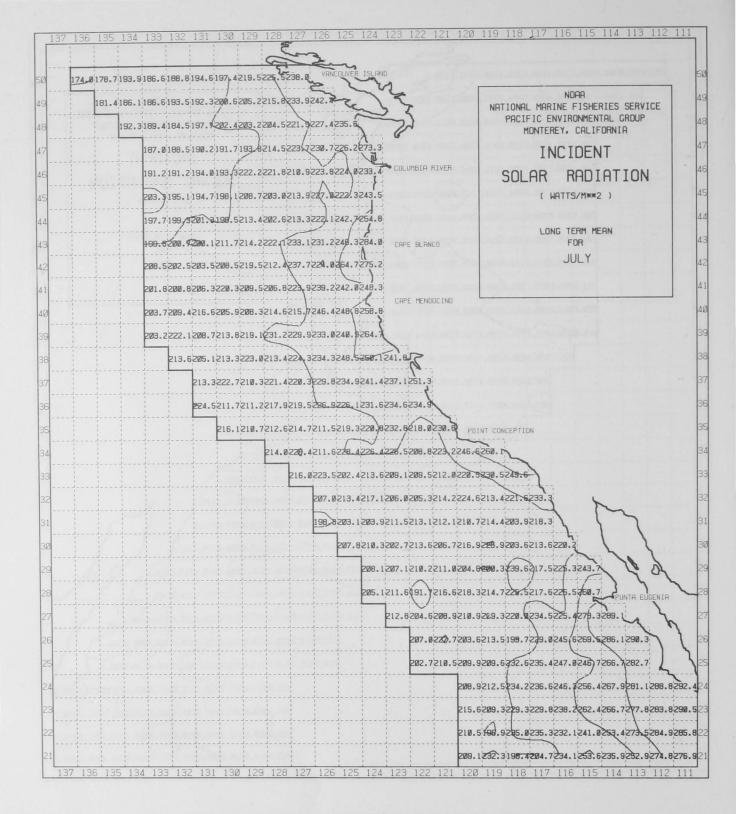


Chart 7.—Composite monthly mean incident solar radiation for July.

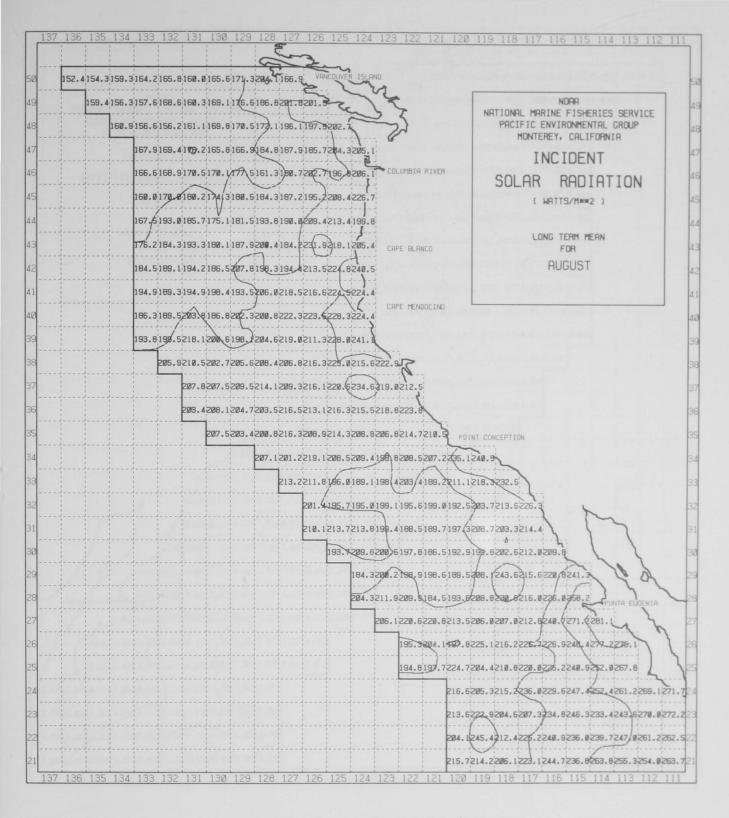


Chart 8.—Composite monthly mean incident solar radiation for August.

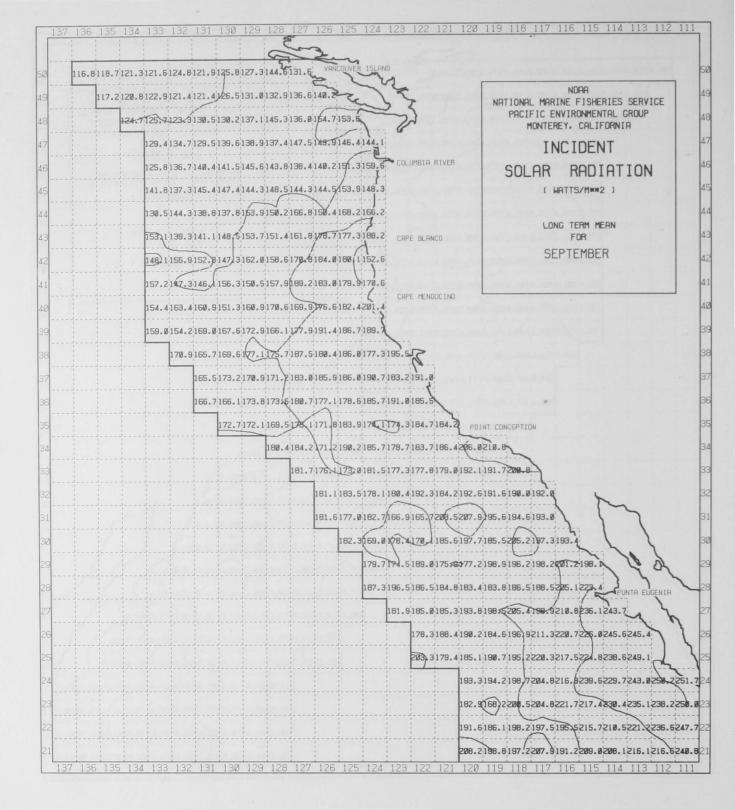


Chart 9.—Composite monthly mean incident solar radiation for September.

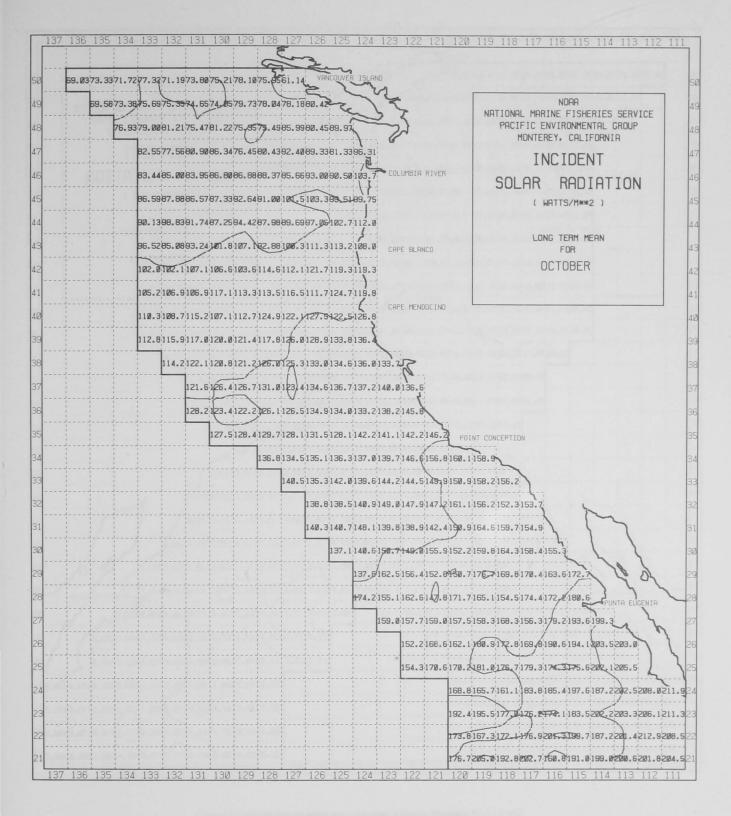


Chart 10.—Composite monthly mean incident solar radiation for October.

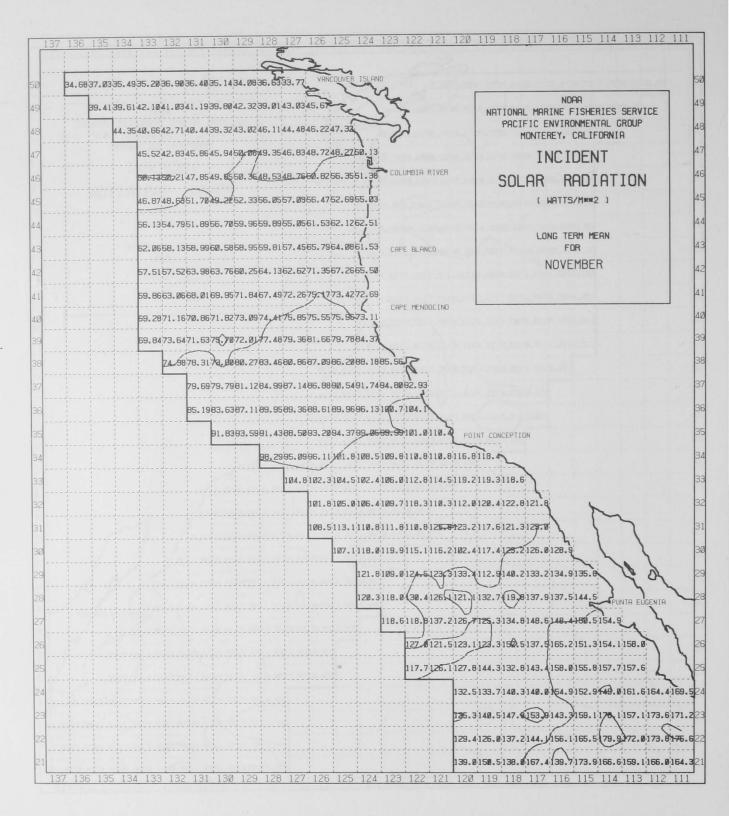


Chart 11.—Composite monthly mean incident solar radiation for November.

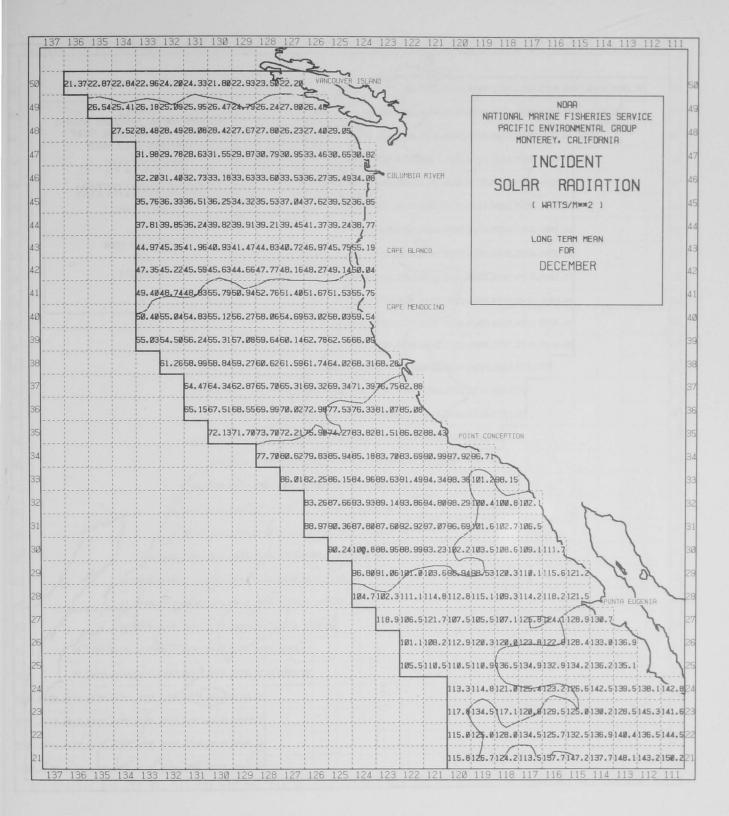


Chart 12.—Composite monthly mean incident solar radiation for December.

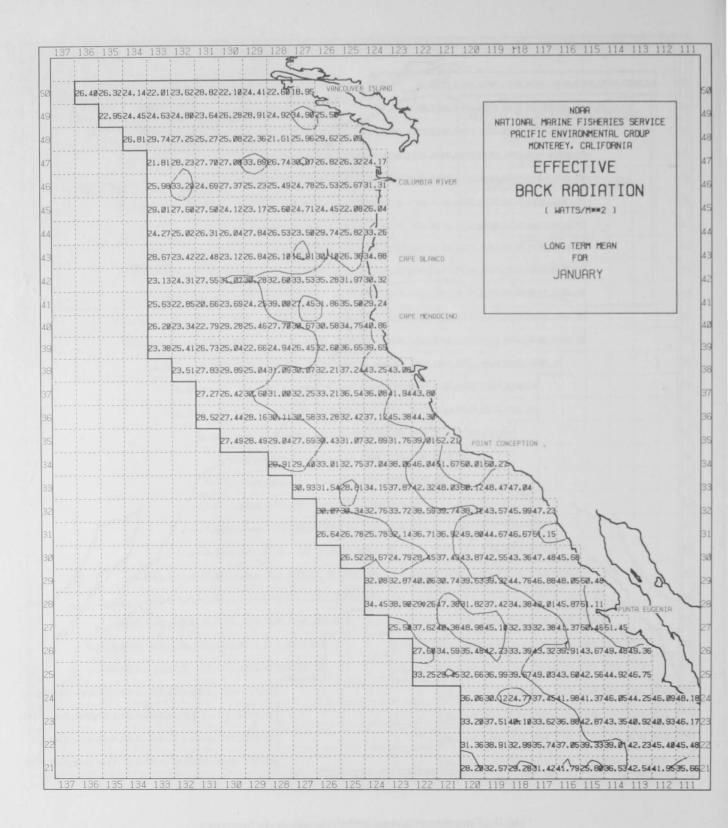


Chart 13.—Composite monthly mean effective back radiation for January.

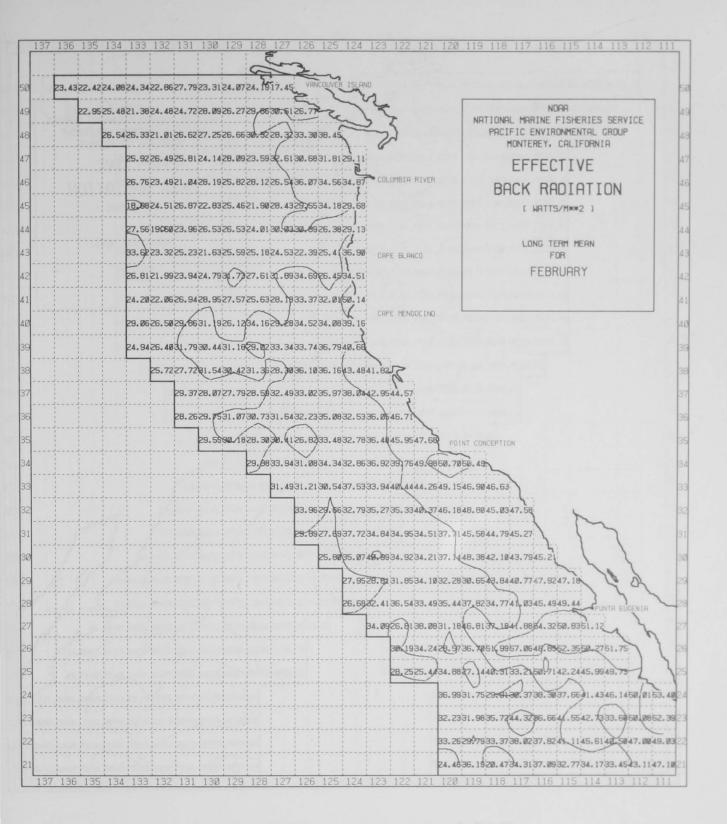


Chart 14.—Composite monthly mean effective back radiation for February.

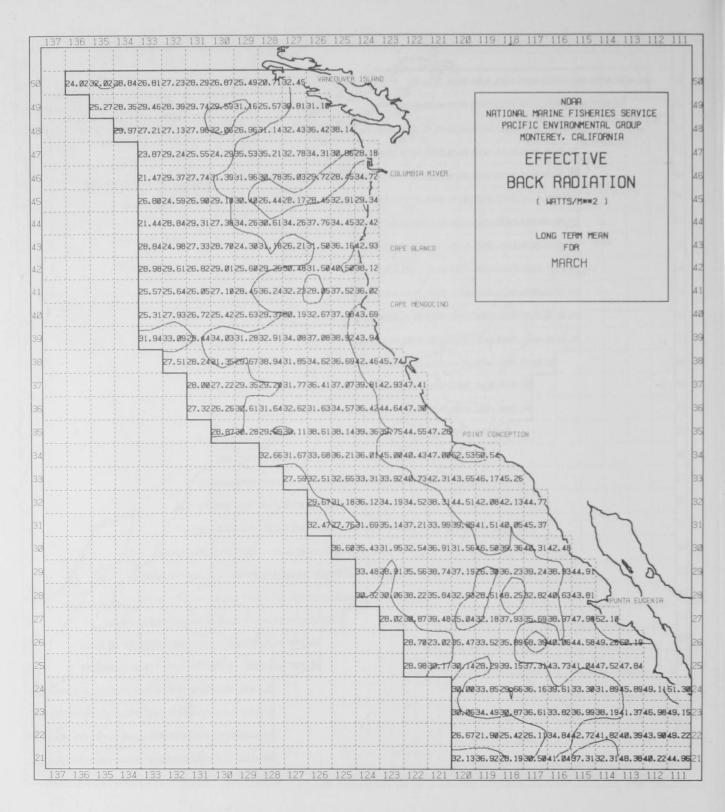


Chart 15.—Composite monthly mean effective back radiation for March.

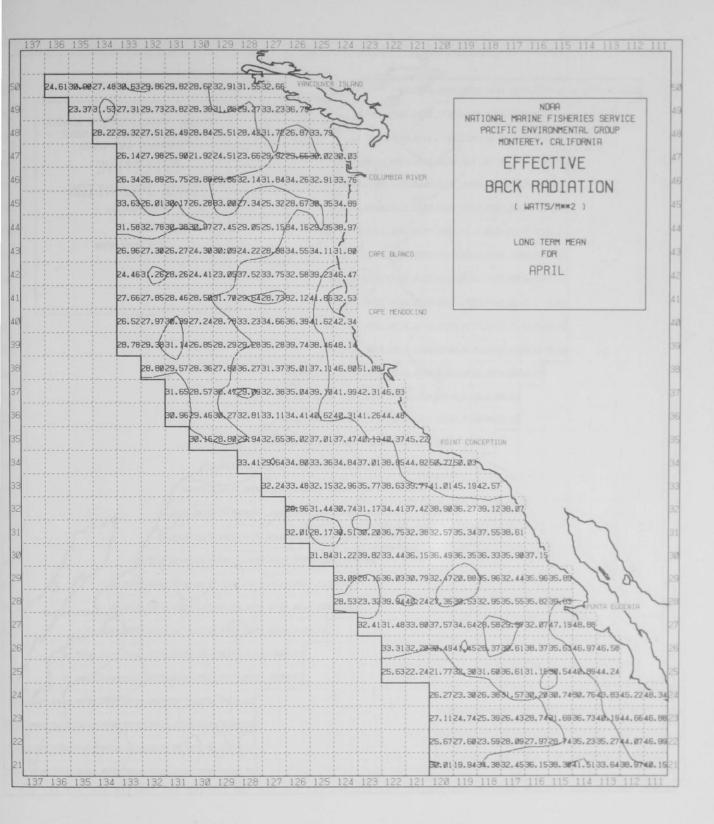


Chart 16.—Composite monthly mean effective back radiation for April.

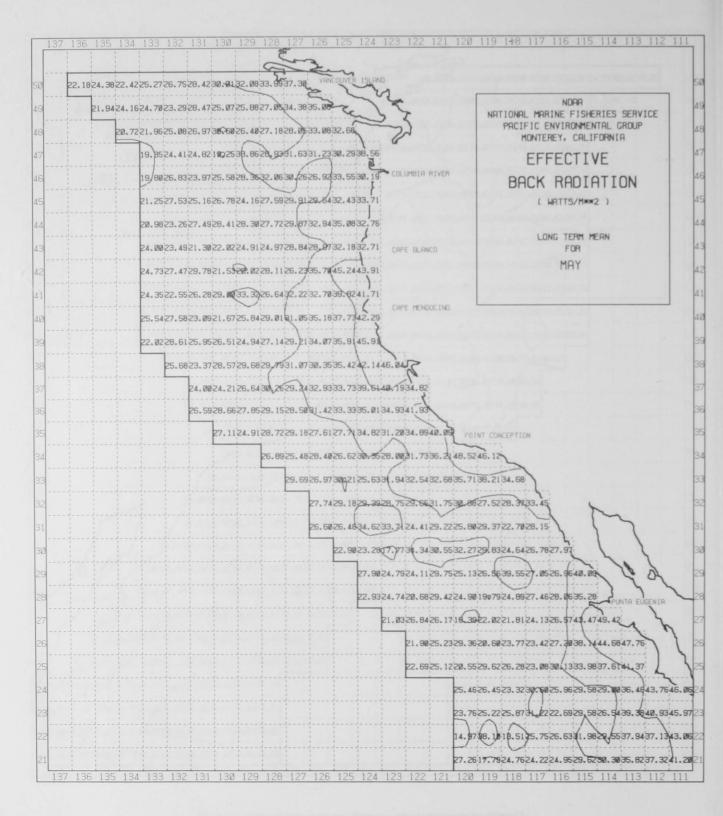


Chart 17.—Composite monthly mean effective back radiation for May.

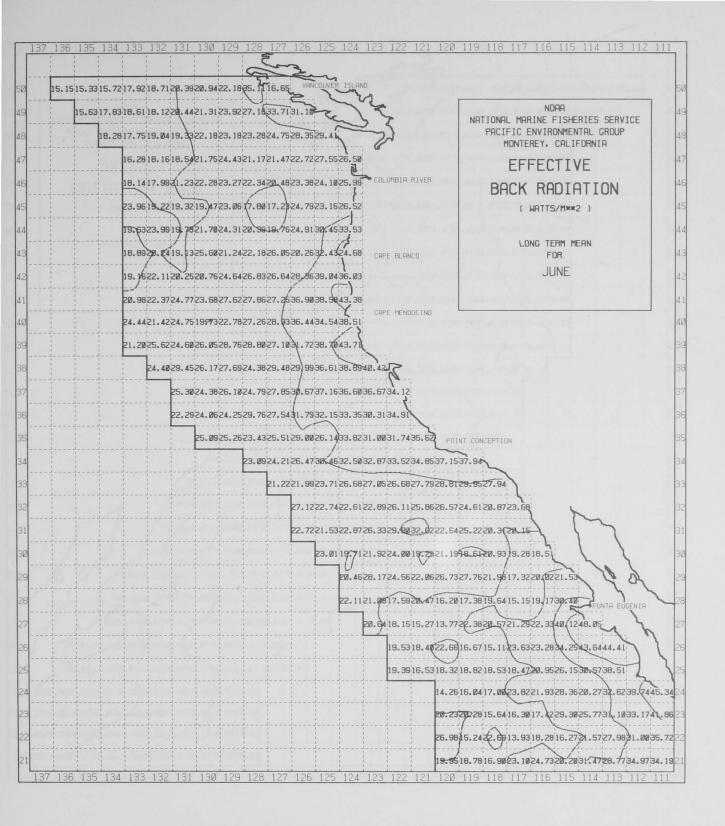


Chart 18.—Composite monthly mean effective back radiation for June.

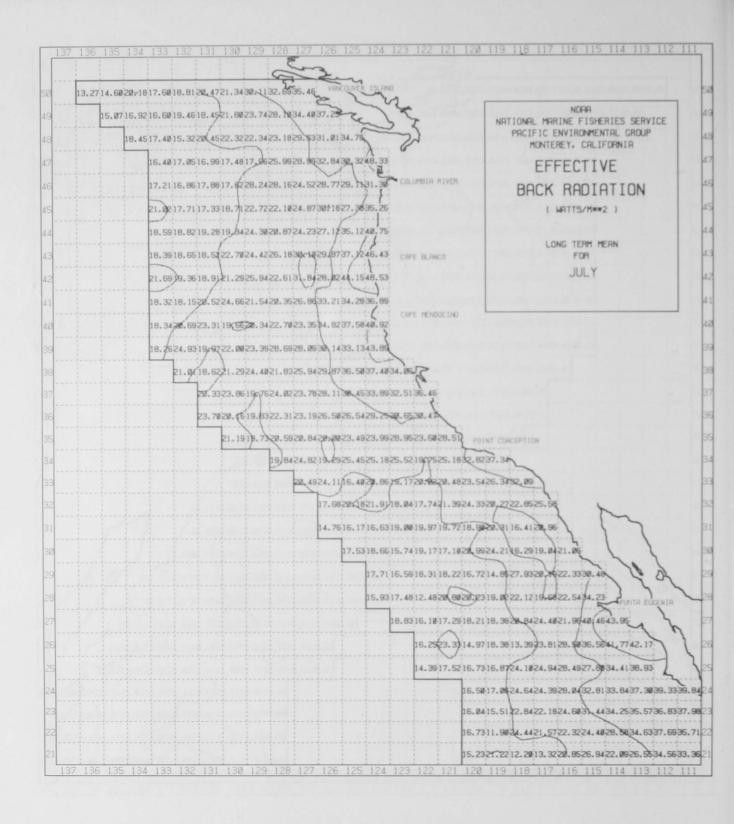


Chart 19.—Composite monthly mean effective back radiation for July.

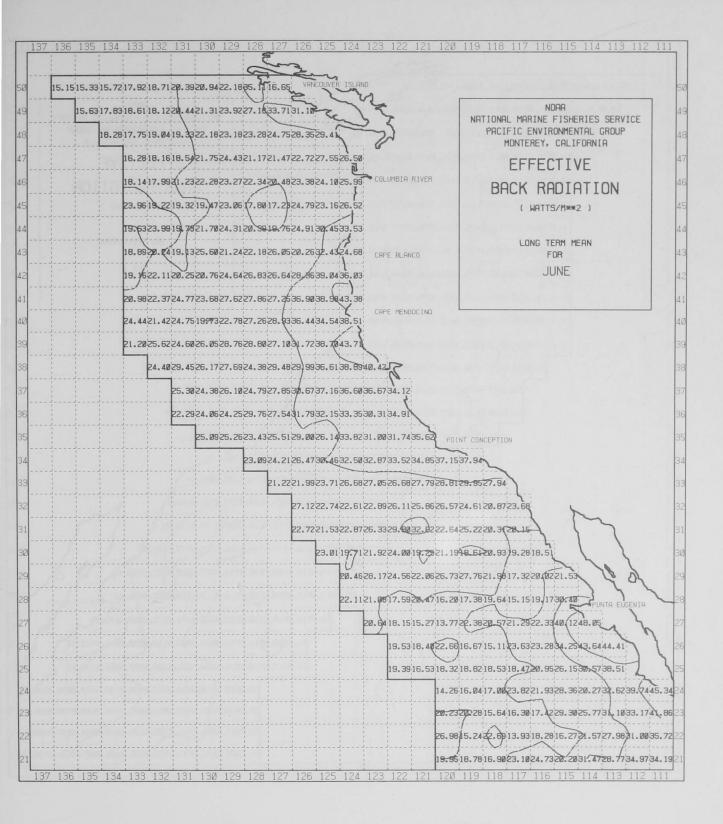


Chart 18.—Composite monthly mean effective back radiation for June.

Chart 19.-Composite monthly mean effective back radiation for July.

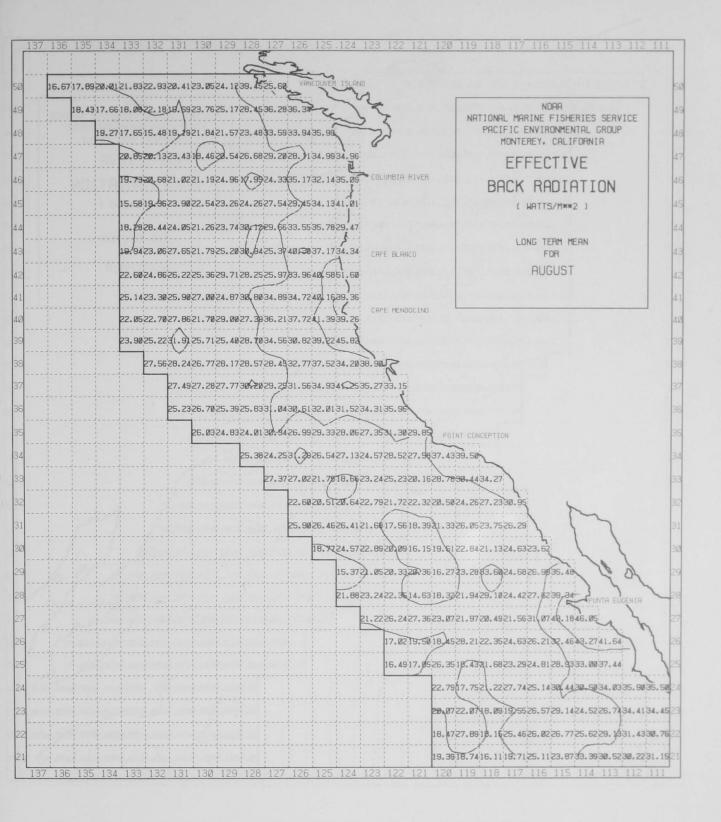


Chart 20.-Composite monthly mean effective back radiation for August.

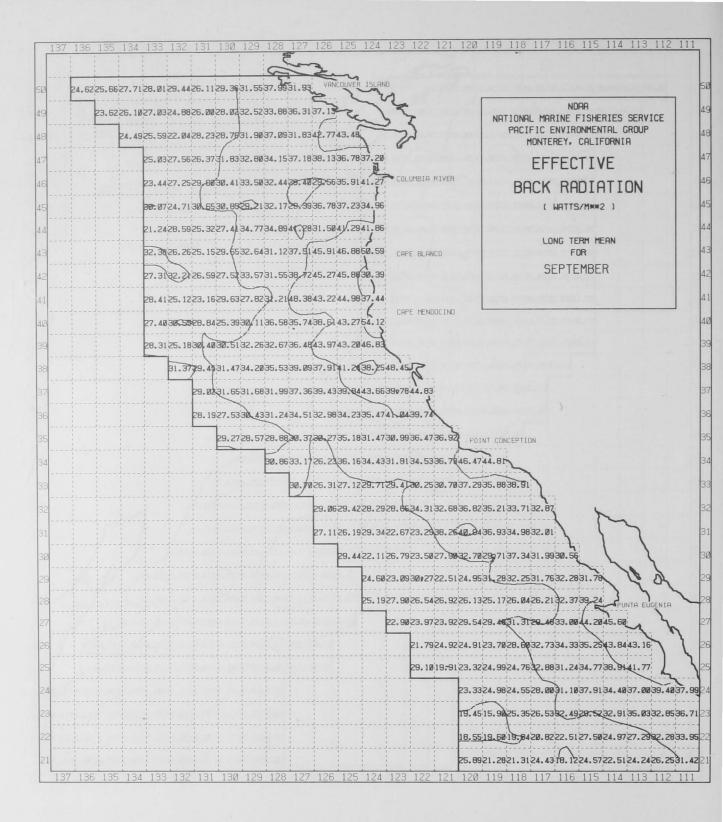


Chart 21.—Composite monthly mean effective back radiation for September.

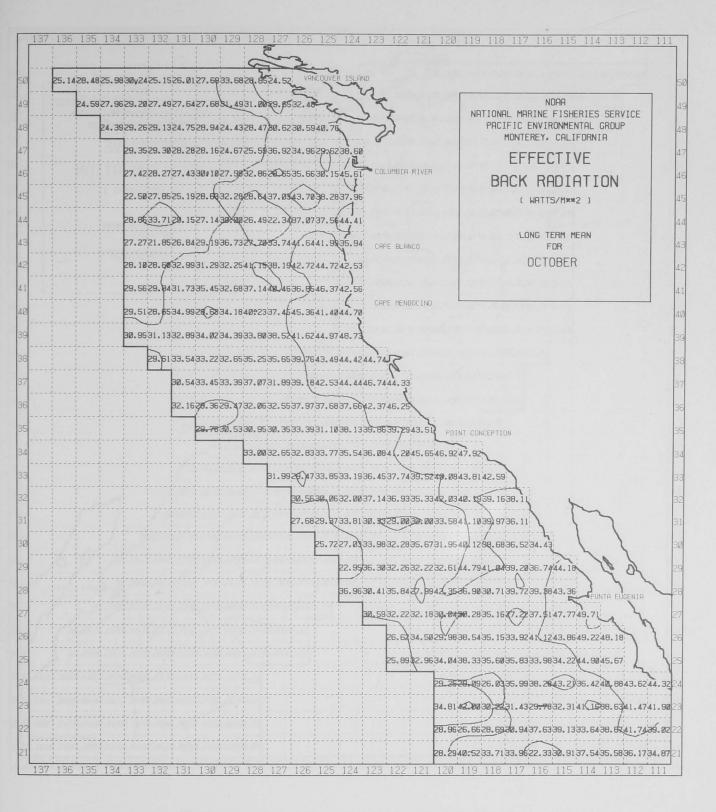


Chart 22.—Composite monthly mean effective back radiation for October.

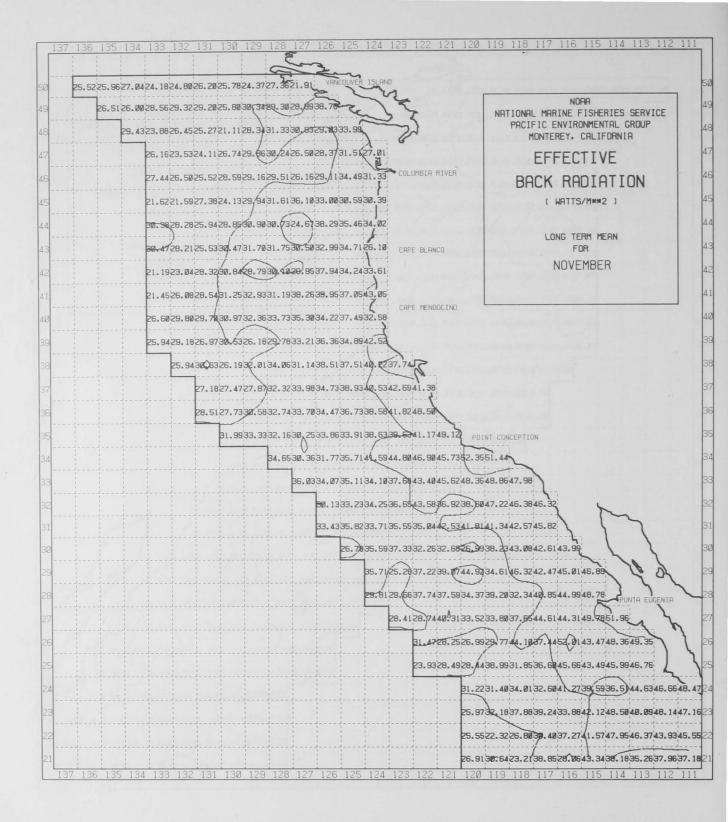


Chart 23.—Composite monthly mean effective back radiation for November.

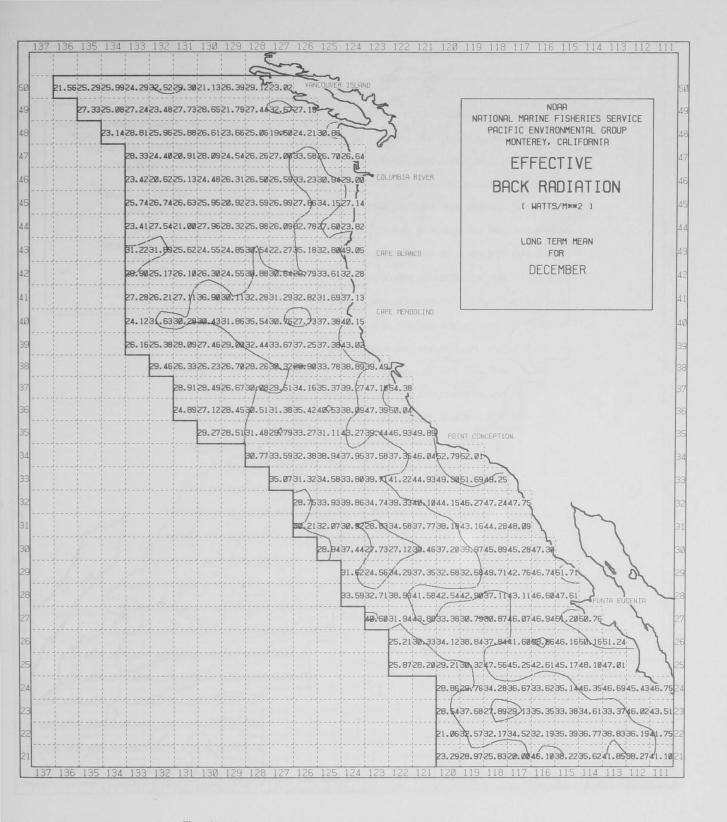


Chart 24.—Composite monthly mean effective back radiation for December.

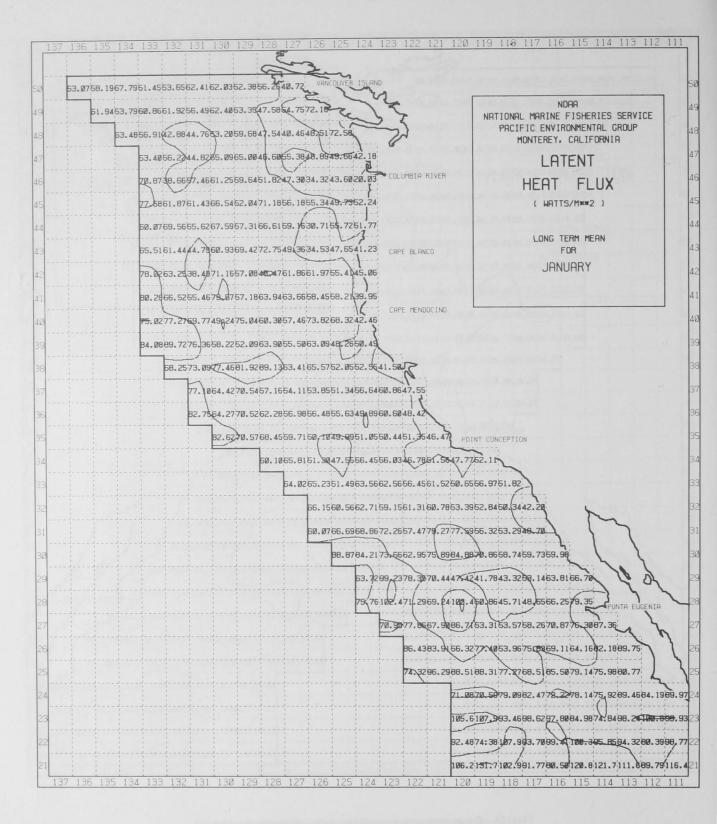


Chart 25.—Composite monthly mean latent heat flux for January.

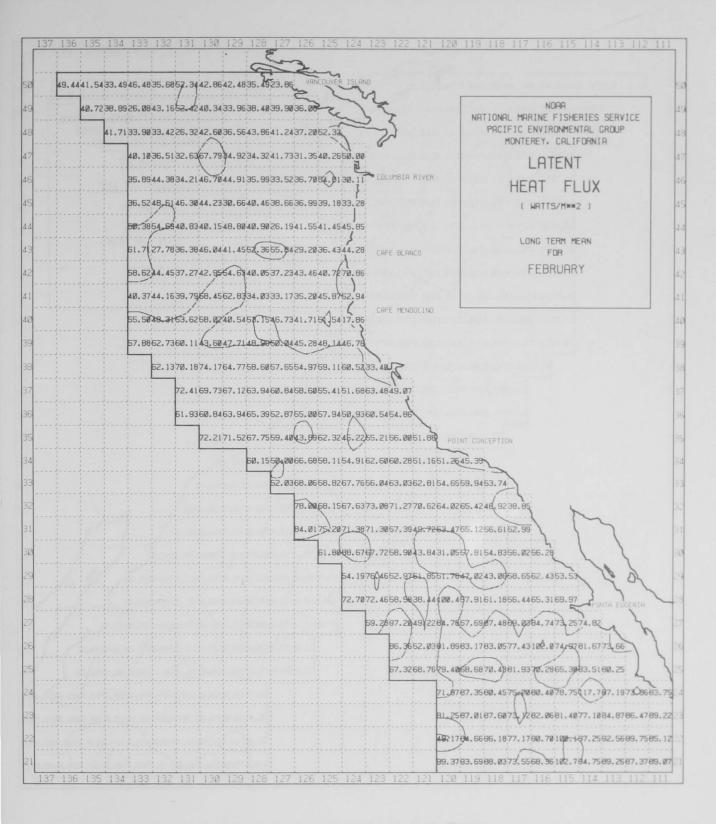


Chart 26.—Composite monthly mean latent heat flux for February.

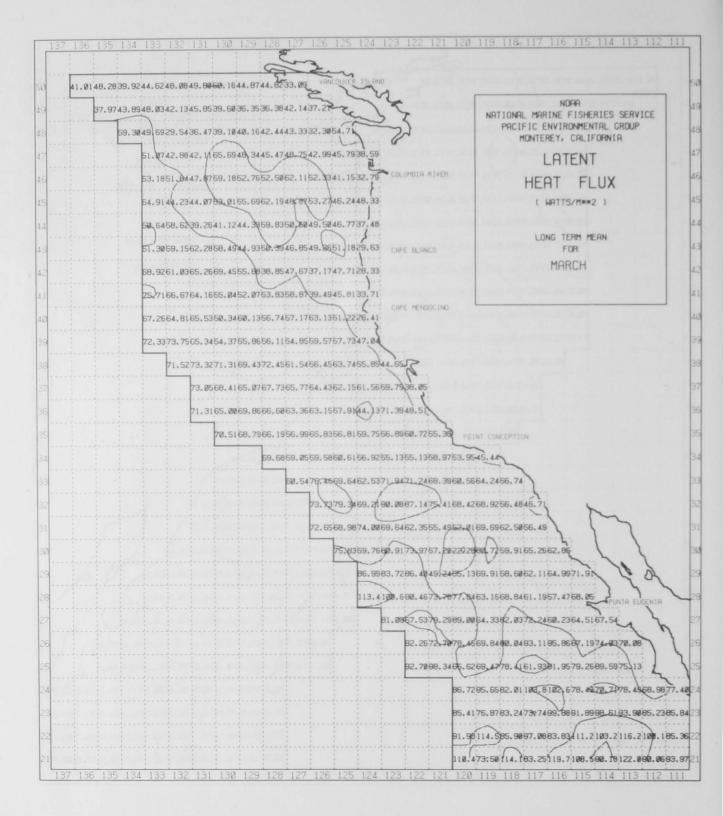


Chart 27.—Composite monthly mean latent heat flux for March.

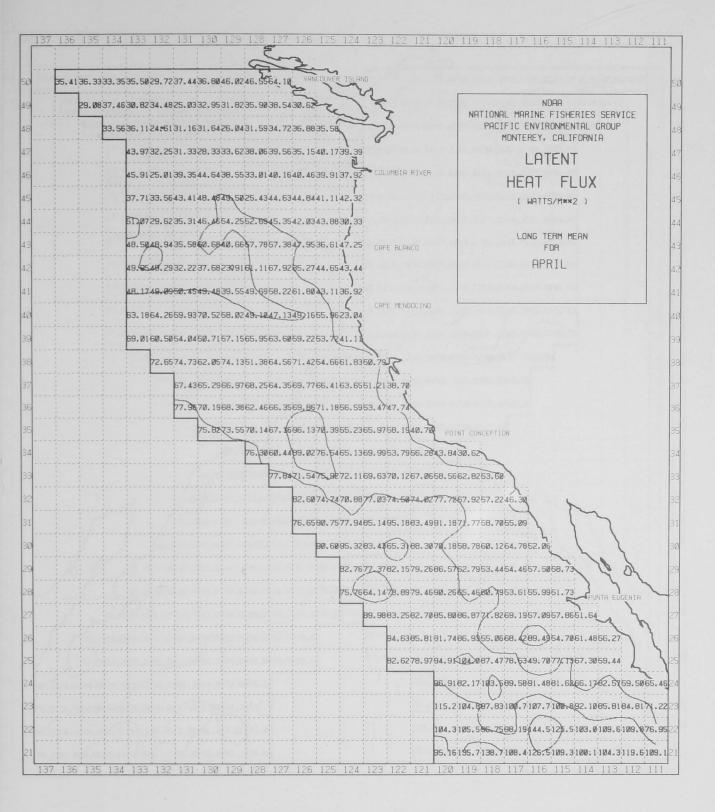


Chart 28.—Composite monthly mean latent heat flux for April.

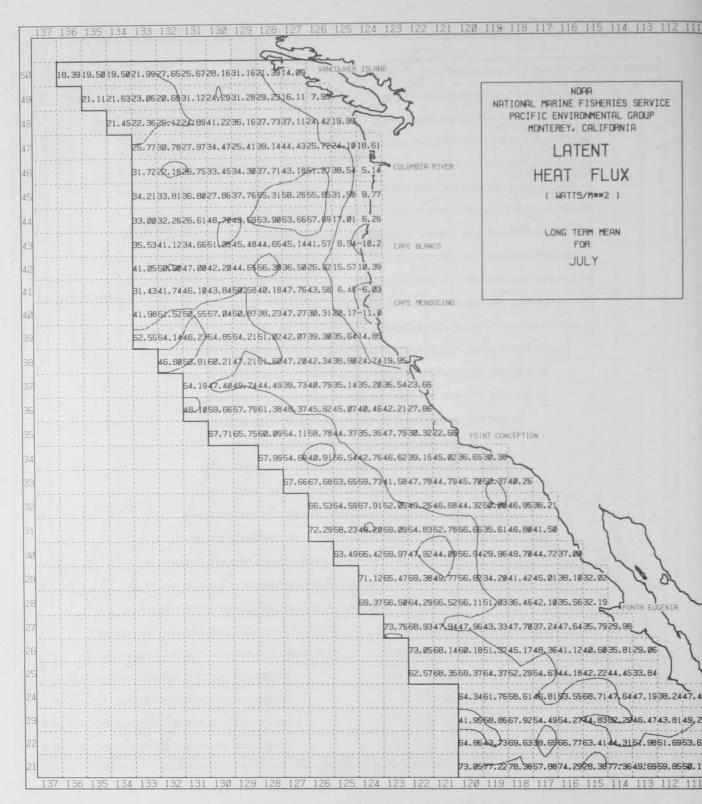


Chart 31.—Composite monthly mean latent heat flux for July.

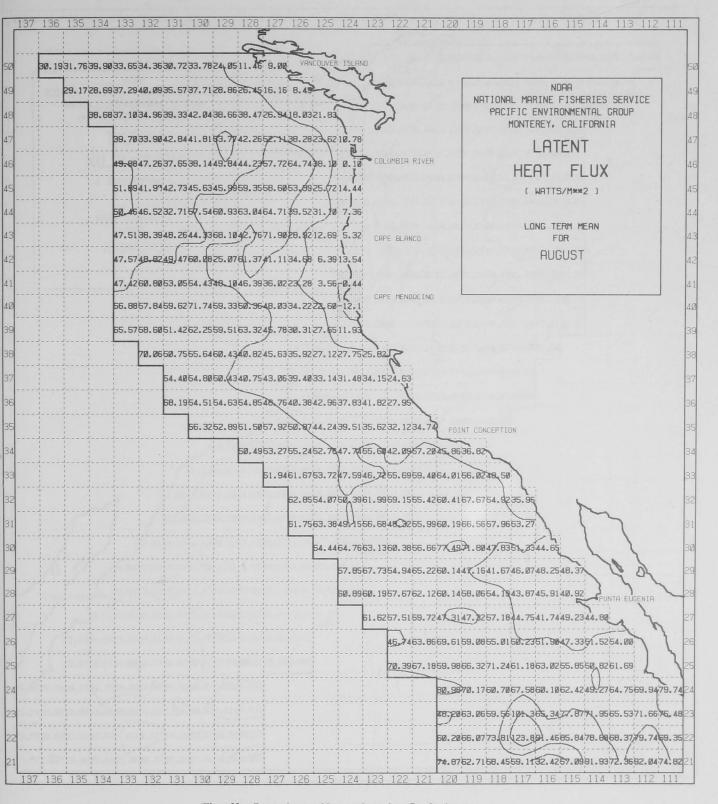


Chart 32.—Composite monthly mean latent heat flux for August.

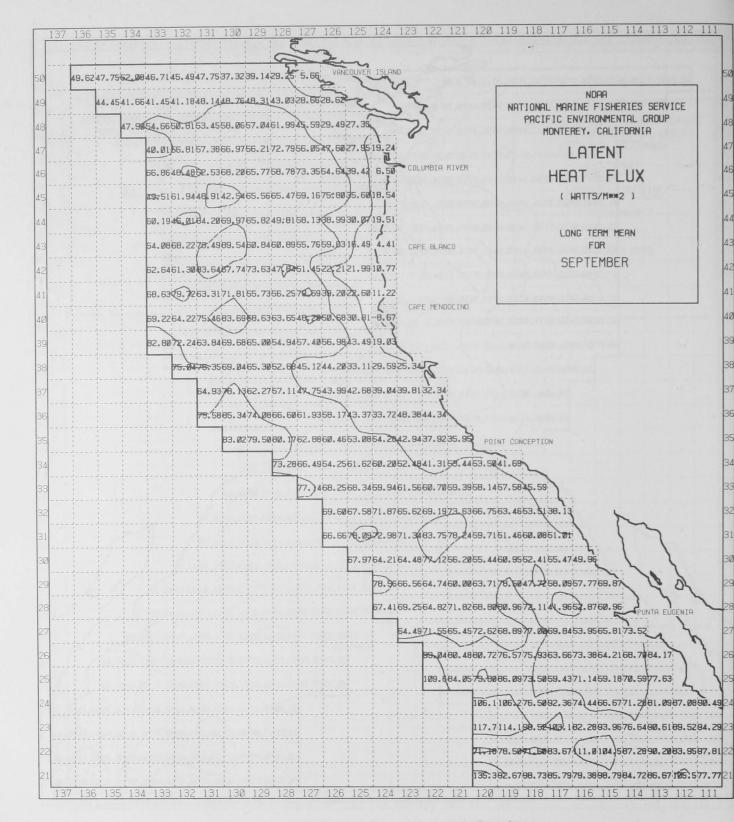


Chart 33.—Composite monthly mean latent heat flux for September.

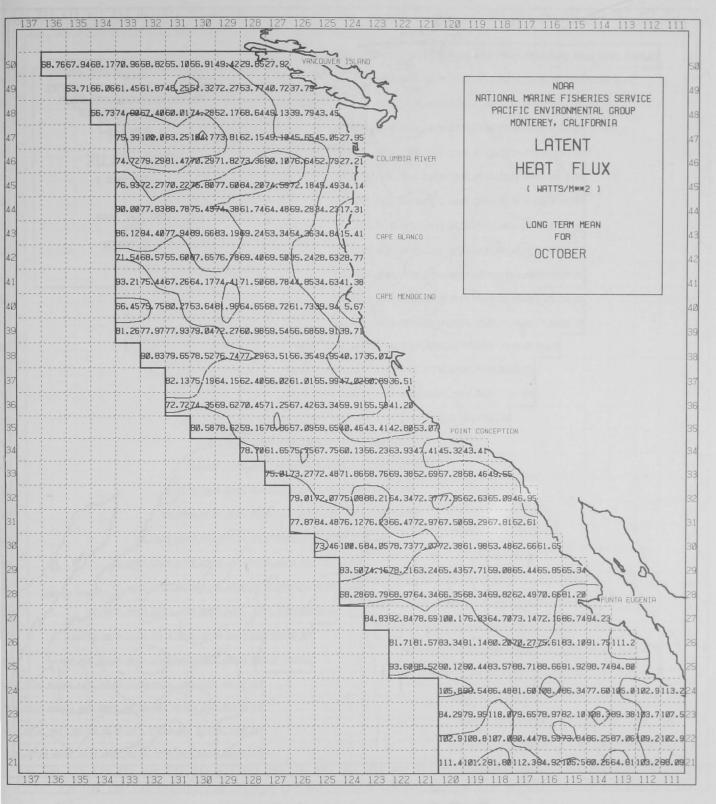


Chart 34.—Composite monthly mean latent heat flux for October.

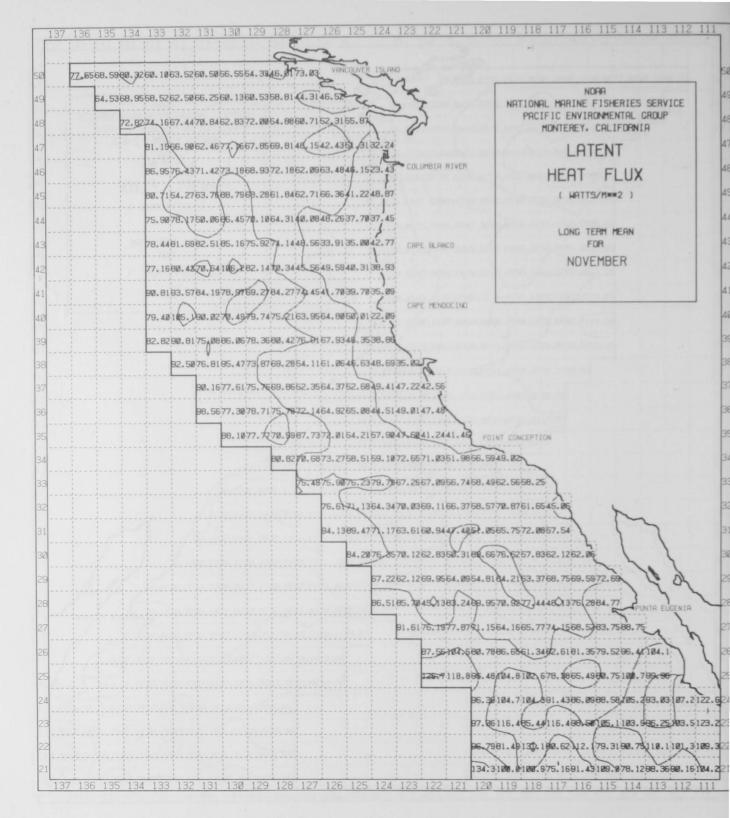


Chart 35.—Composite monthly mean latent heat flux for November.

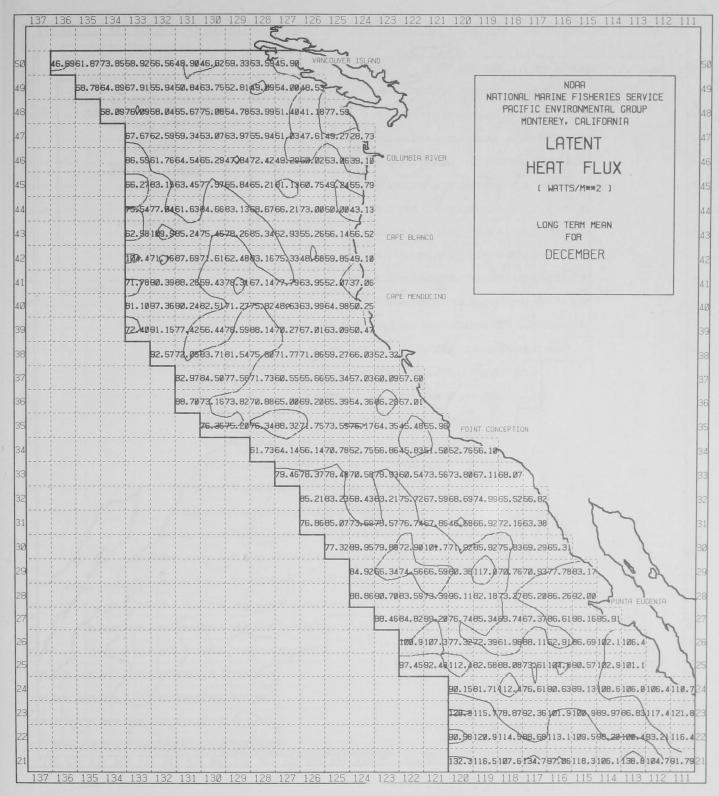


Chart 36.—Composite monthly mean latent heat flux for December.

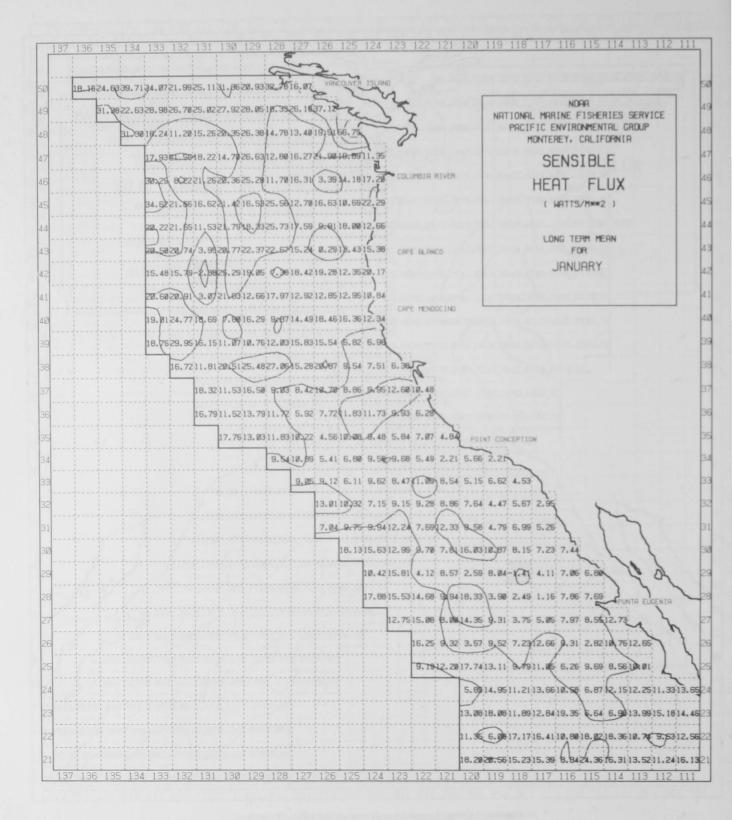


Chart 37.—Composite monthly mean sensible heat flux for January.

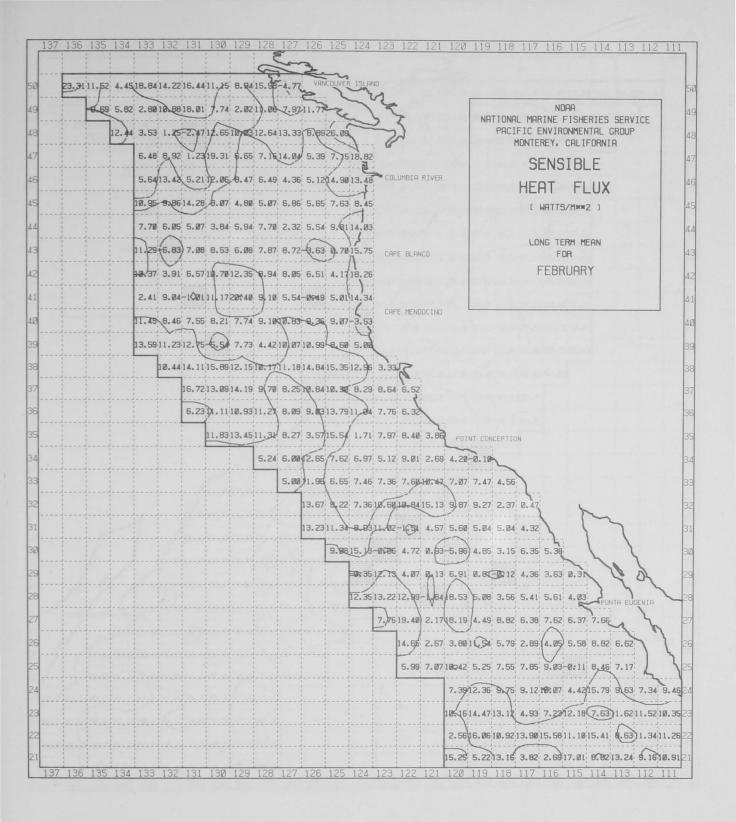


Chart 38.—Composite monthly mean sensible heat flux for February.

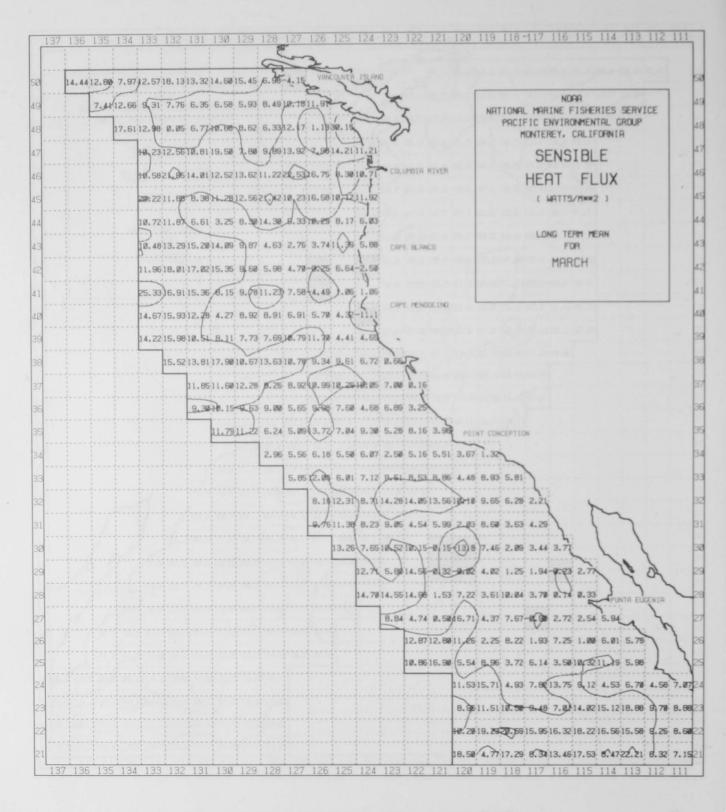


Chart 39.—Composite monthly mean sensible heat flux for March.

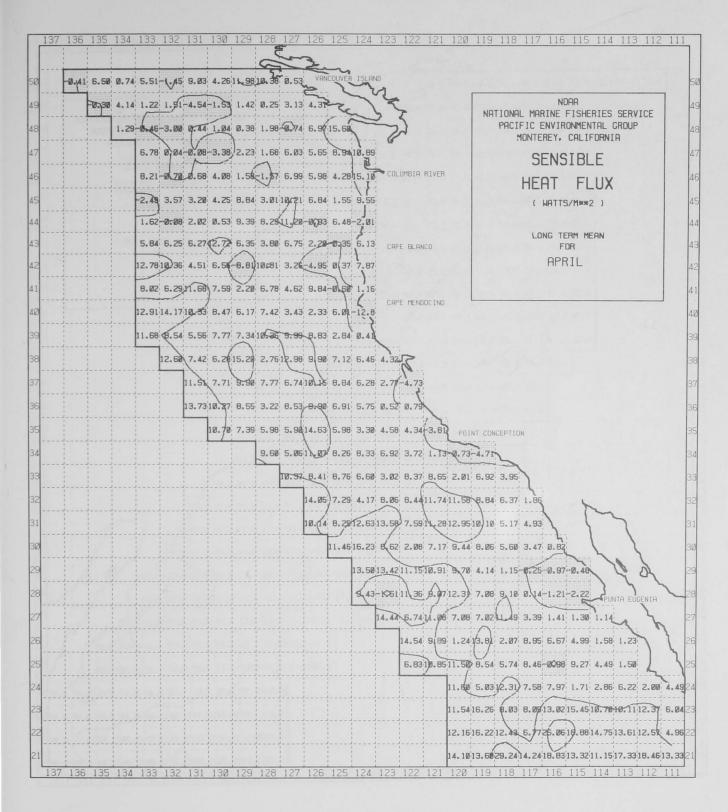


Chart 40.—Composite monthly mean sensible heat flux for April.

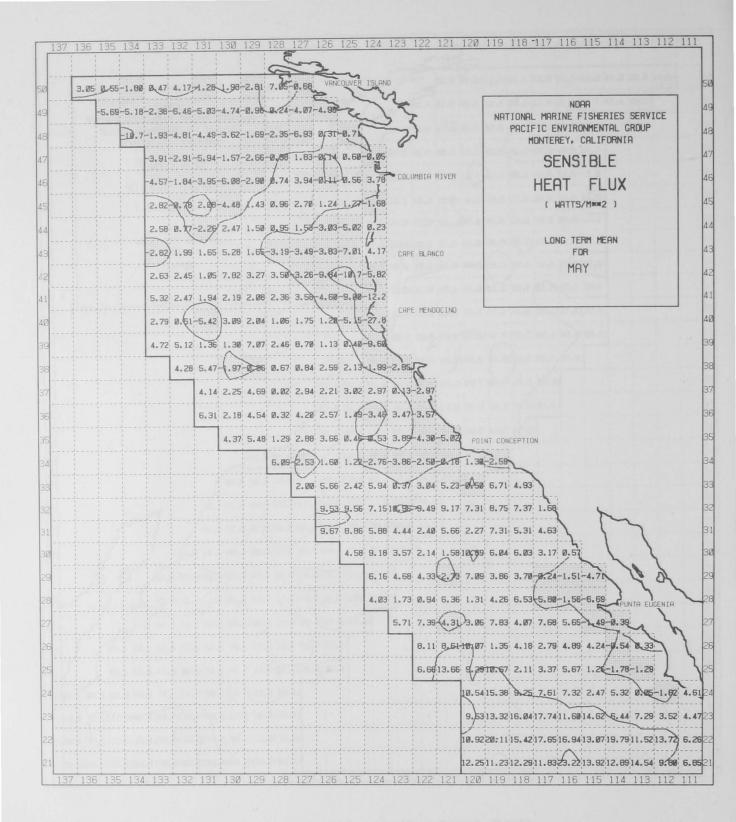


Chart 41.—Composite monthly mean sensible heat flux for May.

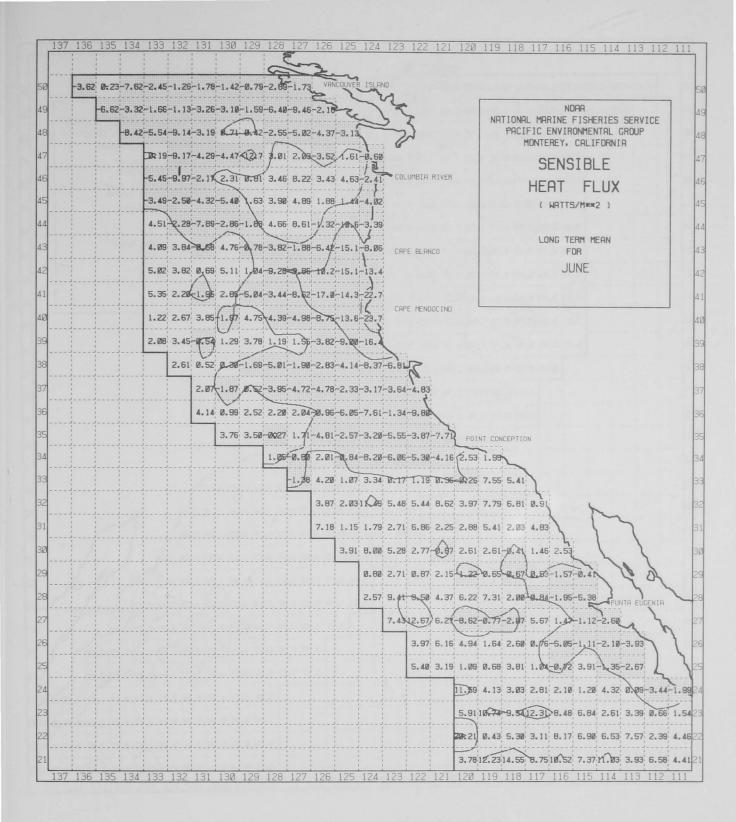


Chart 42.—Composite monthly mean sensible heat flux for June.

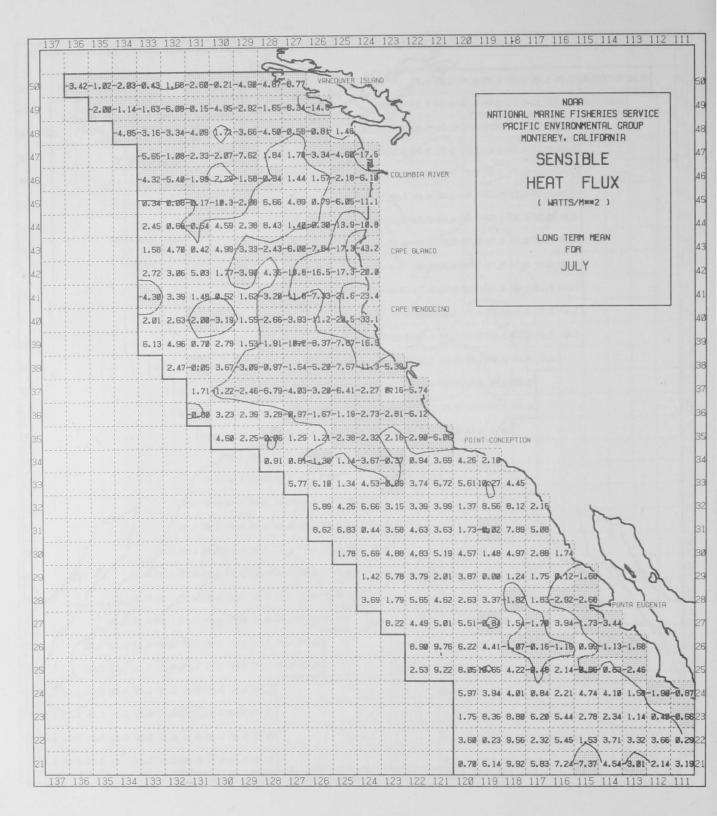


Chart 43.—Composite monthly mean sensible heat flux for July.

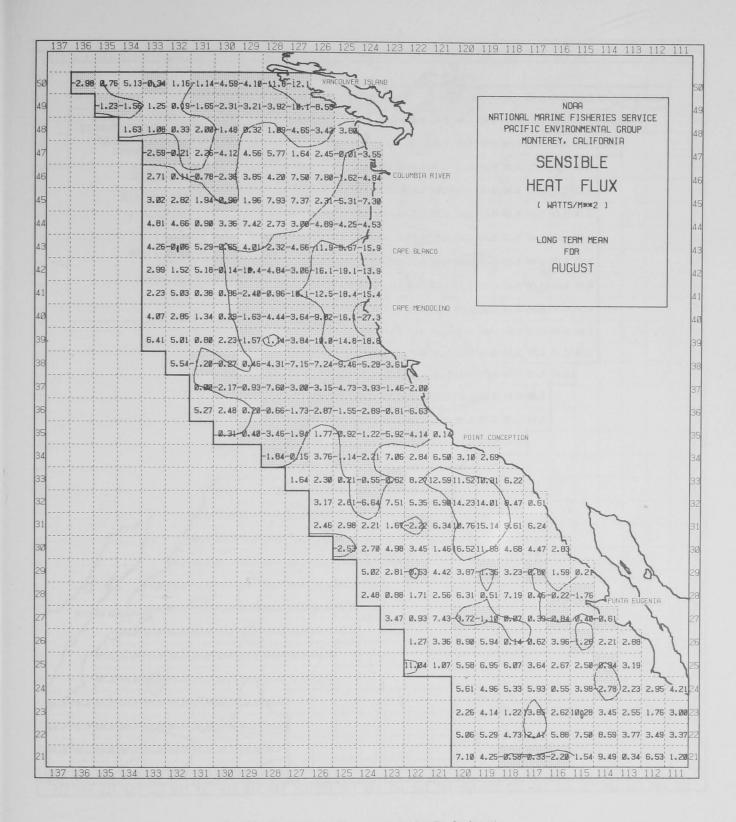


Chart 44.—Composite monthly mean sensible heat flux for August.

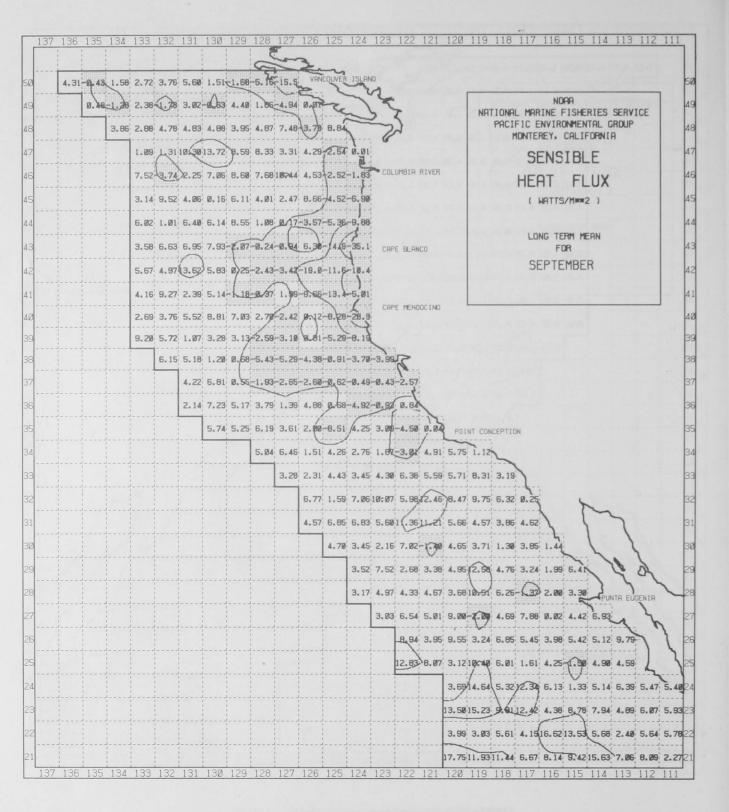


Chart 45.—Composite monthly mean sensible heat flux for September.

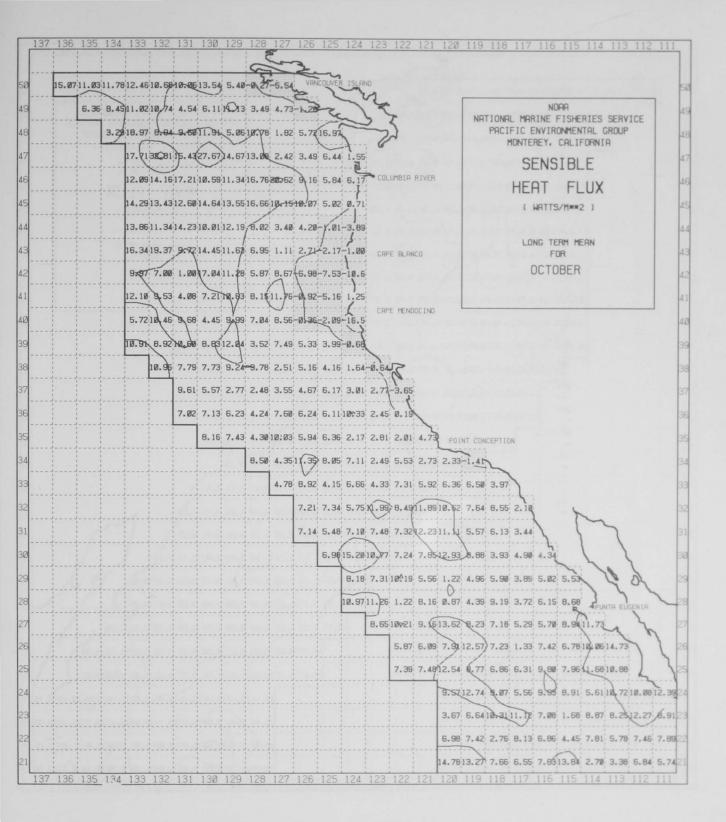


Chart 46.—Composite monthly mean sensible heat flux for October.

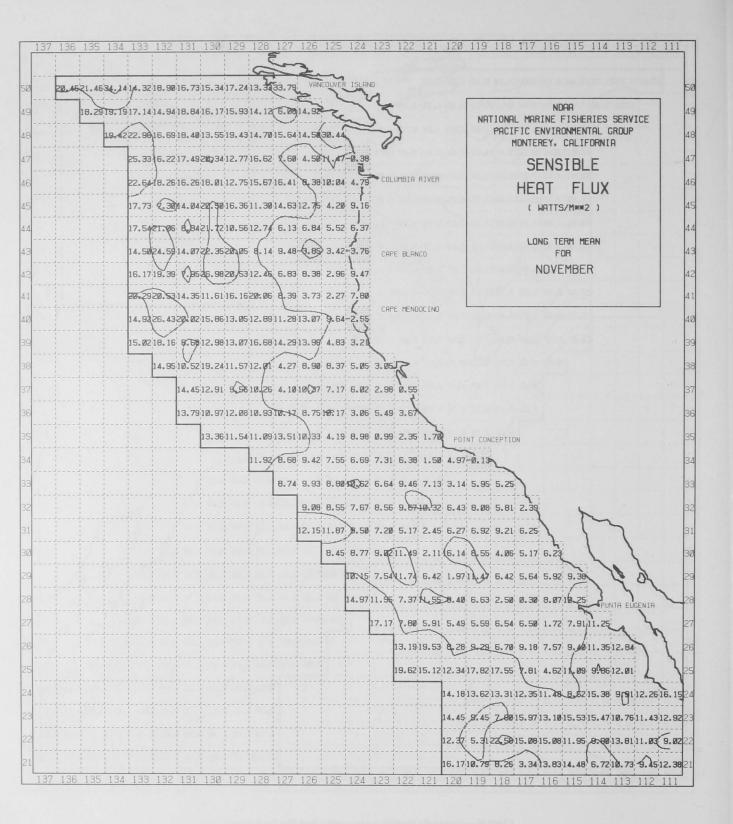


Chart 47.—Composite monthly mean sensible heat flux for November.

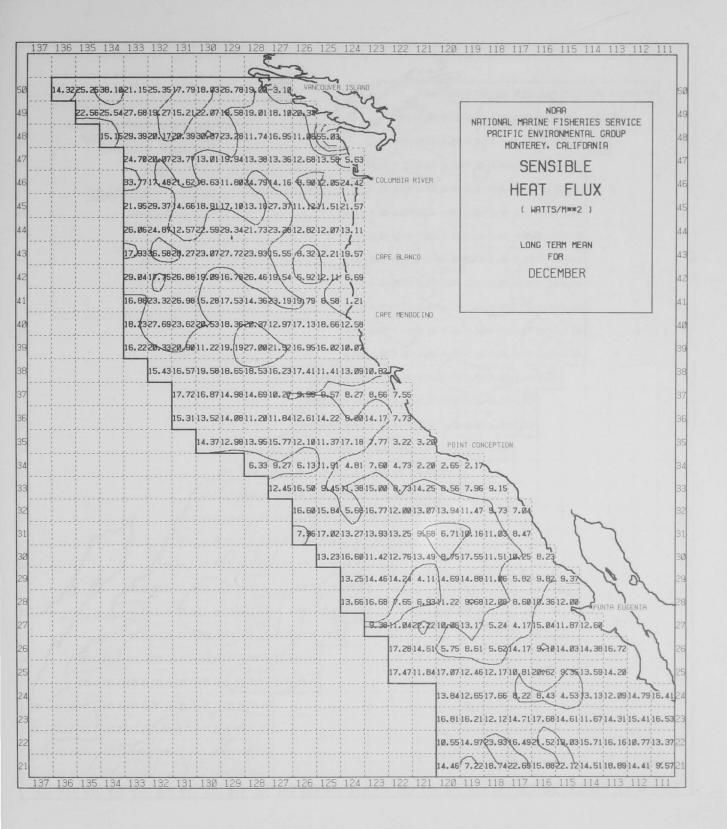


Chart 48.—Composite monthly mean sensible heat flux for December.

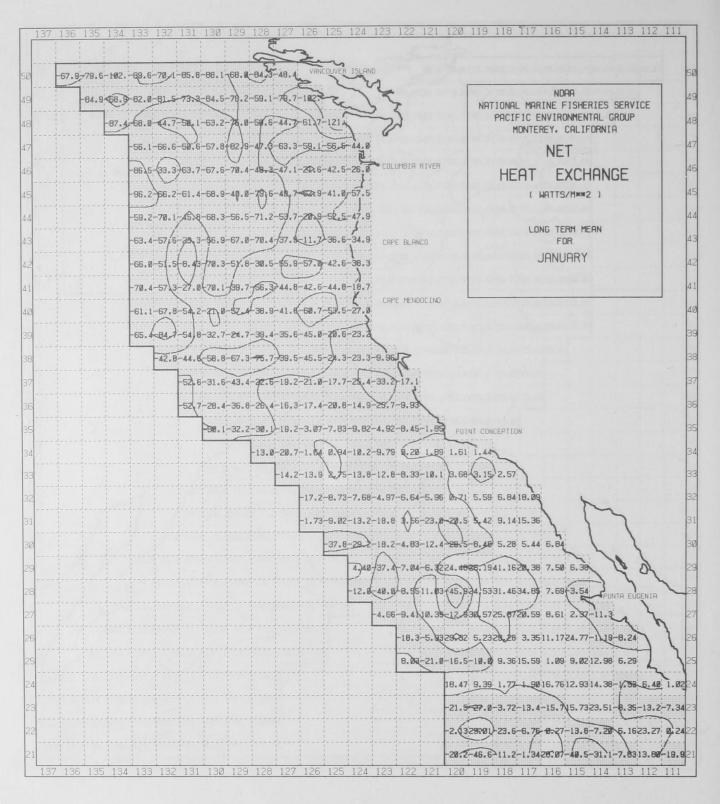


Chart 49.—Composite monthly mean net heat exchange for January.

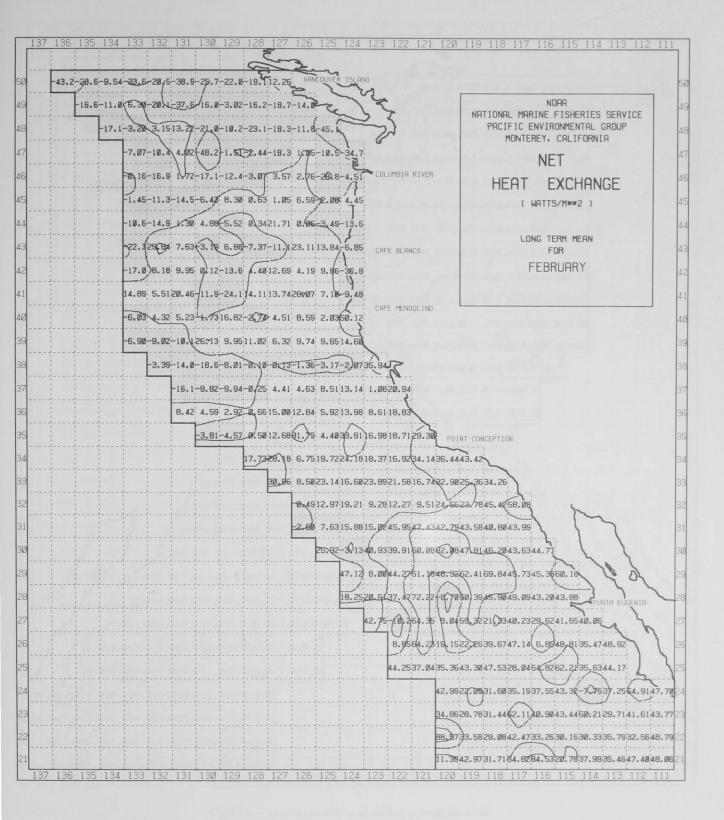


Chart 50.—Composite monthly mean net heat exchange for February.

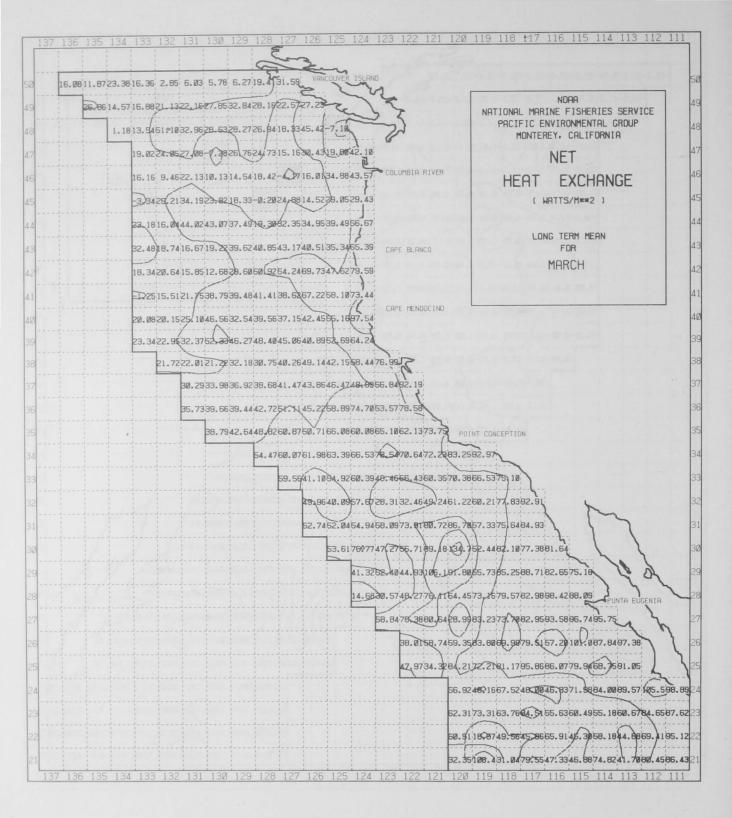


Chart 51.—Composite monthly mean net heat exchange for March.

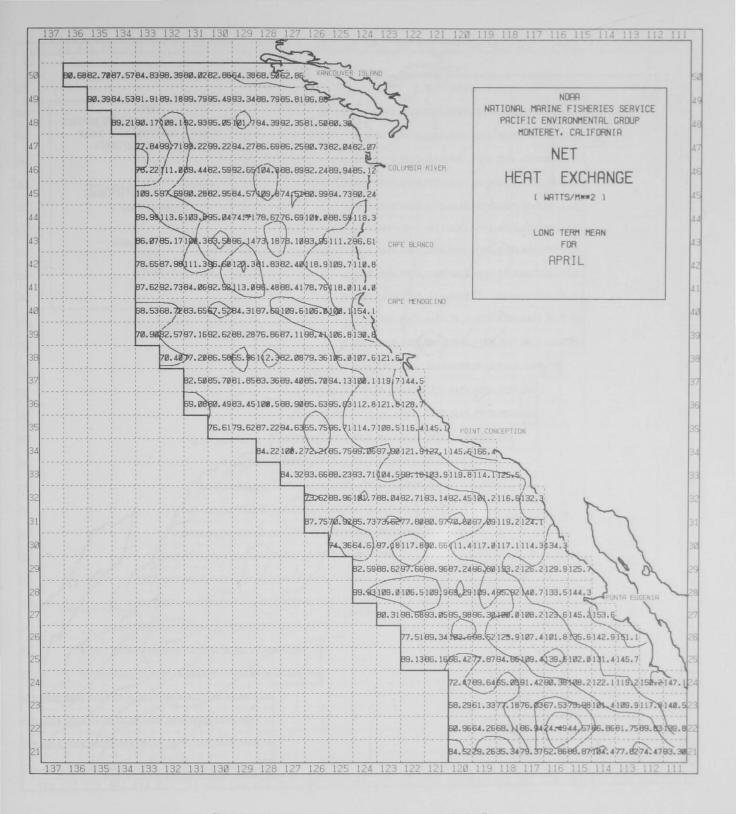


Chart 52.—Composite monthly mean net heat exchange for April.

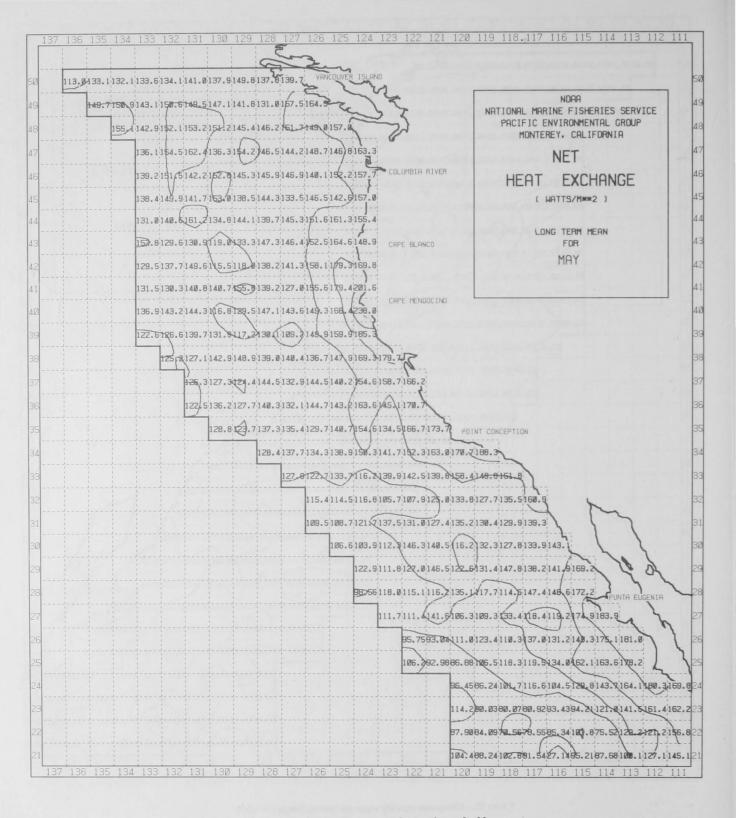


Chart 53.—Composite monthly mean net heat exchange for May.

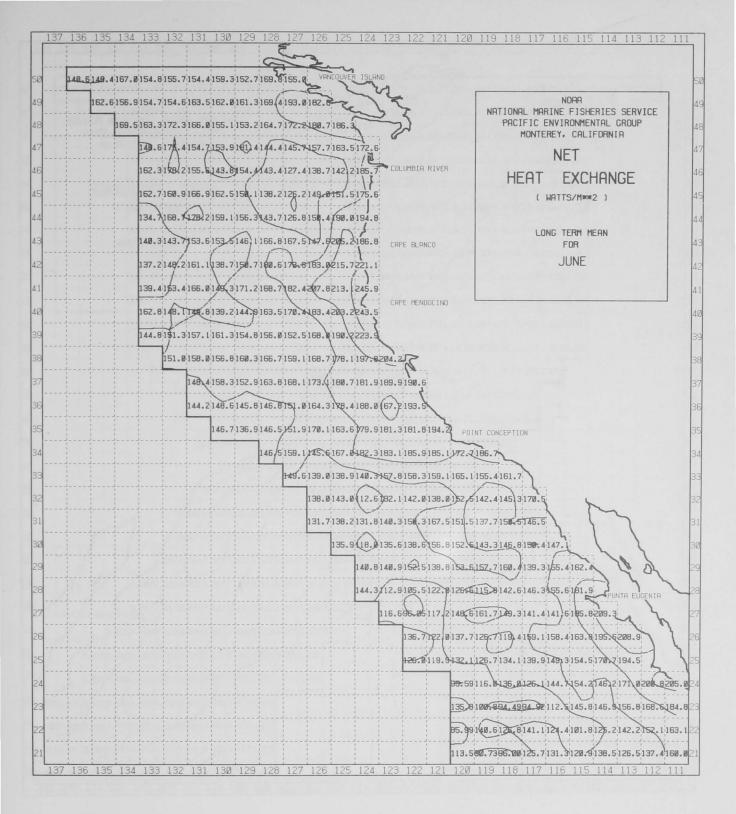


Chart 54.—Composite monthly mean net heat exchange for June.

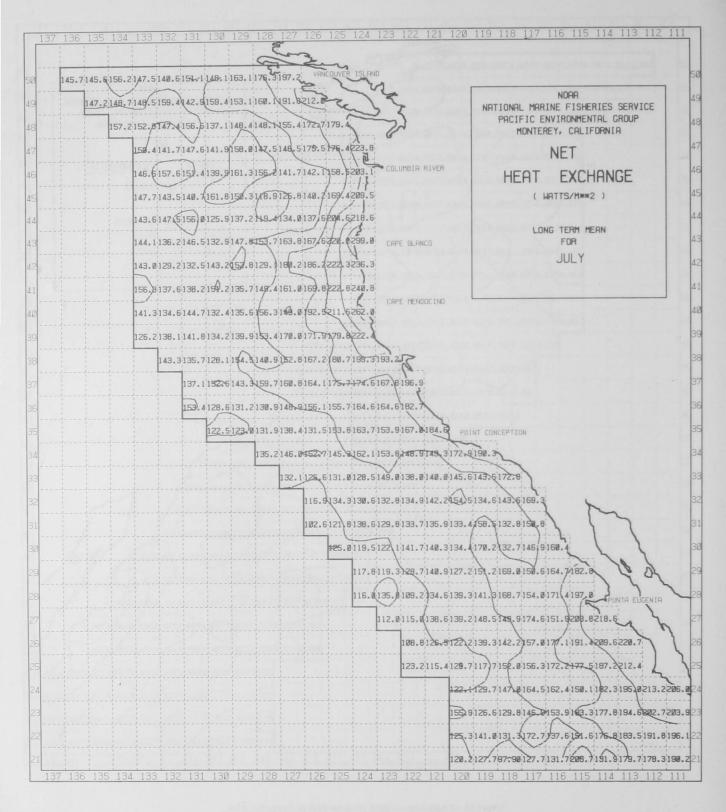


Chart 55.—Composite monthly mean net heat exchange for July.

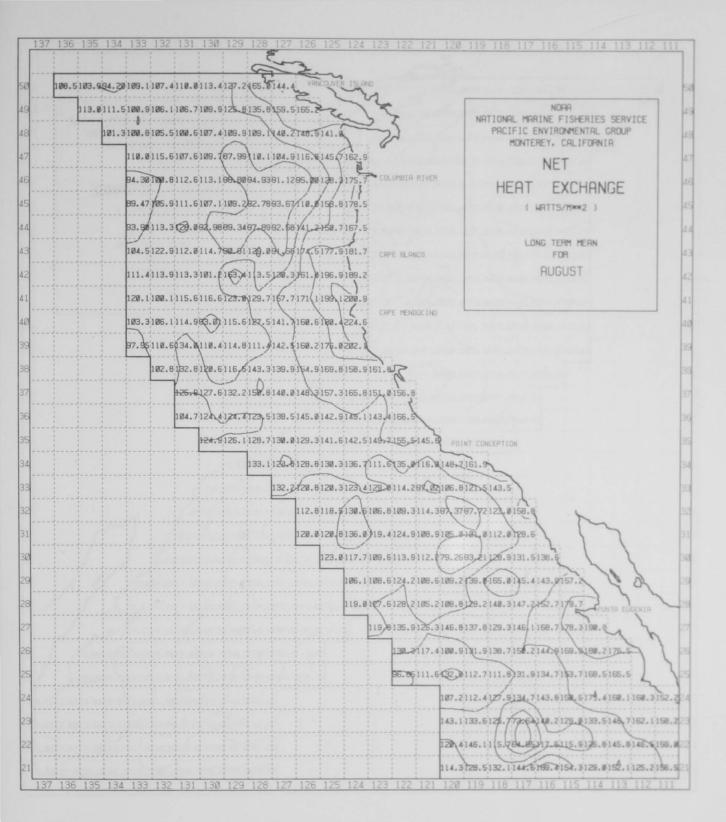


Chart 56.—Composite monthly mean net heat exchange for August.

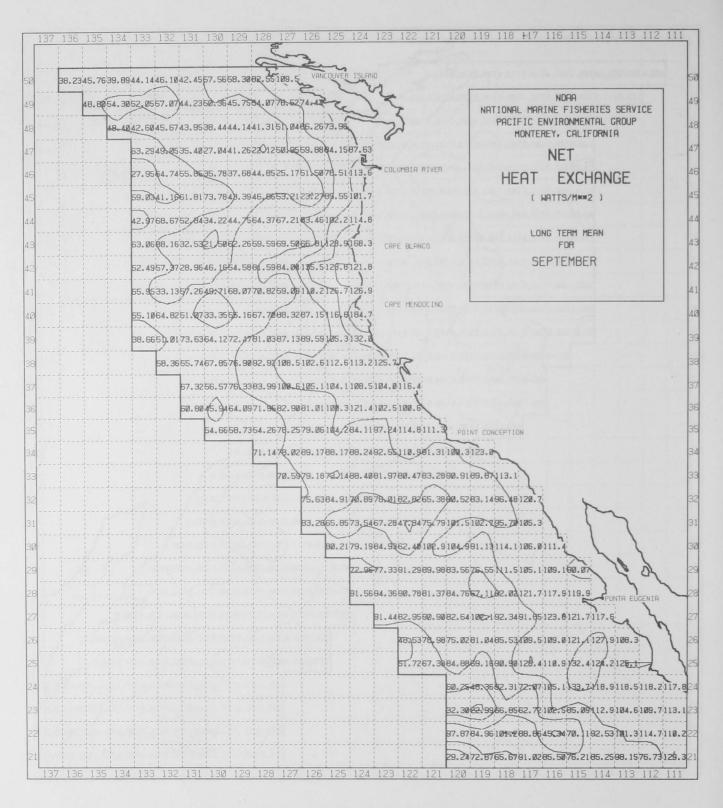


Chart 57.—Composite monthly mean net heat exchange for September.

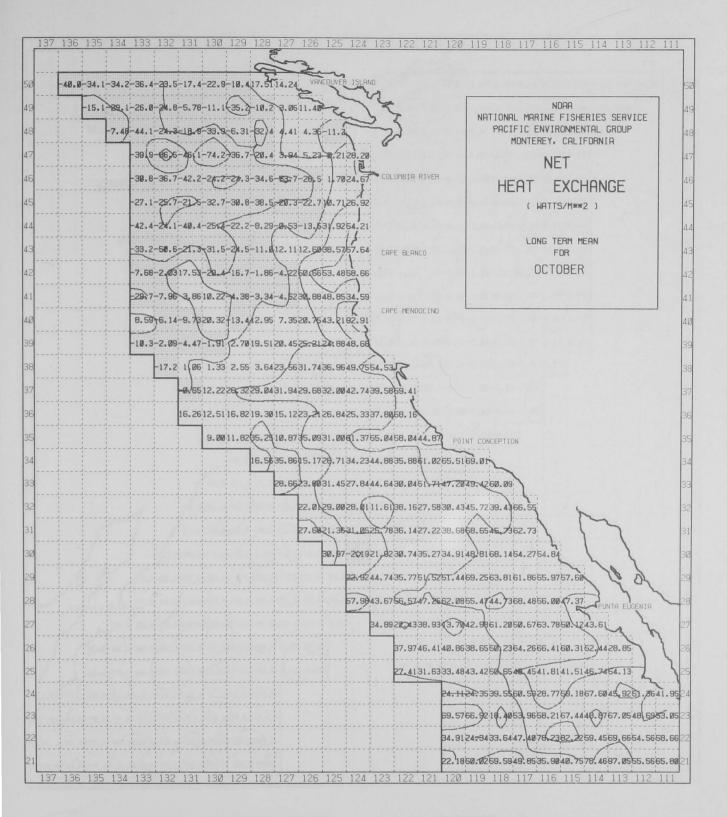


Chart 58.—Composite monthly mean net heat exchange for October.

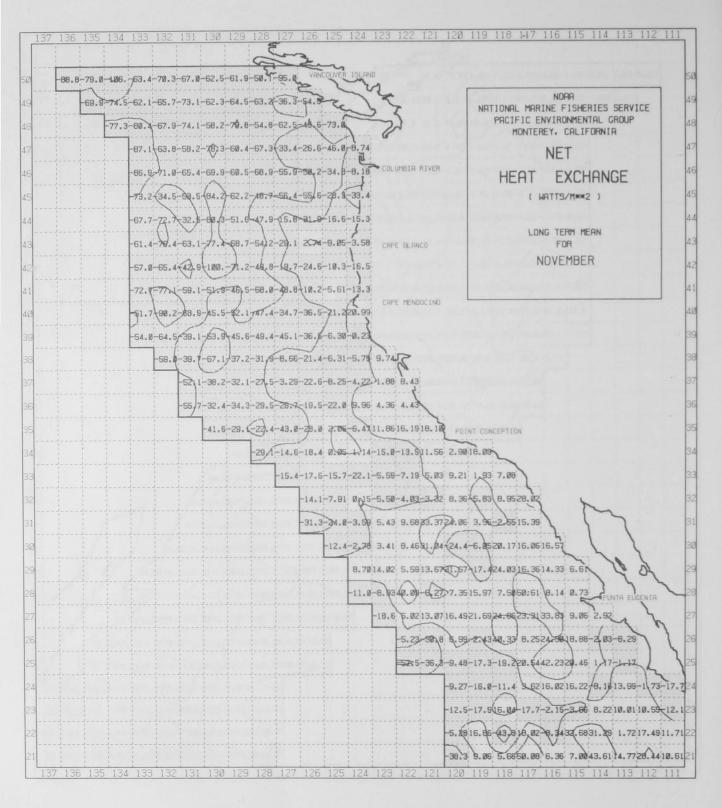


Chart 59.—Composite monthly mean net heat exchange for November.

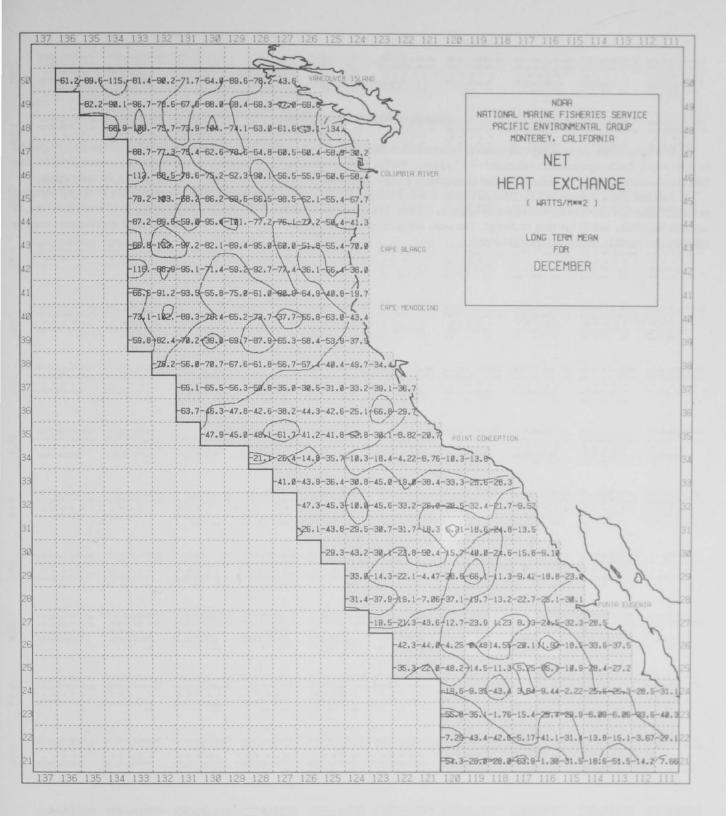


Chart 60.—Composite monthly mean net heat exchange for December.

APPENDIX II

Standard Errors of the Means

The following tables list the computed standard errors of the monthly means by 1° square area for the heat exchange components displayed in Appendix I. Each page contains values for 10 1° squares. Within each group of 10, all 1° squares are defined by a common latitude. The first set of values corresponds to the 1° square adjacent to the coast. The final tabulations refer to the 1° square farthest from the coast.

The standard errors of the means are tabulated for each month and square. The latitude and longitude of the center of the 1° square are listed at the left. Standard errors of the means are tabulated as follows: 1) incident solar radiation, 2) effective back radiation, 3) latent heat flux, 4) sensible heat flux, and 5) net heat exchange. The units are watts per square meter. The last value is the number of observations used to calculate the monthly means and standard errors.

LAT/LON	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	МОЛ	DEC
21 N QS 111 W QB QC QC QN OBS	5.46 3.17 11.76 3.34 14.84	5.098 8.928 2.03 12	5.854 6.854 6.947	7.26 2.71 10.41 3.30 14.17	6.43 5.90 2.32 8.81	7.16 2.33 6.58 2.11 9.73	6.53 2.03 5.86 1.74 8.94	6.85 2.04 7.02 1.82 10.34	5.56 1.75 7.39 1.78 9.59	5.43 2.32 7.86 2.07 9.73	6.00 2.97 10.66 2.30 13.19	4.75 2.85 7.20 1.61 8.67
21 N QS 112 W QB QC QN 08S	7.05 4.19 10.42 3.16 13.97	7.48 3.88 9.42 2.29 12.35	8.15 3.47 10.82 3.56 15.16	10.20 3.93 12.06 3.00 15.69	7.71 2.92 9.35 2.86 13.61	7.84 2.98 9.11 2.34 11.69	9.73 3.14 9.69 2.55 14.08	9.21 2.95 12.41 2.95 17.50	8.26 2.82 13.89 3.47 18.13	7.33 3.06 13.35 3.01 16.73	6.78 3.54 10.12 1.77 11.82	6.03 3.66 10.97 2.65 13.43
21 N QS 113 W QB QC QC QN OBS	8.82 5.37 15.56 4.75 20.47	8.35 4.05 12.21 3.64 16.71	8.62 4.14 18.45 4.72 24.20 28	11.15 4.21 12.55 3.77 16.63	9.19 3.48 12.16 4.04 17.02	10.98 3.90 10.41 4.19 13.96	11.82 3.41 10.71 3.33 17.67	13.02 4.15 17.60 3.44 23.16	10.09 3.31 12.89 4.20 14.63	10.04 4.29 12.64 4.00 18.43	8.85 4.44 18.57 4.28 21.05	6.23 4.10 13.33 3.59 16.77
21 N QS 114 W QB QC QN OBS	8.84 5.59 15.86 3.86 19.15	8.69 4.48 13.48 4.31 19.02	9.33 3.73 12.83 3.39 15.28	13.24 5.38 20.64 5.33 28.87	12.54 4.27 16.69 5.52 22.62	17.07 5.82 15.66 6.53 23.05	13.66 3.74 19.29 5.73 25.58	18.37 5.40 29.16 7.43 38.66	14.03 4.56 14.13 4.81 24.21	9.68 3.66 17.50 2.63 19.32	9.21 4.29 14.00 2.15 15.51	7.09 4.59 10.31 2.71 11.87
21 N QS 115 W QB QE QC QN 03S	10.10 5.24 27.58 5.42 32.47	11.47 5.38 22.89 6.80 32.50 18	11.79 5.09 18.77 5.97 27.29	16.77 6.46- 18.90 6.86 27.59	12.86 5.30 11.87 4.89 17.30	12.67 3.84 11.69 2.91 15.48	13.24 4.14 6.44 4.21 15.02	19.26 4.97 13.75 3.75 23.26	13.92 4.23 16.65 5.28 22.63	9.48 4.03 16.29 2.76 22.99	8.93 4.17 22.93 8.45 29.78	8.52 4.98 16.35 4.40 21.54
21 N QS 116 W QB QC QC QN OBS	13.36 5.70 17.93 4.48 24.52	12.58 5.37 13.39 2.65 17.75	10.79 4.68 15.42 3.65 20.42 25	16.10 6.96 21.80 7.59 31.12	16.08 5.63 13.86 3.41 12.93	15.87 4.83 14.50 3.64 19.11	13.02 3.36 14.47 4.03 19.62	20.08 5.33 13.37 5.44 23.19	14.77 4.35 21.37 6.24 33.27	10.11 3.71 15.62 2.49 21.55	14.36 7.88 22.40 7.01 29.36	9.64 6.09 19.06 4.71 25.37
21 N QS 117 W QB QC QC QN 03S	9.45 5.47 16.15 4.12 22.07 18	13. J5 6. 25 14. 31 5. 87 21. 0 2	10.25 3.87 15.15 4.60 21.75	15.49 5.38 16.44 6.59 26.59	23.18 7.87 14.76 4.85 15.88	11.99 3.50 1J.17 3.34 13.73	11.20 2.56 21.17 9.35 34.13	14.21 3.76 12.12 3.75 17.38	12.18 4.19 19.97 5.72 29.09 18	15.59 4.79 18.97 4.53 28.18	14.54 8.10 22.11 9.51 34.97	9.04 4.50 24.95 7.83 34.35
21 N QS 118 W QB QC QN 03S	9.34 4.74 16.21 4.75 23.52	12.7] 5.18 21.16 6.58 28.89	12.73 5.40 14.14 4.21 13.94	15.35 5.52 21.41 6.13 34.54	13.44 4.28 13.15 5.96 25.12	11.27 3.78 13.10 3.82 19.68 16	7.68 2.06 13.78 3.23 19.17	12.44 3.70 11.53 6.31 21.55	13.43 4.31 13.62 4.10 22.36	10.15 3.97 6.57 2.45 11.20	10.82 4.51 16.36 4.95 20.42	9.00 5.41 15.57 5.67 21.47
21 N QS 119 W QB QC QC QN OBS	12.45 8.31 25.07 6.97 33.32	10.44 5.43 17.75 6.71 24.93	13.63 5.28 14.49 4.15 19.62 18	8.95 3.01 11.42 5.54 17.20 24	11.15 3.23 15.82 3.99 23.33	12.22 4.10 16.70 4.62 22.17	13.18 3.69 12.34 4.75 22.96	13.29 4.01 11.87 2.04 18.05	10.61 3.47 12.47 3.41 19.68 24	9.51 4.12 14.01 3.71 18.88	8.19 3.74 10.51 3.30 13.68	8.42 5.22 17.44 6.18 21.55
21 N QS 120 W QB QE QC QN Q3S	3.66 4.70 1).08 4.49 14.84	8.70 4.42 12.47 3.17 16.63	13.02 5.60 15.15 3.88 18.27	12.91 4.71 9.78 4.18 15.57	12.10 4.18 13.77 2.21 20.30 23	10.57 3.61 7.48 2.95 11.83	9.33 2.54 7.66 3.32 14.39 28	14.92 4.14 14.44 4.21 23.69 16	14.32 4.55 19.36 6.22 29.84	10.18 4.40 13.40 4.32 18.08	8.62 4.07 11.67 3.11 16.08	6.36 4.34 12.59 4.37 14.81

,---

LATZLON	144	F. B	MAR	428	MAY	ип ſ	JUL	AUG	SEP	OCT	NOV	OEC
22 N 45 111 H 49 40 10 10 0 is	2.53 3.75 2.33 11.14	5.78 3.13 9.08 2.04 11.01	4.06 1.89 5.88 1.90 8.17	4.92 2.39 6.94 2.65 13.47	4.45 1.71 5.43 1.82 1.36	5.75 2.01 5.03 2.31 8.16	5.07 1.61 5.47 1.83 7.106	5.01 1.45 5.43 1.42 7.83	4.40 1.44 7.92 1.89 1.97	3.90 1.67 7.44 1.54 9.04	3.54 1.92 7.10 1.62 8.81 113	3.91 2.55 9.37 1.91 11.38
22 N 4S 112 H 18 16 10 10 10 04S	5.47 3.37 7.72 1.80 9.67	6.10 3.28 10.98 2.89 13.95	6.49 2.91 7.73 2.63 10.19	6.93 2.92 9.97 3.18 13.56	5.66 2.16 7.79 2.72 11.24	6.33 2.25 5.86 2.48 9.31	5.53 1.90 5.53 1.64 7.73	5.80 1.76 7.07 1.95 9.99	5.15 1.67 7.81 1.86 11.01	4.47 1.88 9.31 1.62 11.56	4.09 2.01 7.73 1.55 9.86 77	5.37 3.44 9.00 2.02 10.54
22 N 4S 113 H 0B 0C 2N 0BS	6.59 3.76 11.97 2.32 15.59	7.10 3.72 9.78 2.17 12.39	6.72 3.00 10.57 3.68 15.17	7.72 2.88 9.69 4.04 13.48	7.71 2.97 6.85 2.41 11.20 63	7.40 2.50 6.52 2.09 9.99	7.17 2.31 6.28 2.17 10.28 74	7.61 2.37 7.76 1.83 11.87	6.71 2.16 8.70 3.02 12.97	5.47 2.46 9.89 2.15 12.37	5.01 2.77 8.65 1.60 10.47	5.74 3.54 9.98 2.76 13.35
22 N 2S 114 W 4B 4E 4C 4D 4D 03S	8.06 5.18 14.31 4.45 18.48	7.46 4.11 11.21 3.37 14.44 36	6.91 3.24 10.40 3.64 13.73	8.17 3.19 13.18 3.03 12.26 46	7.23 2.87 10.29 3.11 14.39	7.87 2.43 7.96 3.14 12.57	8.74 2.71 5.57 1.99 13.07	11.09 2.93 13.16 2.94 13.50	8.05 2.69 11.25 3.71 14.16	7.56 3.22 12.14 2.63 16.36	6.44 3.25 12.47 2.42 15.75	4.84 2.95 10.05 2.90 13.10
22 N QS 115 W 48 QE QC QN OBS	6.92 4.83 14.87 4.45 13.20	7.76 3.93 13.33 4.16 18.81	7.82 3.55 11.50 3.13 16.03	8.22 3.34 14.18 3.62 17.91	1J.49 3.94 11.52 3.94 17.69	7.44 2.60 11.27 4.71 15.48	11.76 3.32 11.11 3.80 18.87	13.98 3.27 13.39 3.04 14.23	12.66 4.41 16.95 5.20 24.38	6.78 3.70 9.35 2.65 11.45	10.24 5.26 12.66 3.64 16.29	8.54 5.55 17.30 5.73 22.95
22 N QS 116 W QB QE QC QN OBS	19.14 5.53 14.79 5.49 2).13	9.63 4.94 11.20 4.21 17.27	10.43 4.59 15.20 5.51 22.11	15.20 4.82 26.87 7.44 38.33	9.65 3.40 13.32 4.99 19.41 29	7.86 2.66 11.94 4.21 16.91 26	13.39 3.83 10.91 3.28 15.58	13.24 5.03 12.78 3.87 22.86	13.87 5.13 19.17 5.29 25.36	8.82 3.97 10.44 3.19 13.66	8.76 4.29 14.30 3.06 19.32	7.07 4.84 19.87 6.33 25.65
22 N QS 117 W QB QC QN 03S	7.43 4.71 18.11 5.51 23.78	10.64 5.24 9.88 3.01 13.34 23	9.18 3.85 15.13 4.96 20.58	14.03 4.74 13.95 4.64 20.85	14.70 5.16 15.31 3.27 21.07	10.56 3.13 10.94 3.40 16.83	16.18 4.37 11.38 3.94 23.22	18.07 6.05 19.56 6.16 28.89	12.23 3.68 21.38 5.40 29.25	11.06 4.82 12.06 3.66 17.93	10.72 5.05 10.08 2.29 11.58	8.72 5.11 8.55 3.74 12.92
22 N QS 118 W QB QE QC QN 03S	9.99 6.54 23.24 8.13 31.52	11.18 5.54 13.12 6.59 19.18	10.23 4.25 13.65 7.02 22.11	13.12 5.15 12.55 4.76 14.74	8.64 2.81 18.61 5.44 22.55	13.69 4.56 14.71 5.68 22.59	19.19 6.68 17.24 4.85 22.51	13.51 3.52 22.30 5.61 31.23	15.02 4.17 22.74 5.38 34.32	20.15 8.25 22.73 4.56 27.23	10.86 5.42 24.60 4.60 32.18	7.70 4.71 19.78 6.52 27.37
22 N QS 119 W AB QE QC QN 09S	11.51 6.44 13.63 4.57 17.07	13.73 5.95 21.07 8.23 31.93	7.00 2.72 19.38 5.26 24.96	12.71 4.78 11.37 4.35 17.78	16.09 6.96 11.27 3.51 20.15	9.10 2.70 11.26 2.61 14.38	10.39 2.84 12.65 3.29 18.29	16.20 4.90 17.91 2.88 25.29 18	12.10 4.50 16.59 6.74 24.34	13.19 5.89 11.15 5.16 17.34	8.42 4.20 11.35 3.06 15.14	11.46 8.31 29.94 11.63 41.84
22 N QS 120 W QB 120 W QC QC QC 08S	9.02 5.78 14.12 3.34 15.54	11.69 5.86 15.05 4.39 23.33	10.96 3.97 13.81 4.64 18.92	14.95 6.69 13.98 3.37 18.57	6.55 2.37 13.49 4.11 16.30	25.01 9.36 49.19 13.19 57.58	14.52 43.41 15.45 26.42	17.13 6.11 7.86 4.16 15.88	13.63 3.85 23.87 2.88 26.87 26.87	13.47 5.69 14.02 6.40 17.98	7.65 4.65 9.669 12.13	12.29 5.63 25.42 6.67 33.78

LAT/LON

JAN

FEB

MAR

APR MAY

JUN

JUL

AUG

SEP OCT

MOA

OEC

23 N 111 W	28 28 20 20 20 20 20 20 20 20 20 20 20 20 20	1.45 .95 3.13 .35 4.24 738	1.59 .89 2.71 .75 3.48	1.76 .83 2.74 .92 3.80 782	1.89 .79 2.32 .88 3.33 812	1.93 2.35 1.65 3.65	2.18 .83 2.13 .97 3.34 781	1.79 2.01 2.67 2.87 824	1.84 .57 2.42 .63 3.26 831	1.74 .59 2.90 .68 3.79 786	1.46 .62 2.81 .66 3.60	1.33 .75 3.38 .77 4.14 744	1.39 3.59 3.59 4.46 678
23 N 112 W	SB SB SB SB SB SB SB SB SB SB SB SB SB S	3.63 2.34 6.51 1.84 8.34	4.73 2.61 7.76 2.64 10.58	5.31 2.51 7.77 2.44 10.65	5.21 2.12 5.79 2.15 8.43 106	5.05 1.86 5.20 2.28 8.25 133	4.80 1.67 4.03 1.63 6.31 165	4.67 1.54 4.17 1.42 6.27 143	4.75 1.46 6.20 1.56 8.40 125	4.33 1.40 6.65 1.58 9.08 147	3.35 1.45 5.46 1.45 7.51 147	3.38 1.87 6.83 1.88 8.66	3.64 2.49 9.11 2.36 11.39
23 N 113 W	GS GE GO GN OBS	6.61 4.29 12.96 3.18 16.08	7.66 4.19 12.23 3.11 15.62	8.20 3.64 10.72 3.73 15.83	8.46 3.57 7.82 2.83 11.63	7.46 2.81 8.13 3.44 12.63	7.59 2.67 6.90 3.22 11.83	7.12 2.33 5.87 3.03 10.14	7.60 2.18 7.24 2.08 13.52	6.31 2.20 9.41 2.37 13.07	6.47 2.54 7.89 2.42 12.24	5.03 2.77 7.87 2.13 10.23	5.28 3.30 13.26 3.72 17.79
23 N 114 W	GB GE GC GN GSS	6.07 4.07 7.55 2.13 8.90	7.85 3.98 9.41 3.74 12.23	6.62 2.90 8.44 2.78 11.54	7.75 2.86 8.52 3.26 13.23	6.51 2.51 7.42 3.34 11.30 71	7.26 2.39 6.08 2.51 9.29 67	7.29 2.49 4.91 1.77 8.79	6.12 1.73 7.78 2.23 10.86 86	6.82 2.35 9.60 2.60 13.54	5.56 2.64 11.29 3.23 14.29	4.39 2.24 11.31 2.84 14.69	6.01 3.63 12.95 2.84 16.56 36
23 N 115 W	GS GB GC GN GS OBS	5.91 3.70 11.71 3.14 12.44	7.93 3.83 11.00 3.52 15.90 41	7.26 3.35 8.08 2.71 11.37	7.01 2.75 9.41 2.90 13.32 63	6.95 2.75 9.61 3.37 13.46	7.37 2.70 7.39 2.34 10.87	8.59 2.66 6.16 1.93 11.43	9.14 2.64 10.08 2.93 16.05	6.92 2.38 11.34 2.63 13.57	6.36 2.75 8.12 2.69 11.49	5.59 3.16 8.69 2.39 11.11	4.70 3.16 12.66 3.66 16.16
23 N 116 W	US US US US US US US US US US US US US U	6.66 4.39 11.55 3.63 13.55 38	7.73 4.31 12.50 2.94 14.95	7.54 3.46 10.55 4.65 14.38	9.07 3.47 11.81 3.91 15.83	6.96 2.53 9.22 2.46 11.15	7.50 2.48 9.87 3.41 12.87	7.53 2.38 4.81 1.94 9.23	9.98 2.74 3.69 2.53 13.36	7.74 2.97 12.10 4.18 17.10	7.09 3.20 8.26 2.07 9.72	5.66 3.23 11.22 2.35 13.94	5.73 3.72 10.39 2.76 13.54
23 N 117 W	O S S S S S S S S S S S S S S S S S S S	7.43 5.39 16.59 4.61 2).17	9.47 4.52 11.28 3.29 14.95 29	7.39 3.32 9.03 2.92 12.99	8.96 3.46 11.96 5.42 16.23	3.07 3.63 10.47 4.31 15.44	7.61 2.62 8.42 3.36 11.94	3.05 2.45 5.10 2.20 9.88 37	11.27 3.71 12.31 2.40 14.93 23	9.63 3.31 12.27 3.85 16.92 33	8.67 4.29 10.03 2.76 14.34	5.66 4.71 13.90 3.32 18.94	5.14 3.02 9.88 3.76 14.08
23 N 118 H	038 38 38 38 38	7.84 5.65 12.36 3.37 16.53	17.35 4.86 13.11 4.42 13.42	11.26 5.13 9.33 3.51 14.45	7.98 3.08 11.69 4.04 16.29	9.55 4.13 12.36 3.75 15.27	9.17 2.91 11.67 3.25 15.56 25	13.99 3.31 10.82 3.22 16.99 24	11.40 3.47 12.18 4.62 11.58	11.27 4.51 13.36 3.57 19.27	10.28 4.27 12.42 2.73 14.65	5.95 5.20 1.54 3.33 13.91 23	6.10 3.90 9.92 3.06 13.00
23 N 119 H	1SB 1E 1CN 0	3.45 5.50 16.75 5.10 23.43	9.77 4.11 11.41 2.38 15.53	9.48 4.62 11.36 3.99 16.63	13.46 3.50 11.64 2.54 15.71 23	13.23 4.22 11.27 3.28 14.53	9.66 3.37 11.65 2.13 15.31	9.92 2.52 3.22 2.28 13.71 22	17.44 5.14 12.99 4.75 22.60	10.30 3.41 19.70 6.20 24.40	9.76 5.06 10.91 2.30 13.51	7.06 4.12 19.86 7.09 24.39	8.51 5.19 22.92 4.01 26.49 21
153 M	915 91 91 91 92 93 93 94 95 95 95 95 95 95 95 95 95 95 95 95 95	7.09 5.07 3.57 5.31 1.015 26	13.25 11.74 3.25 14.13	12.54 4.59 14.74 4.44 14.71	13.31 3.38 11.91 4.73 17.11	13.3. 5.77 11.74 3.65 17.67	14.43 4.91 13.75 4.27 21.54 13	13.34 5.43 17.54 3.91 23.22	12.82 4.06 3.95 3.11 15.45	11.29 5.63 13.42 4.31 13.43	16.32 6.52 15.13 3.90 22.07	8.24 4.45 11.78 2.10 15.33 23	5.87 3.63 19.09 2.52 19.95

LAT/LON	JAN	FāB	MAR	APR	MAY	אהר	JUL	AUG	SEP	OCT	NOV	DEC
24 N QS 111 W QB QC QC QN 03S	1.93 1.31 3.74 1.55 4.81 +05	2.32 1.29 3.55 1.63 358	2.35 1.12 3.21 1.19 4.48 421	2.74 1.15 2.93 1.15 4.31 397	2.92 1.18 3.36 1.46 4.75	3.06 1.20 2.60 1.33 4.36	2.59 .88 3.10 .93 4.18 400	2.51 .80 3.57 .92 4.59 446	2.26 .80 3.94 1.00 5.16 395	2.18 .98 4.62 1.08 5.89	1.86 1.07 4.63 1.09 5.72 401	1.82 4.37 1.16 5.47 370
24 N QS 112 W QB QE QC QN 03S	1.32 .91 2.33 .79 3.37 841	1.53 .87 2.23 .64 2.92 843	1.61 .75 2.11 .75 3.00 953	1.84 .77 1.77 .73 2.68 938	1.93 .77 1.66 .83 2.66 1315	2.15 .81 1.46 .75 2.57	1.76 .60 1.68 .64 2.54 968	1.78 .59 2.36 .67 3.13 914	1.56 .56 2.51 .65 3.32 942	1.40 .61 2.64 .64 3.37	1.25 .73 2.75 .73 3.51 895	1.22 .89 2.93 .77 3.71 812
24 N QS 113 W QB QE QC QN 03S	3.73 2.55 6.97 1.98 8.89	4.76 2.59 7.09 2.50 19.00	4.49 2.13 5.94 1.96 8.19 137	5.38 2.28 7.10 2.96 9.82 109	5.45 2.03 5.21 2.47 8.12	5.25 1.89 4.09 1.76 6.86	4.91 1.61 4.16 1.54 6.30 142	4.50 1.46 6.21 1.87 8.56	3.88 1.39 7.05 1.91 9.32 158	3.83 1.53 7.39 2.20 10.34 138	3.25 1.78 6.56 1.56 8.53 132	3.46 2.43 1.83 10.13 10.13
24 N QS 114 W QB QE QC QN 08S	6.66 4.59 11.32 3.12 15.20	8.10 4.49 13.77 4.63 23.53 28	9.86 4.40 10.77 3.75 15.21	10.93 4.13 9.05 3.11 10.65	9.15 3.11 6.98 2.85 11.57	7.39 2.22 7.53 4.63 13.28	9.56 3.10 8.12 3.52 11.88	7.45 2.28 6.13 1.83 8.91 61	6.95 2.39 8.27 1.89 10.46	5.73 2.72 11.00 3.34 15.14	6.55 3.59 13.83 3.41 18.70	7.96 5.46 26.35 6.94 33.89
24 N QS 115 W QB QC QC QC QC QC QC	7.12 4.98 12.80 3.53 16.28	9.41 5.43 11.56 2.74 13.63	8.27 3.79 9.35 3.17 14.26	8.30 3.17 7.68 3.40 11.78 42	7.85 2.96 6.91 2.93 13.31	9.37 3.30 7.28 2.56 10.75	6.60 2.38 5.43 2.65 80	9.46 2.85 6.54 2.32 11.86	6.60 2.51 7.39 2.75 10.86	7.03 3.25 11.42 2.56 14.25	6.65 3.64 9.98 3.03 13.95	7.03 4.39 17.66 5.33 21.08
24 N QS 116 W QB QE QC QN 085	6.46 4.51 7.91 2.94 11.25	6.94 4.10 7.50 2.69 9.05	9.21 4.23 10.39 3.73 13.66	7.99 2.94 9.23 2.95 12.99	6.62 2.45 6.96 2.60 9.57 66	7.04 2.38 6.31 2.79 10.13	7.73 2.54 5.10 2.14 8.82	6.80 2.12 7.86 2.22 11.11 67	8.60 2.97 9.82 3.15 15.94	6.96 3.13 9.04 2.50 12.12	5.20 3.00 8.95 2.30 11.30	5.43 3.40 11.19 12.68 14.06
24 N QS 117 W QB QE QC QN OBS	6.17 4.01 9.14 3.31 12.67	7.86 4.31 9.46 2.63 12.98 28	9.91 4.92 8.90 3.34 10.52	9.22 3.62 10.37 3.44 13.27	7.70 3.09 7.73 2.50 13.78 58	7.53 2.58 7.12 2.87 10.83 62	7.20 2.29 6.59 2.36 9.21 64	8.49 2.64 9.78 2.60 14.45 58	7.71 2.74 9.39 3.13 14.60	7.22 3.19 8.40 2.85 12.75	5.35 2.86 11.30 3.30 15.03	537.05 720 10
24 N QS 118 W QB QC QC QN 03S	6.49 4.36 8.54 2.31 9.50 23	6.83 3.77 9.09 2.77 11.01	7.91 3.45 9.11 3.92 13.45	8.78 3.64 11.40 3.86 16.13	7.17 2.63 6.42 2.87 9.56 52	5.79 1.85 7.43 2.58 11.04	8.81 2.87 6.50 2.66 10.25	19.00 3.17 9.09 2.55 12.53	8.03 2.70 9.88 3.49 14.62	6.70 2.98 7.65 2.37 10.28	5.87 3.36 10.40 3.50 14.24	5.558 5.558 2.661 11.34
24 N QS 119 W QB QE QC QN 03S	6.74 4.26 7.95 3.12 11.16 28	7.69 4.81 11.89 4.03 16.03	7.62 3.48 9.42 2.76 12.40	7.38 2.87 8.82 3.39 19.48	7.54 2.78 9.71 3.44 14.19	8.41 2.70 7.09 3.15 11.88	7.69 2.37 6.87 2.85 9.85	9.52 2.81 9.79 3.56 14.72	8.04 2.94 16.24 3.28 21.28	7.78 3.64 10.41 2.64 14.10	6.75 4.18 12.65 3.08 15.58	479 7258 628 88
24 N QS 128 W QBE QC QC QC QC QC	6.73 4.59 10.47 3.49 13.65	7.04 3.77 6.97 2.41 9.47	7.71 3.24 9.06 3.19 12.26	8.57 3.39 3.64 3.03 11.58	7.69 2.92 8.18 3.80 11.08	7.67 2.49 11.11 3.28 16.58	7.35 2.36 7.62 2.81 19.28	12.76 12.95 12.95 3.34 20.62	1 0 0 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0	9.39 4.14 12.40 3.39 17.60	6.36 3.55 11.30 2.46 14.18	3.55 8.85 8.55 10.37

LAT/LON

JAN

FEB

MAR APR

25 N 113 H	QS QB QE QC QN QBS	1.26 .88 2.29 .67 2.98	1.46 .85 2.18 .68 2.83	1.59 .76 1.97 .69 2.72 1010	1.86 .79 1.60 .71 2.37 1000	1.95 .78 1.46 .68 2.34 1052	2.14 .81 1.35 .638 1020	1.85 .63 1.43 .641 2.40 1018	1.78 .60 2.21 .72 3.06	1.56 .57 2.41 3.30 979	1.36 2.45 2.45 3.27 992	1.25 .76 2.58 .70 3.34 955	1.14 .87 2.71 .68 3.36 891
25 N 114 W	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.45 2.42 6.77 1.95 8.46 104	4.61 2.59 7.73 2.85 11.00	5.31 2.65 7.05 2.67 10.25	5.37 2.22 5.50 2.93 7.93	52527 1258	5.55 2.04 1.86 1.48	5.90 4.18 2.81 12 7	4.83 1.625 1.525 1.510 1.61	4.43 1.60 5.79 1.79 8.26 139	3.65 1.72 6.95 1.87 9.18	3.71 2.16 7.34 1.93 9.41	3.72 2.72 8.30 2.08 10.34
25 N 115 W	QS QB QC QN QS OBS	8.89 5.96 9.39 2.61 11.49	8.02 4.51 9.93 3.46 12.98	10.00 4.13 11.76 3.59 16.86	7.84 3.21 10.75 3.23 13.96	8.61 3.07 5.27 2.80 11.96	8.26 3.17 5.79 2.94 9.67 48	7.48 2.40 4.71 2.58 9.67 68	8.00 2.62 7.17 2.26 10.30 55	7.96 2.94 7.68 2.55 11.54	6.21 2.84 9.42 2.54 13.13	5.91 3.36 12.29 2.70 16.42	5.67 4.40 17.58 4.58 21.14
25 N 116 W	QBECN QQQ QQQ QQ QQ QQ QQ QQ QQ QQ	12.03 9.23 22.60 6.43 27.97	8.83 4.84 12.54 5.21 16.70	10.50 4.77 13.86 4.50 17.60	11.81 5.11 7.34 4.46 11.33	8.37 3.04 6.82 3.59 12.36	9.75 3.34 6.96 2.00 7.60	9.75 3.31 6.72 2.57 11.73	9.25 3.15 8.18 2.74 11.00	9.J2 2.98 11.61 3.60 17.25	10.95 5.33 12.52 3.04 17.26	7.03 4.44 9.26 3.85 13.37	10.73 7.13 24.91 8.40 33.51
25 N 117 W	QS QB QC QN QBS	8.25 6.14 10.91 4.77 15.54	8.44 5.û8 12.72 6.13 17.58 23	9.30 4.15 7.65 3.33 12.29	9.14 3.65 8.89 2.86 11.62	8.00 2.64 6.66 2.48 13.82	9.44 3.07 7.60 2.59 12.51	8.60 2.81 5.60 2.66 11.05	7.40 2.36 7.12 1.56 13.01 53	9.55 3.43 7.32 3.20 11.65	6.87 3.16 9.59 3.41 14.01	5.86 3.51 12.11 3.02 15.17	7.25 5.04 10.77 3.60 14.46
25 N 118 W	GSB GC GC GS GS OBS	6.72 4.28 11.29 3.79 15.44	7.92 4.91 12.83 5.16 17.74	10.39 4.71 9.33 3.48 14.26 27	9.41 3.71 9.50 3.93 14.23	6.35 2.29 7.23 2.77 10.25	6.71 2.42 6.91 2.66 9.16	7.30 2.37 4.99 1.81 8.76	7.16 2.51 7.48 2.33 9.60	8.21 2.71 9.26 2.34 13.51	7.25 3.47 7.10 2.48 9.20	5.59 3.19 13.56 3.97 18.44	4.94 3.38 7.73 1.94 9.80
25 N 119 W	GSB GGS GGS GGS GGS GGS	6.69 4.21 7.88 2.70 9.59	5.28 3.16 12.32 3.54 15.39	8.17 3.48 7.41 1.98 11.35	8.51 3.26 9.95 3.45 13.81	7.95 3.19 7.75 2.89 11.20	6.08 2.14 5.66 1.96 8.02	6.41 2.04 7.32 2.32 10.57 51	7.29 2.18 3.73 2.41 12.27	6.79 2.59 7.55 2.15 10.63	6.03 2.88 6.98 1.95 10.14	5.62 3.26 14.73 3.96 19.50 40	5.01 3.67 8.49 2.53 10.20
25 N 120 W	QS QB QE QC QN QSS	7.68 5.27 13.71 3.68 14.33	7.84 3.79 12.48 4.03 17.42	8.03 3.64 6.20 2.72 9.17 40	6.42 2.74 8.43 2.24 9.63	6.01 2.44 8.22 3.71 10.53	7.88 2.58 5.52 2.19 8.71 40	7.36 2.36 5.75 1.66 9.37	9.65 3.39 8.05 2.23 11.72	9.16 3.51 8.44 2.27 11.92	7.25 3.85 10.81 3.16 14.61	4.88 2.67 12.27 2.84 15.54	6.56 4.41 11.08 3.07 14.42
25 N 121 W	038 000 000 030 030	6.66 4.76 11.10 3.19 14.03	8.36 4.49 3.14 9.94 23	8.20 3.67 12.94 4.17 18.72	9.24 3.31 6.58 2.51 10.74 33	8.68 3.39 7.94 2.79 11.56	7.88 2.62 6.28 3.81 11.12	7.11 2.36 7.13 2.64 11.37	8.75 3.08 9.58 3.85 13.46	7.74 2.66 11.89 2.93 16.35	8.33 3.95 10.00 2.52 14.07	5.65 3.66 16.71 3.72 19.93	7.44 4.71 11.63 3.69 16.04
25 N 122 W	QS QBE QCN QBS	6.95 4.49 11.42 3.14 14.51	7.64 3.57 9.75 3.13 12.99	8.43 3.65 9.63 3.44 13.74	7.62 2.83 9.97 2.77 12.65	7.91 2.70 8.92 3.08 12.97	1J.655 3.555 8.89 2.43 11.81	6.61 1.89 9.74 3.20 13.07	8.75 2.64 11.21 3.04 17.16	11.59 4.15 12.68 3.61 16.38	8.87 3.81 10.16 2.76 13.28	5.57 3.22 16.19 3.96 19.78	4.78 3.40 10.09 2.59 12.34

MAY JUN JUL

AUG SEP OCT

NOV DEC

LAT/LON	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP	oct	NOV	DEC
26 N QS 113 W QB QC QC QN 08S	2.21 1.64 4.57 1.37 5.90 273	2.56 1.55 3.70 1.11 4.72 297	2.88 1.40 3.53 1.34 4.88 304	3.59 2.74 1.28 4.25 2.85	3.42 1.42 2.75 1.23 4.31 325	3.71 1.41 2.07 1.08 3.82 321	3.43 1.23 2.71 1.05 4.37	3.17 1.14 3.61 1.32 5.12 290	2.90 1.11 4.82 1.27 6.41 297	2.35 1.12 5.02 1.39 6.62 311	2.16 1.34 4.71 1.17 5.84 313	1.86 1.49 5.16 1.41 6.55 289
26 N QS 114 W QB QE QC QN 08S	1.29 .97 2.51 .74 3.27 828	1.50 .91 2.35 .77 3.03	1.66 .82 2.JU .78 2.80 989	1.98 .86 1.75 .78 2.63 927	2.j9 .85 1.66 .78 2.54	2.24 .88 1.56 .79 2.59	1.99 .71 1.37 .65 2.41	1.80 .65 2.01 .73 2.92	1.70 .65 2.38 .75 3.26	1.42 .68 2.44 .73 3.22 924	1.28 .82 2.88 .78 3.71 854	1.17 .95 3.01 .83 3.79
26 N QS 115 W QB QC QN 03S	4.23 3.19 6.17 2.49 8.13	4.28 2.66 6.73 2.45 9.13 76	5.50 2.63 7.26 2.81 9.71 78	6.22 2.52 4.64 2.64 8.19	6.26 2.37 5.62 2.74 9.05	6.26 2.33 4.72 2.73 7.02	6.45 2.23 4.37 1.92 7.06	5.84 1.89 4.85 1.62 7.64	5.14 1.82 5.72 1.96 8.30	4.58 2.18 7.80 3.04 10.72	4.12 2.30 7.68 2.14 10.27	4.11 3.27 10.15 3.06 13.48
26 N QS 116 W DB QE QC QN 08S	7.45 5.20 12.38 3.94 15.57	11.47 7.52 23.49 8.96 32.54	11.18 5.17 12.37 2.39 14.59	9.33 4.15 10.73 3.68 13.53	7.07 2.75 7.13 3.11 10.70 57	7.51 2.64 7.59 3.34 19.97	5.29 2.90 4.61 2.25 7.67	8.85 3.04 5.74 2.35 10.26	8.47 2.87 8.47 2.82 12.68	7.08 2.92 11.64 3.06 16.27	4.76 2.94 10.45 2.34 13.42	7.43 5.51 13.64 4.93 17.64
26 N QS 117 H QB QC QN 08S	7.21 7.75 17.96 3.42 22.70	11.39 6.89 21.38 7.55 27.32	13.82 6.52 26.25 8.56 37.42	10.93 4.15 9.67 4.65 14.38	13.67 4.11 6.29 2.19 15.58 28	9.32 3.28 7.75 3.53 12.53	8.07 2.96 6.18 2.36 3.63 45	9.31 2.88 6.44 2.76 11.47	8.78 3.37 8.13 2.93 12.60	6.58 3.44 8.55 2.30 10.91	6.00 4.93 9.90 3.77 14.12	8.67 6.38 19.41 4.75 23.41
26 N QS 118 W QB QE QN 03S	7.53 4.69 1J.11 4.38 15.19 25	8.41 4.97 11.51 3.13 13.15	19.52 5.16 11.43 3.19 15.95 28	11.91 4.93 8.45 4.29 14.61	9.64 3.37 7.69 2.32 9.82 31	6.33 2.09 6.39 2.19 8.16	6.77 1.84 5.04 3.70 9.14	3.74 2.93 7.06 2.76 11.35	6.44 2.56 7.30 2.87 9.75 50	8.46 4.18 8.27 1.94 10.71	8.19 4.98 19.12 2.87 13.81	9.59 6.80 14.26 4.93 19.05
26 N QS 119 W Q9 QC QN 08S	3.29 5.60 14.53 2.55 17.42	19.49 19.60 5.37 24.50	11.96 5.37 12.77 4.14 17.24	19.07 4.23 9.63 3.13 12.93	7.73 2.61 6.40 2.54 8.69 36	5.64 2.98 5.43 3.61 11.06	5.25 2.77 5.22 2.86 1).17	13.61 3.91 9.47 3.33 14.38	12.31 4.62 12.59 5.52 17.22	10.77 4.70 11.57 3.16 16.37	6.20 3.86 7.35 2.71 9.30 32	8.01 5.69 13.20 3.73 16.71
26 N QS 123 W 78 76 70 70 70 70 70 70 70	7.17 4.35 11.13 2.53 12.66 21	9.60 5.36 10.42 4.81 14.15	9.22 5.03 11.73 3.05 15.77	9.93 3.62 d.51 3.22 13.94	7.56 3.15 7.03 2.43 9.99 52	7.87 2.66 5.19 2.05 8.35	6.23 1.97 6.83 2.62 19.54	7.96 2.77 3.32 3.00 14.26 39	8.22 3.19 11.14 3.66 15.74	6.88 3.24 9.35 2.41 11.10	5.80 3.30 11.17 2.30 13.78 32	5.26 4.22 10.15 2.73 11.02
26 N 75 121 W 78 00 00 005	6.51 4.12 10.25 4.16 14.32	19.67 5.19 11.94 3.11 11.15	8.39 3.99 8.91 3.48 13.91	3.41 3.34 6.73 2.75 12.16 46	9.63 3.24 1).58 3.23 13.15	6.58 2.29 6.13 8.59	13.06 3.39 7.79 2.28 11.02	7.53 2.49 4.21 3.15 12.48	6.21 3.32 9.19 2.28 11.88	7.63 3.65 7.63 2.40 10.61	5.28 3.19 14.94 4.83 19.90	4.56 3.34 10.51 4.33 14.89
26 N US 122 H UB 126 H 126 H 126 H 126 H 127 H 128 H	6.25 1.35 13.35 13.81	6.95 4.32 11.31 3.56 15.26	6.93 3.59 7.626 3.257	9.52 4.19 9.54 2.83 11.35	7.41 2.59 7.44 2.75 11.15	7.09 2.46 5.38 1.86 8.47	6.34 1.96 5.42 9.22 9.23	7.67 2.76 6.59 3.43 12.72	7.36 2.98 8.83 3.32 12.26	6.99 3.29 10.93 2.57 14.53	5.25 3.40 9.39 2.29 11.45	3.16 15.65 28.36

LAT/LON	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	иол	DEC
27 N QS 114 H QB QE QC QN 03S	1.99 1.52 4.11 1.43 5.53	2.29 1.45 3.43 1.16 4.50 342	2.57 1.30 2.83 1.12 3.92 388	3.13 1.40 2.62 1.26 3.83 352	3.11 1.28 2.53 1.17 3.81 387	3.51 1.41 2.22 1.14 3.88 352	3.22 1.18 2.15 1.98 3.87 361	2.79 1.08 3.38 1.26 4.94 317	2.69 1.09 3.97 1.25 5.57	2.25 1.13 4.03 1.23 5.29 380	1.96 1.36 4.21 1.13 5.44	1.536 1.316 1.210 5.226 373
27 N QS 115 W QB QC QC QN 03S	1.29 1.01 2.45 .84 3.22	1.51 .95 2.32 .90 3.10 764	1.80 .89 1.92 .84 2.79 855	2.05 .91 1.78 .88 2.73 816	2.19 .88 1.72 .89 2.76 854	2.43 .94 1.60 .83 2.73	2.25 .81 1.56 .78 2.70 803	1.97 .73 1.99 .83 3.02	1.95 .80 2.39 .85 3.42 779	1.59 2.65 .94 3.66 825	1.31 2.61 .80 3.38 763	1.19 1.01 3.18 .95 4.685
27 N QS 116 W QB QE QC QN 03S	4.75 3.28 3.54 2.12 11.32	4.76 2.98 8.45 3.51 11.97	6.75 3.27 7.34 3.05 11.55	6.69 2.97 4.81 2.01 7.32 75	7.03 2.81 7.75 2.72 19.55 73	6.81 2.42 5.49 3.04 9.30 70	6.88 2.25 6.45 2.66 9.09	6.44 2.16 4.56 1.81 8.10	5.58 2.17 6.10 2.32 8.51	6.36 3.02 8.59 3.01 11.69	4.89 3.06 8.92 2.56 10.93	5.23 4.57 11.30 4.09 15.38
27 N QS 117 H QB QC QC QN OBS	6.79 4.86 11.86 2.55 13.34	8.37 5.29 19.36 3.34 13.7]	8.52 4.25 11.77 6.79 17.40	8.57 3.46 7.96 3.45 10.84	7.97 2.87 6.15 2.52 9.46	7.32 2.56 5.47 1.89 7.21 49	7.71 2.52 4.55 2.32 8.32	7.36 2.28 5.03 2.13 8.81	6.57 2.60 5.66 1.79 8.24	7.16 3.02 7.39 2.62 12.02	5.90 3.68 11.60 4.44 15.39	7 • 11 5 • 81 12 • 19 5 • 74 16 • 53
27 N QS 118 W QB QE QC QN 08S	7.36 5.69 10.04 1.88 15.78	12.53 7.25 14.91 5.19 18.91	14.10 5.86 15.18 6.14 21.13	11.56 4.33 11.49 4.12 17.04	11.26 3.63 7.62 2.35 10.56	8.94 3.12 6.58 2.97 11.76 41	7.25 2.44 5.25 2.34 7.96	8.46 2.74 6.58 2.70 12.30	7.90 3.32 8.98 2.91 12.34	9.79 4.51 7.49 2.52 11.49	6.55 4.74 10.72 3.86 14.88	7.50 5.48 12.79 4.74 16.03
27 N QS 119 H QB QE QC QN OBS	8.39 5.50 11.42 4.69 16.10	9.89 6.74 5.47 6.23 12.41	12.8J 6.12 14.87 5.55 21.80	10.92 4.39 9.28 4.88 16.13	9.22 3.63 11.07 2.63 13.70 29	10.57 3.37 7.63 2.97 13.76 29	19.92 3.86 9.51 4.66 14.82	10.06 3.78 6.26 2.92 11.50	8.34 3.29 9.94 3.80 14.91	9.10 4.25 11.93 3.45 16.17	8.91 5.85 9.69 2.35 11.71	8.16 6.01 26.62 6.49 33.65
27 N QS 120 W QB QE QC QN OBS	6.92 5.31 17.46 4.60 21.44	13.47 -8.37 33.84 10.59 43.57	9.26 4.74 14.36 4.35 19.41	13.42 6.11 10.42 3.59 17.43	7.31 2.73 7.89 4.85 11.89 28	6.43 2.23 10.15 7.14 9.55 24	8.72 3.19 5.70 1.78 8.50 26	10.28 3.69 7.26 2.97 11.43	10.52 4.45 11.80 3.90 15.86	8.60 4.26 15.13 3.86 18.81	10.93 8.03 16.54 2.81 17.20	10.05 7.52 15.32 3.74 18.64
27 N QS 121 W QB QC QC QN 08S	7.66 5.67 12.10 2.32 14.48	12.85 7.23 7.29 3.44 9.23	12.21 5.30 15.32 7.58 25.29	10.04 4.29 12.25 4.21 16.63	9.00 3.34 9.25 4.00 13.91	10.24 4.23 13.69 2.22 12.87	9.65 3.15 6.91 2.58 1J.75 27	11.81 4.41 9.41 2.20 15.35 29	11.20 4.65 12.61 4.38 20.34 23	8.27 4.32 11.18 2.72 13.64	7.93 4.90 11.88 3.42 15.49	9.57 6.86 23.71 6.90 30.18
27 N QS 122 W QB QE QC QN 03S	5.96 4.14 8.24 2.04 10.44	6.98 3.88 16.62 5.92 20.56	8.26 3.77 9.98 3.33 12.74	9.74 3.60 9.77 3.55 13.97	8.43 3.12 8.74 2.76 12.45 46	7:44 2:70 7:32 1:68 9:60 45	7.71 2.64 5.28 2.63 9.31 41	8.58 2.86 5.37 3.43 14.41 41	8.43 3.18 10.63 3.94 14.00	7.44 4.25 10.71 2.83 13.40	6.04 3.47 11.03 3.08 14.12	4.58 3.51 3.88 2.73 12.48
27 N QS 123 W QB QE QC QN 03S	5.46 5.25 9.82 12.63	7.51 4.52 7.551 2.551 8.53	7.35 3.23 10.10 3.26 13.13	9.13 3.78 7.38 2.56 13.33 45	6.36 2.42 7.53 2.47 13.35	5.84 2.04 5.28 2.23 7.28	7.48 2.55 7.72 2.45 1:.81	7.19 25.72 25.27 25.27 25.26	6.03 2.26 5.87 1.77 8.01 56	5.82 2.62 7.13 29.87 55	5.48 3.39 12.78 3.89 17.00	4.85 12.05 12.89 15.47

LAT/LON	NAL	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	чо	DEC
28 N QS 115 W QB QE QC QX OBS	1.56 1.24 3.16 1.14 4.21	2.01 1.09 2.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1	2.32 1.16 2.50 1.00 3.49 515	2.75 1.16 2.17 .98 3.34 497	3.61 1.16 2.62 1.67 3.49	3.15 1.15 1.78 .97 3.39 466	3.28 1.13 1.93 .96 3.65 423	2.76 1.01 2.21 .86 3.50 486	2.69 1.93 1.93 1.42 481	2.09 1.07 3.36 1.55 4.87	1.66 1.16 3.67 1.19 4.85 462	1.49 1.26 3.91 1.11 4.88
23 N QS 116 W QB QC QC QN 03S	1.47 1.18 2.86 .95 3.74 543	1 · 86 1 · 16 2 · 26 · 88 3 · 08	2.17 1.05 2.07 .92 3.03 584	2.50 1.05 2.11 .99 3.15	2.58 .98 2.04 .96 3.26 585	2.20 .76 1.73 .81 2.80 619	2.61 .86 1.55 .81 2.98 560	2.44 .83 2.16 .87 3.47 593	2.48 .96 2.34 .85 3.66 549	1.94 1.00 2.64 .93 3.66 602	1.51 1.06 3.10 .92 4.01 548	1.39 1.33 3.38 1.14 4.39
29 N QS 117 W QB QC QN 08S	4.15 3.69 7.49 2.11 9.56 51	5.37 3.71 7.61 1.99 9.58 52	7.03 3.48 7.14 2.32 9.79	8.54 3.26 6.01 2.57 8.82	9.12 3.42 6.55 3.96 9.85	6.07 2.09 5.07 2.92 8.25	9.08 2.85 6.03 2.60 10.89	7.87 2.68 6.12 1.98 9.39	7.71 3.01 5.70 2.09 8.86 53	6.16 3.26 6.73 2.45 9.33	5.82 3.45 8.14 3.44 11.51	4.89 4.33 12.46 4.14 15.77
28 N QS 118 W QB QE QC QN 03S	6.93 5.27 7.16 3.17 13.39 25	9.46 5.60 13.46 15.58 20	11.58 5.43 11.77 3.31 11.66	10.80 4.59 12.50 4.53 15.48	10.65 4.06 9.13 4.18 13.88	8.81 3.10 4.98 3.78 10.85	9.36 2.97 5.82 2.33 1].75	8.63 2.94 5.81 2.25 13.25	9.28 3.84 8.81 3.59 14.29	8.00 4.16 9.69 2.33 12.38	8.10 6.12 15.66 3.54 17.22	7.31 6.06 19.61 5.45 24.21
28 N QS 119 W QB QE QC QN 03S	6.70 5.17 7.95 3.02 10.07	8.46 5.90 9.08 2.07 10.81	9.69 4.81 9.17 3.39 13.92	8.77 3.60 7.66 2.61 9.55 38	6.42 2.61 6.38 2.33 9.77 48	5.58 2.01 7.66 2.75 11.10	6.19 2.63 4.94 1.83 7.22	7.73 2.71 6.47 1.91 9.97	9.98 3.84 9.37 2.57 12.20	8.00 3.82 9.06 1.96 12.08	7.45 4.68 8.07 3.29 11.20	10.74 9.08 26.73 13.04 38.88
28 N QS 120 W QBE QCC QC QCS	3.43 7.34 23.67 4.12 27.40	12.95 7.95 29.83 9.94 37.55	9.52 4.97 9.94 3.57 13.17	8.44 3.56 11.52 4.98 14.76	10.53 4.03 8.81 4.21 13.53	8.10 2.83 6.38 2.89 12.24	8.86 2.91 7.24 3.26 9.90	8.06 3.26 5.32 1.76 9.09	7.09 3.17 8.00 2.51 13.98	10.05 5.30 9.46 3.07 14.33	9.42 5.73 9.28 2.52 12.76	8.52 7.12 18.57 7.29 25.22
28 N QS 121 W QB QE QC QN 08S	9.49 7.65 19.47 8.41 28.61	10.33 6.56 13.23 6.76 15.83	10.80 5.33 8.45 5.95 13.01	9.61 3.79 8.83 3.98 14.35	11.93 5.43 8.36 2.58 13.18	9.04 3.01 7.58 3.42 12.65	12.34 4.48 7.18 3.19 8.98	7.09 2.48 8.16 2.86 12.49	9.30 3.57 13.66 3.87 15.14	9.07 4.80 10.58 3.41 14.13	7.66 5.15 13.07 3.29 16.49	7.94 6.65 8.93 2.61 10.65
28 N QS 122 W QB QE QC QN 03S	5.32 4.86 10.95 3.08 14.19 28	9.41 5.79 9.17 4.49 14.22 18	8.97 4.36 11.75 4.66 17.44	12.08 4.78 9.80 4.16 14.63	8.51 3.09 8.06 3.74 11.23	8.14 2.60 9.19 3.23 12.20 32	5.30 1.94 5.88 2.72 8.125	9.79 3.31 6.73 3.14 11.32	8 • 42 3 • 74 6 • 49 2 • 50 8 • 29	9.86 5.21 8.09 6.54 14.52	8.41 6.09 9.94 4.68 15.68	7.05 5.72 11.64 5.61 16.65
28 N QS 123 W QB QC QC QN 085	6.61 5.63 19.24 4.05 22.27 27	8.59 4.79 9.38 2.68 11.93	9.74 4.43 15.76 3.72 19.24 26	7.81 2.95 7.85 4.07 11.44	8.10 2.75 8.57 3.47 12.78	19.87 3.94 10.39 3.88 13.79	7.47 2.22 6.61 3.80 10.38	8.72 3.01 6.71 3.79 11.77	9.21 3.28 7.61 2.48 13.40	7.39 3.79 8.90 3.27 13.49	5.32 3.38 11.16 3.05 14.16	4.92 8.66 2.80 11.40
28 N QS 124 W QBE QQC QQS 0785	5.20 3.61 8.19 2.84 11.96	7.46 3.86 13.35 3.52 17.10	9.17 4.95 16.47 4.53 22.31 26	9.33 3.25 8.55 2.75 11.67	9.39 3.60 10.65 3.15 14.95	9.45 3.32 6.96 3.30 11.87	8.41 2.65 6.55 2.53 11.53	9.09 3.20 13.67 4.09 14.72	12.37 4.34 13.26 4.22 15.60	6.15 5.19 5.19 2.19 2.19 8.49	5.92 3.40 10.77 4.23 15.47	5.18 4.07 11.65 2.85 14.39

FEB

JAN

LAT/LON

MAR

APR

MAY

JUN

JUL

AUG

DEG

NOV

OCT

SEP

CATZUON	JAN	Fig	448	APK	YAY	אננ	JUL	AUG	SEP	oct	40 V	DEC
33 N 15 116 d 19 26 20 20 215	1.7h 1.43 2.4h 15 3.44	2.27 1.47 2.79 .97 3.74	2.2.3	3.19 1.33 2.42 1.13 3.67	3.12 1.21 1.03 1.03 1.03 4.20	2.77 .97 2.15 .92 3.33 396	3.14 1.35 .95 3.70 349	3.03 1.07 2.24 .92 3.72	3 · 12 1 · 23 2 · 77 1 · 18 4 · 36 358	2.39 1.26 3.07 .99 4.20 363	1.96 1.46 3.64 1.10 4.68	1.71 1.57 3.37 1.06 4.34 311
30 N 45 117 W 48 46 46 46 40 10 10 035	2.57 1.34 2.51 .36 3.45	2.03 1.31 2.63 1.52 3.48	2.30 1.19 2.62 .95 3.57 490	2.82 1.23 2.49 1.11 3.63 +55	2.90 1.12 2.11 .97 3.35 460	2.75 .93 1.90 .85 3.20 454	2.62 .86 1.77 .89 3.33 465	2.66 .94 2.11 .78 3.48 495	2.74 1.09 2.42 .96 3.79	2.07 1.12 2.64 .89 3.65 475	1.57 1.19 2.85 1.04 3.79	1.40 1.27 3.26 .96 4.11 434
25 N 25 115 W 18 16 17 18 18 18 18 18 18	2.91 2.41 2.16 2.12 8.18	3.81 2.35 4.71 1.88 6.08 136	4.69 2.41 4.26 1.96 6.14	5.32 2.30 4.26 1.74 5.78	5.34 2.06 4.30 1.81 6.17 125	5.12 1.81 3.81 1.93 6.67	4.00 1.40 3.33 1.89 5.67	4.61 1.59 4.14 1.77 7.01 135	5.33 2.26 4.75 2.21 7.29 124	4.02 2.11 3.47 1.60 5.18 136	3.27 2.48 5.85 1.62 7.17	2.88 2.66 6.84 2.00 8.59
33 N QS 119 M 38 46 10 10 10 10 10 10 10 10 10 10 10 10 10	4.52 3.48 9.93 3.76 13.84	6.00 3.93 5.73 2.76 10.83	7.55 4.71 9.39 2.79 13.17	8.8d 3.67 5.78 3.32 13.16 46	13.57 4.67 9.90 4.59 14.21 26	7.81 2.83 4.49 3.18 6.52	9.73 3.45 3.85 2.20 8.85 47	17.11 4.12 11.71 4.22 13.63	8.54 3.52 7.94 3.78 12.58	5.23 2.83 6.39 2.35 9.49 75	5.91 4.25 9.92 2.81 12.62	4.42 4.04 14.03 4.09 17.70
31 N QS 123 H QB QE QC QN Q3S	4.84 4.63 11.41 2.96 14.50	4.43 2.53 5.46 2.57 7.77	6.31 2.96 5.64 4.52 13.43	6.83 2.71 8.36 3.32 11.68 70	6.77 2.66 6.54 2.42 9.42 75	7.51 2.67 5.38 2.17 7.75	8.47 2.91 5.08 3.52 1).38	6.31 2.57 13.30 3.64 14.03	8.90 3.54 6.19 2.15 10.67	5.35 2.72 7.07 2.91 9.96	6.32 5.07 10.36 4.21 13.75	3.95 3.40 10.79 2.72 13.32
33 N QS 121 M QB QC QC QN QBS	4.58 3.87 9.95 3.42 13.54	5.42 3.13 6.19 2.19 7.81 60	8.94 4.11 7.36 3.70 11.74	5.86 2.52 6.37 2.34 8.63	6.91 2.67 4.66 2.51 7.66	7.07 2.52 5.04 3.17 8.49	5.12 1.77 3.69 1.87 6.16	4.50 1.73 3.88 1.96 6.06	8.30 2.99 6.97 3.16 11.31	6.29 3.45 8.74 2.94 12.24	6.61 4.62 5.63 2.69 7.87	4.01 3.58 14.72 2.87 16.94
30 N QS 122 W QB QE QC QN 085	4.27 3.99 4.98 3.25 11.80	6.40 3.92 10.54 3.63 13.05	7.71 3.77 8.76 3.98 12.07	8.87 3.77 9.28 3.95 12.49	7.00 2.70 5.76 2.60 9.38	6.05 6.05 6.01 7.99	6.043 6.125 7.63 7.63	6.463 2.67 2.67	7.38 2.91 8.89 3.61 13.12	6.19 3.30 9.28 3.83 13.71	5.57 3.54 7.71 3.17 11.02	5.55 4.88 21.48 5.75 27.25
30 N QS 123 W QB QE QC QN OBS	4.40 3.12 14.79 3.12 17.53	7.89 4.88 9.77 4.84 13.36 26	8.16 4.19 12.40 4.87 17.67	8.89 3.91 1).34 3.96 15.64	6.03 2.18 4.47 2.45 5.83	6.759 6.495 6.65 6.64	6.57 2.12 5.73 2.17 3.69	8.99 3.63 6.72 2.06 9.41	7 · 82 3 · 27 7 · 72 2 · 56 1 û · 82 43	8.63 4.53 13.36 3.31 15.46	5.30 3.95 7.94 2.93 9.39	3.77 3.32 10.41 13.60 13.60
3) N QS 124 # QB QE QC QN 08S	4.26 3.37 11.58 3.28 14.90	6.21 4.15 9.95 3.22 12.31	8.47 4.28 7.54 3.52 11.83	8.31 3.52 9.23 3.64 12.64	5.61 1.99 6.55 2.66 8.76	5.84 2.12 4.18 1.64 6.57	8.55 2.95 6.21 3.92 10.43	8.16 2.93 6.75 2.44 1].76	8.14 3.61 6.92 3.96 10.65	5.60 2.82 9.21 2.61 12.22	4.86 3.54 9.13 2.68 11.20	5.56 4.15 14.85 18.85
39 N 98 125 M 98 9E 9C 9N 935	4.03 3.66 12.39 3.98 15.41	5.47 3.43 11.30 4.21 14.57	8.48 4.14 11.45 4.61 15.10	8.45 8.50 8.65 20.46	7.84 2.71 9.84 4.25 12.81	7.18 2.75 5.68 8.71	7.17 2.48 6.73 3.11 9.79	8.05 2.90 7.43 3.35 10.75	9.34 4.00 9.89 3.14 11.28	6.66 3.04 9.35 3.21 13.76	4.49 2.86 10.03 2.96 12.33	4.14 3.86 11.42 3.92 14.96

LAT/LON	MAL	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	066
117 W Q	1.43 1.26 1.29 1.80 1.80 2.91 1.92	1.84 1.25 2.37 1.01 3.21	2.12 1.14 2.39 .89 3.32 549	2.67 1.16 2.11 .87 3.69	2.64 1.03 1.82 .80 2.95	2.44 .889 1.564 2.554	2.62 .88 1.68 .75 3.13 521	2.62 .93 2.16 .82 3.43 520	2.65 1.69 2.08 .75 3.24 508	2.07 1.13 2.13 .77 3.02 516	1.60 1.23 2.65 .91 3.44	1.36 1.35 3.24 1.08 4.19
Q	S 1.85 B 1.58 3.24 1.21 N 4.41 S 291	2.63 1.79 1.55 1.55 4.263	2.68 1.46 3.08 1.28 4.23 328	3.34 1.45 2.92 1.39 4.49 312	3.34 1.29 2.64 1.20 4.13	3.64 1.31 2.43 1.37 4.28 268	3.12 1.05 2.34 1.15 4.05 256	3.33 1.25 2.88 1.23 4.74 307	3.08 1.39 2.86 1.24 4.29 336	2.65 1.49 3.84 1.49 5.13	1.95 3.62 1.18 4.75 279	1.69 1.09 1.31 1.27
119 W G	RS 2.29 RB 2.01 RE 3.92 RC 1.41 RN 5.56 RS 205	3.42 2.19 4.31 1.49 5.39	3.91 2.23 5.70 2.07 8.10 147	4.51 1.97 4.77 1.83 6.52 185	5.00 1.94 3.34 1.38 5.39	4.23 1.55 3.20 1.42 5.15 218	4.55 1.55 1.68 1.85	5.10 1.95 4.05 1.65 6.64	4.14 1.87 3.22 1.33 4.99	2.93 1.62 3.18 1.24 4.32 257	2.80 2.20 4.90 1.52 6.29	2.44 2.59 6.09 8.23
120 W 9	RS 2.92 RB 2.76 RE 6.67 RC 1.89 RN 8.60 RN 123	4.21 2.67 5.354 5.75 101	5.69 2.86 5.86 2.28 8.10	5.35 2.30 6.58 2.16 9.28 108	5.68 2.12 4.31 2.11 6.99	6.73 2.52 4.38 2.39 7.61	4.93 1.66 3.87 1.69 6.19 136	5.59 2.39 5.25 1.95 7.95	6.57 2.94 5.78 2.67 9.13	3.73 2.14 4.09 1.42 5.83	3.85 2.68 4.94 1.80 6.67	3.67 3.55 5.72 1.85 17.86
r L	3.75 18 3.19 18 3.64 10 2.30 11.80 55 79	3.71 2.25 4.96 1.96 6.43	5.42 2.81 6.18 3.48 9.98 76	5.60 2.32 5.92 2.43 9.26	6.44 2.44 4.61 2.15 6.75	8.77 3.14 5.10 2.49 8.09 73	5.66 2.08 4.72 2.30 7.51	4.84 1.91 4.97 2.21 6.95	7.96 3.26 7.88 4.94 13.29	4.78 2.55 6.16 2.30 8.79 93	4.03 2.75 6.08 2.03 8.29	3.54 3.27 7.20 2.31 9.38
122 W	3.75 18 3.16 16 5.89 10 2.32 10 7.79 35 62	5.04 3.02 7.84 3.33 10.92	5.34 2.91 6.90 3.54 11.66	7.23 3.22 9.22 5.18 14.31	6.36 2.31 4.98 2.57 8.09	7.80 2.50 2.51 2.69	6.39 2.67 2.55 3.76	5.70 2.10 4.44 2.15 6.85 71	7.09 2.77 7.82 2.31 10.89	4.94 2.76 6.58 2.33 8.46	3.56 2.68 7.29 2.67 9.63	3.36 3.04 7.48 2.92 10.01
123 H	QS 3.18 QB 2.78 QE 6.11 QC 2.39 QN 3.18 3S 74	4.59 7.22 3.51 3.51 7.22	5.68 2.78 6.49 9.65	6.11 2.58 7.67 3.01 10.46 71	7.13 2.87 6.33 2.92 9.70 72	6.67 2.57 5.16 2.28 7.88	4.51 1.53 3.81 2.99 6.53	5.98 2.24 3.98 2.26 7.33	5.35 2.20 5.80 1.84 7.74	4.12 2.45 5.88 1.91 7.23	3.95 3.19 6.29 2.08 8.33	3.61 3.11 9.61 2.89 11.97
124 W	US 3.12 28 2.44 06 7.97 00 2.30 1N 9.75 38 70	5.03.55 3.55 3.57 11.56	5.01 2.59 7.70 2.98 10.52	5.29 2.16 5.22 2.21 7.19 115	5.00 2.00 3.90 1.92 6.28 164	5.29 1.90 4.64 1.89 7.12	4.86 1.67 3.99 1.75 5.87	7.56 2.75 5.28 2.59 66	6.58 2.78 5.84 1.80 7.58 72	4.94 2.67 5.95 1.81 7.93	3.63 3.62 8.64 2.86 11.51	3.00 2.67 9.34 3.20 12.10
125 W	PS 3.01 DB 2.27 DE 6.77 DC 2.78 UN 3.20 UN 3.20	3.43 1.97 7.55 3.03 10.46	4.39 2.25 5.74 2.23 8.87	5.02 2.17 6.5 6.96 5.96 7	5.95 2.31 6.37 2.13 9.62 99	5.53 1.96 4.00 2.00 6.63	4.53 1.50 4.22 1.79 6.57	6.436 6.436 5.265 8.4	5.23 5.34 7.32 7.8	4.18 2.23 7.14 3.01 9.84	3.22 2.61 7.94 2.41 10.01	3.16 2.90 11.24 4.46 15.37
	18 2.74 19 2.21 1E 5.59 10 2.77 1N 7.81	11.87	4.19 2.19 5.49 7.12	5.47 2.46 5.72 2.538 94	5.45 2.11 5.47 2.49 112	4.93 1.71 3.87 1.73 6.12 128	3.59 1.27 4.85 1.91 5.90	5.60 2.14 5.03 1.83 7.30	4.82 2.8 4.47 1.50 6.42	3.59 1.80 5.06 1.62 6.70	2.87 2.17 3.30 2.45 10.30	2.76 2.35 9.19 2.80 11.25

LAT/LON	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP	OCT	NOV	DEC
32 N QS 117 W QB QC QC QN 03S	1.19 1.79 .68 2.38	1.74 1.21 1.97 .82 2.71 573	2.06 1.13 2.11 .76 2.99 610	2.52 1.11 2.05 .89 3.13 590	2.56 1.53 1.551 2.661 2.660	2.48 .89 1.22 .57 2.33 673	2.67 .90 1.43 .62 2.56 585	2.25 .82 1.36 .55 2.34 761	2.45 1.û4 1.74 .77 2.84 535	1.89 1.09 2.15 .75 3.01 595	1.46 1.19 2.13 .70 2.74	1.27 1.29 2.93 1.13 3.98
32 N QS 118 W QB QE QC QN 03S	.81 .76 1.38 .50 1.85 1441	1.21 .83 1.40 .56 1.91 1172	1.28 .68 1.34 .51 1.83 1543	1.60 .72 1.47 .60 2.18 1432	1.63 .63 1.14 .49 1.82 1556	1.63 .58 1.10 .46 1.76 1305	1.67 .58 .99 .46 1.82 1366	1.54 .57 1.26 .44 1.93	1.44 .63 1.13 .48 1.77 1586	1.21 .73 1.87 .55 2.35 1431	.93 .73 1.70 .59 2.25 1248	.98 1.02 2.51 80 3.27 780
32 N QS 119 W QB QE QC QN 03S	1.13 1.04 1.91 .75 2.60 787	1.62 1.09 2.56 .89 3.29 658	1.73 .96 2.05 .80 2.80 824	2.29 1.01 2.13 .91 3.12 731	2.51 1.00 1.91 .83 2.93 675	2.67 1.00 1.97 .99 3.19 615	2.21 .79 1.54 .78 2.69 709	2.09 .81 1.88 .79 2.80 767	1.95 .88 1.71 .75 2.57 873	1.45 .85 1.73 .62 2.29 1021	1.27 1.06 2.58 .79 3.28	1.11 1.13 3.01 96 3.90
32 N QS 120 W QB VE QC QC O3S	1.79 1.68 3.60 1.19 4.58 278	2.76 1.82 4.34 1.65 5.74 224	3.0J 1.54 3.14 1.18 4.62 3J4	3.48 1.48 4.04 1.72 5.84 318	4.02 1.58 3.28 1.57 5.17 281	4.75 1.75 3.56 1.65 5.77 215	3.47 1.27 2.02 1.17 3.75 359	3.24 1.34 3.26 1.42 4.93 277	2.96 1.40 2.54 1.07 3.63 377	2.67 1.52 3.57 1.27 4.76 354	2.14 1.68 3.44 1.30 4.46 262	1.95 1.94 5.68 2.11 7.68
32 N QS 121 W QB QE QC QN OBS	2.41 2.17 4.66 1.86 6.16	3.03 2.00 4.50 2.03 6.23 180	3.71 1.95 5.20 2.08 7.37	4.31 1.95 4.56 1.82 6.43 186	4.94 1.94 3.86 1.71 5.93	5.51 2.12 4.03 6.53 150	4.55 1.71 3.52 1.66 184	4.36 1.80 3.49 1.49 5.18 175	4.51 2.04 4.75 1.93 6.89	3.45 1.96 4.26 1.80 6.11 199	2.52 2.04 5.27 1.82 7.02	2.44 2.37 2.07 1.95 6.79
32 N GS 122 W GB GC GC GS OBS	2.49 2.15 5.44 2.42 7.56 131	3.105 5.08 5.49 8.11 15	3.71 1.83 5.43 2.16 7.38 161	4.89 4.48 2.94 5.154	5.31 2.02 4.92 2.14 7.24 138	5.48 2.66 2.66 2.13 132	4.58 1.68 3.02 6.64 141	5.36 2.23 4.72 2.18 7.09	5 · 10 2 · 31 5 · 16 2 · 02 7 · 19 126	3.34 1.96 4.27 1.41 5.70	2.58 2.08 5.46 1.97 7.27	2.55 2.49 6.42 2.79 112
32 N QS 123 W QB QE QC QN 03S	2.13 1.79 4.20 1.69 5.84	3.07 1.95 5.72 2.18 7.62 139	3.51 1.77 5.51 2.07 7.47 153	4.65 1.94 5.12 2.25 7.76 131	5.57 2.18 4.78 2.16 7.27 126	5.46 1.97 3.95 1.76 6.35 121	4.74 1.73 4.10 1.87 6.68 125	5.19 2.02 4.35 1.52 6.71 127	5.18 2.20 5.27 1.95 7.73	3.46 2.02 5.75 1.87 7.36 154	2.62 2.13 5.90 2.11 7.77	2.38 2.32 7.71 3.14 10.63
32 N QS 124 W QB QC QC QN 085	1.39 1.18 3.67 .97 3.95	2 · 21 1 · 33 3 · 56 1 · 31 4 · 45 290	2.67 1.33 3.18 1.18 4.37 349	3.71 1.45 3.61 1.50 5.67 239	3 · 32 1 · 23 3 · 25 5 · 68 3 65	3.35 1.23 3.21 1.54 4.71 312	3.38 1.21 2.64 1.21 4.25 359	2.66 .99 2.30 1.06 3.54 388	2.75 1.15 3.20 1.33 4.56 363	2.13 1.22 3.16 1.11 4.16 415	1.74 1.35 3.00 1.03 3.92	1.441 1.62 1.65 4.61 331
32 N QS 125 W 3B QC QC QC OBS	1.93 1.68 4.01 1.58 5.42 189	2.89 1.77 5.31 2.09 6.89	3.37 1.65 5.37 2.11 7.35 176	3.95 1.69 4.34 2.14 6.65 178	4.52 1.68 4.28 1.59 6.58	3.97 1.36 3.77 1.60 5.75	4.08 1.43 3.55 5.44 188	3.80 1.40 3.02 1.45 4.97	4.29 1.76 4.34 1.67 6.07 160	2.76 1.55 4.32 1.65 5.96	2.05 1.57 4.23 1.50 5.43	1.62 1.73 1.84 7.36
32 N QSB 126 W QBE QCX 0055	1.92 1.93 1.93 6.25	2.89 4.00 6.17 6.16 7.16	2.81 1.32 3.68 1.68 5.62 225	31415 31415	3.99 1.55 1.85 1.85 6.11	4.63 4.63 4.76 208	3.47 3.69 1.63 5.52	3.68 3.03 3.03 1.93 4.91	3.55 1.50 4.63 1.74 6.73	962323 21415 21415	1.88 1.59 1.62 1.62	1.64 1.53 6.12 8.06

LAT/LON	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	ном	DEC
33 N QS 118 W QB QC QC QN 08S	.60 .59 1.13 .40 1.46 2385	.85 .62 1.19 .37 1.47 2257	1.00 .55 1.16 1.59 1.59	1.28 .58 1.14 1.61 2329	1.39 .56 .90 .36 1.44 2271	1.43 .51 .81 .32 1.32 2262	1.49 .52 .81 .36 1.45 2150	1.26 .47 .88 .32 1.38 2400	1.21 .53 .87 .36 1.32 2259	•91 •54 1•06 •36 1•38 2406	.65 .56 1.33 .40 1.66 2344	.63 1.82 2.36 1622
33 N QS 119 W QBE QCC QCS OBS	1.00 .95 2.04 .73 2.70 860	1.40 .99 2.20 .76 2.81 807	1.54 .84 1.96 .77 2.79 1054	2.17 1.01 2.07 .85 2.89 854	2.25 .90 1.57 .73 2.53	2.44 .91 1.67 .81 2.68 835	2.50 .89 1.82 .81 3.05 727	1.93 .74 1.42 .60 2.26 1061	1.87 1.59 .66 2.26 927	1.36 .80 1.67 .61 2.19 1146	1.02 .85 1.97 .70 2.54 1023	.90 .999 2.56 .83 3.30 762
33 N QS 120 W QB QC QC QC OBS	1.27 1.23 2.69 1.01 3.64 495	2.10 1.41 3.06 1.16 4.05 399	2.13 1.12 2.37 1.05 3.38 586	2.67 1.23 2.73 1.35 4.û6 534	3.08 1.23 2.31 1.18 3.74 527	3.02 1.14 1.97 1.16 3.44 553	3.09 1.13 2.36 1.20 4.10 453	2.93 1.20 3.10 1.44 4.75 457	2.74 1.29 2.38 1.12 3.65 476	2.25 1.33 2.91 1.07 3.87 447	1.48 1.21 2.74 .97 3.50 462	1.28 1.38 3.79 1.48 5.06
33 N QS 121 W QB QE QC QN 03S	1.85 1.76 3.53 1.58 4.89 263	2.83 1.94 4.08 1.93 5.82	3.31 1.74 3.80 1.82 5.60 229	4.15 1.91 5.04 2.28 7.28 216	4.36 1.73 3.59 1.76 5.38 229	4.35 1.64 3.22 1.64 5.27 248	4.37 1.59 3.44 2.02 6.22 196	3.95 1.60 3.74 1.83 6.28	3.71 1.69 3.77 1.82 5.79 237	3.80 2.22 4.39 1.61 6.23 158	2.28 1.84 3.95 1.46 5.14 222	1.86 1.95 2.35 8.20
33 N QS 122 W QB QE QC QN 03S	1.92 1.85 3.79 1.63 5.49 225	2.85 1.87 4.46 1.96 5.91 209	3.20 1.66 4.15 1.85 5.83 240	3.76 1.74 4.10 1.84 5.94 241	4.56 1.78 3.62 1.76 5.78 212	4.74 1.67 3.68 1.89 5.89	4.37 1.68 3.83 2.05 6.02 186	4.43 1.77 3.63 1.44 5.53	3.70 1.76 3.73 1.39 5.30 210	3.25 1.98 4.98 1.59 6.39 200	2.14 1.73 3.82 1.57 5.20 229	1.75 1.81 4.43 1.75 5.88 213
33 N QS 123 W QB QE QC QN 03S	1.88 1.76 4.36 1.90 6.15	2.59 1.72 4.03 1.60 5.224	3.06 1.59 3.69 1.84 5.52 248	3.20 1.34 3.01 1.26 4.19 349	3.60 1.40 3.27 1.37 5.03	4.45 1.55 3.71 1.78 5.73 231	3.54 1.30 2.63 1.42 4.37 280	4.25 1.69 2.83 1.47 4.48 203	3.46 1.57 3.72 1.44 5.38 227	3.04 1.78 3.69 1.47 4.99 204	2.21 1.82 5.20 1.88 6.79 198	1.68 1.73 5.31 2.31 7.30
33 N QS 124 W QB QE QC QN O∂S	1.70 1.55 4.00 1.57 5.47 248	2.67 1.83 4.57 1.92 6.04 189	2.94 1.55 3.48 4.55 266	3.38 1.48 3.97 1.94 5.72 239	3.57 1.34 3.75 1.75 2.75	4.63 1.69 4.03 1.85 5.95 211	4.12 1.47 3.57 1.67 5.31 217	3.28 1.23 2.88 1.38 4.48 239	3.86 1.65 3.48 1.18 5.10 231	2.72 1.54 3.78 1.43 5.10 254	1.86 1.54 4.83 1.69 6.40 245	1.65 1.65 4.31 1.84 5.84
33 N QS 125 W QB QE QC QN OBS	1.65 1.36 3.88 1.98 5.62 228	2.45 1.58 4.09 1.94 5.66 212	3.24 1.61 3.68 1.64 5.10 231	3.89 1.659 4.593 6.444	4.05 1.53 3.64 1.86 6.10 226	4.16 1.45 3.97 1.74 5.98 212	3.27 1.10 3.26 1.53 4.92 204	3.69 1.44 3.11 1.49 4.50 214	4.12 1.30 4.80 1.53 6.41 175	2.85 1.56 5.10 1.74 6.73 212	1.91 1.60 4.39 1.65 5.54 216	1.52 1.72 1.86 6.17 234
33 N QS 126 W QB QE QC QN 08S	2.18 1.85 5.54 2.28 7.71 155	3.35 2.17 5.81 2.41 7.75	3.839 1.8329 1.8329 1.535 7	4.57 2.02 5.14 2.45 7.136	5.17 1.99 4.17 1.78 6.62 139	5.27 1.85 4.61 1.96 6.63	5.15 1.86 4.79 2.12 7.96 139	5.16 2.03 4.26 2.22 6.50 133	4.39 1.81 5.56 2.12 7.26 135	3.27 1.81 5.58 1.75 7.36	2.35 1.90 5.08 1.85 6.79	2.02 2.02 5.76 2.40 7.90 138
33 N QS 127 W QB QE QC QN 03S	2.72 2.31 5.98 2.72 3.39 183	2968 3054 25.4 354	4.00 2.00 4.02 2.30 7.32	5.32 2.09 2.09 2.44 8.119	5.82 2.53 4.53 7.56 114	5.84 1.97 5.16 2.15 7.73	5.75 5.45 5.45 2.127	6.07 2.28 4.47 1.98 7.01	5.14 7.74 2.88 13.50	3.43 1.89 2.07 9.03 135	2.65 2.19 6.13 2.10 7.80	2.13 2.16 7.57 2.71 10.16

								••		
066	N4 5040 4045h 	ALSH 44		SHAMPH SHAPPS SH	NOROF NEGROS TOROBO	ころろうりょうできるける	00000 00000 00000 00000	HOUSE NOUSE NOUSE NOUSE		*******
> 0	40004e 04006n n	11711 102424 241160	BRAMOS OSCHON OSCHON OSCHON OSCHON	002000 002000 003000	~~~~~ ~~~~~ ~~~~~ ~~~~~~~ ~~~~~~~~~	200000 2000000 20000000000000000000000	3m0300 0m00k0 0m00k0	000000 000000 000000	unrna runna auciezu	unrus rurero unucer
100	40.44.0 666.40.9 740.46.0	040400 040400	N-0-13 0.000 2.000 1.000	209914 31176 31176 3118	HOUSE HOUSE	THROUGH TO AMEN H OHENM	# # # # # # # # # # # # # # # # # # #	200700 200710 200700	445-000 44-000 44-000 44-00-00	201000 201000 201000
ä	90m000 317 47 k ************************************	######################################	2020×5 5 2020×5 5 2020×5 5 2020×5 5 2020×5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	202020 202020 202020 202020	######################################	サモモメのト いたいたのか マ・・・・ マハマいの	######################################	00000 000000 000000 000000	60000 60000 600000 6000000000000000000	440744 40006 400000
973	4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	72 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	24547 W	6246 6246 6246 6246 6246	000000 000000 000000		30436 44044 4044	4000000 400000000000000000000000000000	アンランド ありはまら もらなること	<i>CUIUUP</i> MODUNIN MODUNIN
7: 1	202039 	TINATOM AMMNAG MINIMM		24840 24840	~~~~~ ~~~~~ ~~~~~ ~~~~~~ ~~~~~~~~~~~~~	~~~~~ 	~ 0000M3	404FU	340074	M-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
<i>x</i> :	m gry arak U Mu adh d a a a a ary gash as g	34840 46/1840 611/1840	2000 2000 2000 2000 2000 2000 2000 200	802209 802209 802209	30400 30400 30400 30400	845964 845964	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0/////////////////////////////////////	00000 034000 000000 0000000
7		34M016	2017500 407500 401500 5000 5000 5000 5000	000000 00000 00000 00000 00000 00000	00000 110000 100000	0000000 000000000000000000000000000000	00000 00000 000000 00000	13625	0//WW.d 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+50404
1 ? ~	r NATT NATHHIT MADRIT	####! ################################	~ * * * * * * * * * * * * * * * * * * *	ANERNA ANERNA ANERNA	00000 00000 00000	70500 120500 120500	4000 to 1000 t	2000000 2000000 2000000	4000F	200000 200000 2000000
7	7, ** ** * * * * * * * * * * * * * * * *	K (C .) (C . 2 ed	TUTOU T - 1		SOLUTION OF U	FINDUSM HIND HIND HIND HIND HIND HIND HIND HIND	~ · · · · · · · · · · · · · · · · · · ·	40505 40505 40505	+ MMMM	&NONE W-100-101 W-100-101 W-100-101
•		~ * ~ * * *	urrus;	242470 242470 242470	SHOPEM	はころら ころ	DEALUE	ところまして		
4:1		4 C (4 U	50mk(3 00) (ma) a.m.	1	400KU\$	アランはラン	000000 344304 **************************	CAUND .	3 40 DM4	adende
_	37+4 4.	ंद गैर्ट्स	ಸತ್ತಿಸ <u>ೆ</u> ದ್ದ ಕ್ಷಣ	N. #. M. N. #. N.	NAMOSA NA	Namo vo	SEMPS S	ನಿಪ್ಲಾಗಿನಿಕ್ಕನೆ	NE COCO NE COC	Namo za
	7.	71	21	73	23	71	Z Z	23	73	23
2	, -	• •	7-4	.+~	**		* W	9.0		10
7	••	•••	73	121	123	22	E 24	21	24 124	ma ma

JAN

LAT/LON

FEB

MAR

APR

MAY

JUN

JUL

AUG

SEP

OCT

NOV

DEC

LAT/LON	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP	oct	мом	DEC
36 N QS 122 W QB QE QC QN OBS	1.62 1.81 2.95 1.42 4.28	2.41 1.83 3.54 1.71 4.89 260	2.88 1.57 3.65 1.65 5.17 322	3.31 1.52 2.62 1.34 4.03 355	4.01 1.66 3.75 4.94 298	3.72 1.41 2.85 1.69 4.86 411	3.65 1.40 2.29 1.44 4.33 422	4.10 1.76 2.82 1.63 4.70 277	3.30 1.66 3.15 1.48 4.69	2.71 1.81 3.13 1.49 4.54 264	1.77 1.74 3.79 1.47 5.18 272	1.63 2.05 4.54 1.89 6.26
36 N QS 123 W QB QC QN OBS	2.47 2.75 5.96 2.33 8.18	2.75 2.38 4.71 1.92 6.36 146	4.23 2.33 5.52 2.45 7.28 143	4.30 1.93 4.06 1.74 5.71	4.95 3.60 1.78 5.94 196	3.89 1.48 2.40 1.46 4.12 332	4.03 1.56 2.53 1.58 4.45 331	4.15 1.79 2.66 1.46 4.74 273	3.42 1.71 3.01 1.37 4.70 274	3.10 2.10 3.93 1.77 5.51 190	2.52 2.18 4.68 1.90 6.34 145	2.31 3.30 12.28 4.51 17.07
36 N QS 124 W QB QC QN OBS	2.79 3.10 6.33 3.59 9.82 78	3.23 2.44 5.26 2.08 6.66	5.69 2.96 4.81 2.52 6.82 76	5.37 2.35 4.77 1.94 6.50	5.89 2.25 4.45 2.89 7.79 136	5.86 2.15 4.21 2.52 7.64 148	5.67 2.20 3.90 1.90 6.15	5.39 2.12 3.02 1.61 5.33	5.12 2.42 4.82 2.27 7.21 129	3.87 2.65 6.77 2.42 8.83 111	2.80 2.54 4.81 1.89 6.26	2.28 2.76 7.07 2.85 9.57
36 N QS 125 W QB QC QC QN 03S	2.53 5.25 5.25 5.25 8.25 8.25 8.25	3.73 2.84 7.62 3.65 11.24	4.20 2.19 4.76 2.22 7.39 134	4.87 2.23 5.61 2.60 8.20 139	4.98 1.93 4.84 2.61 7.45 164	5.92 2.20 3.81 2.20 6.01 144	5.33 2.02 3.68 2.00 6.03	5.14 2.02 4.47 2.31 6.76 167	4.75 2.24 4.17 1.73 6.27 134	3.73 2.40 5.03 1.90 6.49	2.39 2.38 6.54 2.48 8.83	1.83 2.23 6.00 2.64 8.54
36 N QS 126 W QB QE QC QN 03S	1.41 1.43 3.46 1.76 5.292	1.98 1.45 3.65 1.77 5.23	2.63 1.39 3.58 1.75 5.17 296	3.58 1.63 3.55 1.77 5.19	3.96 1.51 3.98 1.61 5.63 252	4.73 1.76 3.56 1.85 5.73	4.34 1.58 3.26 1.66 5.43 249	4.09 1.62 2.86 1.58 4.75 254	3.43 1.63 4.31 1.78 6.12 231	2.68 1.58 4.27 1.71 5.76 259	1.43 1.36 3.64 1.50 4.99 342	1.25 1.53 4.41 1.79 6.04 270
36 N QS 127 W QB QE QC QN 03S	.91 .94 2.68 1.28 3.85 5.3	1.39 1.04 2.81 1.45 4.67	1.93 1.03 2.47 1.26 3.63 543	2.47 1.09 2.75 1.31 4.01 486	2.66 1.03 2.39 1.16 3.79 518	2.99 1.67 2.52 1.15 3.84 482	2.92 1.03 2.40 1.13 3.98 456	2.72 1.05 2.34 .97 3.54 556	2.38 1.08 2.79 1.35 3.86 494	1.73 1.05 3.14 1.10 4.12 507	1.16 1.09 3.39 1.39 4.68	.82 .98 3.14 1.27 4.31 540
36 N QS 128 W QB QE QC QN 08S	.84 .85 2.44 1.16 3.42 586	1.31 .91 2.47 1.21 3.56 592	1.72 .91 2.37 1.17 3.44 651	2.32 .98 2.59 1.26 3.90 563	2.65 .99 2.31 1.13 3.47 531	2.85 1.02 2.51 1.14 3.91 558	2.47 .84 2.09 .95 3.44 58J	2.31 .87 2.00 .82 3.19 612	2.42 2.42 .85 3.41 615	1.54 2.88 1.01 3.80 601	.94 2.76 .92 3.59 753	.76 .90 2.69 1.02 3.62 650
36 N QS 129 W QB 126 126 120 120 120 120 120 120 120 120 120 120	1.14 1.13 3.26 1.50 4.62 393	1.69 1.15 3.31 1.58 4.66	1.85 .99 2.63 1.31 3.91 519	2.29 1.63 2.80 1.31 4.61 484	2.81 1.07 2.53 1.19 4.09	2.89 1.00 2.36 .99 3.57 450	2.63 .93 2.53 1.01 3.82 444	2.60 .93 2.44 .97 3.79 473	2.30 1.00 2.62 .88 3.60 482	1.72 1.05 3.19 1.06 4.16 455	1.22 1.07 3.56 1.33 4.84	.86 1.01 3.49 1.45 4.84
36 N QS 130 W QB QE QC QN 09S	1.35 1.44 4.65 2.31 6.91	2.58 1.51 4.18 1.95 5.87 233	2.44 1.24 3.61 1.77 5.19 27J	3.43 3.56 1.81 5.36	4.16 1.65 3.45 1.74 5.48 211	4.28 1.45 3.67 1.58 5.66 204	4.11 1.39 3.69 1.57 5.01 186	4.14 1.55 4.11 1.46 6.27	3.20 1.37 4.74 1.67 6.31 220	2.26 1.27 4.39 1.29 5.245	1.37 1.17 4.26 1.61 5.75	1.17 1.38 5.08 2.12 7.11
36 N 28 131 W 28 200 200 200 200 200 200 200 200 200 2	1.665 2.43 7.151	2.33 1.54 5.128 7.423	3.20 1.60 4.52 2.11 6.59 193	3.81 1.74 4.78 2.10 6.73 181	4.95 1.87 4.66 1.90 7.18	4.57 1.60 4.33 1.82 5.26	6.21 2.04 3.74 1.78 7.13	5. û 9 1.83 5.53 2.03 8.08	3.91 1.79 5.73 1.98 7.64 134	2.97 1.74 5.08 1.75 6.69 171	1.72 1.48 5.84 2.27 7.79	1.25 1.49 5.69 2.35 7.92

LAT/LON	NAL	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP	OCT	ио ч	DET
37 N QS 122 W QB QC QC QN OBS	2.25 2.67 4.18 2.20 6.37 129	3.36 2.57 5.02 2.46 7.26	5.35 2.75 4.48 2.49 7.17 108	4.88 2.20 3.57 2.04 5.75 166	5.83 2.45 3.52 1.83 6.05	5.92 2.32 3.01 2.02 5.41	5.27 2.03 2.58 1.62 5.17 207	6.68 2.93 3.24 2.19 102	5.11 2.59 4.50 2.44 6.90 120	3.96 2.62 4.26 2.55 6.45	2.72 2.82 5.03 1.86 6.71	236 50.65 60.85 9.55 9.55
37 N QS 123 W QB QC QC QN OBS	1.42 1.68 3.22 1.61 4.69	2.11 1.67 4.04 1.64 5.44 3J8	2.57 1.48 3.41 1.54 4.83	3.17 1.45 2.85 1.55 4.54	3.58 1.48 2.99 1.59 4.70 370	3.22 1.24 2.03 1.19 3.540	3.39 1.33 1.97 1.21 3.74 502	3.24 1.38 2.03 1.27 469	2.58 1.31 2.20 1.21 3.54 500	2.16 1.50 3.26 1.42 4.44	1.50 1.52 3.36 4.67 356	1.25 4.17 1.79 5.86 294
37 N QS 124 W QB QC QC QN OBS	1.29 1.50 3.38 1.70 4.98 346	1.73 1.35 2.90 1.30 4.06	2.38 1.34 2.85 1.43 4.18	3.02 1.41 3.03 1.64 4.51 361	3.75 1.51 3.21 1.68 5.18 330	4.07 1.56 3.29 1.67 5.16 350	4.27 1.66 2.79 1.63 4.73 334	3.77 1.59 2.69 1.66 4.74 329	3.01 1.52 3.03 1.49 4.54 335	2.41 1.58 3.58 1.71 5.21	1.39 1.36 3.11 1.37 4.42 401	1.15 1.62 1.63 1.02 332
37 N QS 125 W QB QE QC QN 03S	1.04 1.16 2.41 1.24 3.52 517	1.53 1.20 2.84 1.35 4.56	2.08 1.14 2.51 1.32 3.69 552	2.52 1.15 2.77 1.44 4.11 537	2.87 1.11 2.41 1.29 3.71 527	3.49 1.31 2.65 1.49 4.49	3.43 1.29 2.42 1.36 4.02 462	3.20 1.29 2.26 1.29 3.452	2.65 1.29 2.57 1.27 3.84 452	1.94 1.23 2.97 1.20 4.06 494	1.12 1.13 2.73 1.20 3.87 585	93 1.13 2.83 1.45 4.15 4.87
37 N QS 126 H QB QC QN Q3S	1.17 1.26 2.78 1.44 4.15 4J8	1.64 1.27 3.13 1.62 4.50 367	2.25 1.21 2.72 1.41 4.03 463	2.60 1.16 3.03 1.59 4.64 481	3.1û 1.21 2.63 1.31 4.17 442	3.29 1.20 2.39 1.35 3.96 451	3.58 1.34 2.52 1.35 4.10 396	3.39 1.32 2.61 1.44 4.55	2.84 1.38 2.66 1.22 3.86	1.96 1.28 3.26 1.28 4.40	1.20 1.15 3.43 1.39 4.79	99 1-23 3-02 1-40 4-29 4-24
37 N QS 127 H QB QC QC QN QSS	1.32 1.45 3.73 1.84 5.45	1.97 1.51 4.05 1.95 5.77	2.67 1.45 3.43 1.79 5.09	3.12 1.40 3.38 1.65 5.06	3.14 1.25 2.76 1.28 4.26 359	3.89 1.43 3.20 1.61 5.05 279	3.81 1.35 2.97 1.57 4.65 271	3.92 1.53 3.04 1.49 5.11 260	3 • 16 1 • 52 3 • 35 1 • 61 4 • 93	2.13 1.32 3.83 1.61 5.15	1.41 1.30 3.77 1.57 5.24	1.13 1.40 3.82 1.79 5.41
37 N QS 128 W QB QC QN QSS	1.57 1.80 4.47 2.31 5.39	2.25 1.67 4.74 2.32 6.71	2.95 1.45 4.89 2.33 7.06	3.16 1.38 3.79 2.01 5.78 242	3.84 1.43 3.65 1.65 5.01 262	4.07 1.45 3.30 1.67 5.24 237	4.48 1.57 3.85 1.63 6.00 191	4.54 1.68 3.77 1.68 5.13 189	3.33 1.56 3.78 1.69 5.42 247	2.30 1.48 3.91 1.50 5.27 271	1.55 1.48 5.10 2.01 7.01 227	1.20 1.54 5.02 2.14 7.11 221
37 N QS 129 W QB QC QN OBS	1.65 1.73 5.61 2.10 6.97 160	2.29 1.82 5.33 2.63 7.58	3.11 1.62 5.19 2.46 7.68	3.47 1.58 3.84 2.22 5.97 227	3.91 1.45 3.57 1.87 5.88 222	4.21 1.47 3.90 1.72 5.96 222	4.04 1.34 3.65 1.63 5.75 183	4.37 1.58 4.02 1.78 5.33 186	3.34 1.52 4.74 1.75 6.44 231	2.31 1.39 4.05 1.82 5.73 272	1.49 1.36 5.94 1.94 6.73 236	1.24 5.50 5.53 7.63 183
37 N QS 130 W QB QC QC QN 03S	1.70 1.80 5.45 7.66 148	2.39 1.72 6.61 3.15 9.56	3.29 1.63 4.91 2.355 7.054	3.45 1.46 4.37 1.97 6.32	4.55 1.52 1.73 1.73 5.35	4.13 1.45 3.57 1.67 5.41 213	4.31 1.46 3.22 1.51 5.51 187	4.35 1.57 4.27 1.69 6.67 181	3.35 1.55 4.21 1.52 5.64 231	2.40 1.44 3.83 1.36 4.86 247	1.52 1.47 5.14 2.03 204	1.20 1.51 6.49 2.64 8.93 180
37 N QS 131 W QB QE QC QN 03S	1.64 1.84 5.11 3.18 3.95 141	2.51 1.67 3.64 3.29	3.57 1.85 5.15 3.15 8.11	3.63 1.57 4.43 2.44 6.95	3.99 1.47 3.79 1.72 5.35 174	4.69 1.61 3.99 1.75 5.63	4.13 1.35 3.83 1.81 5.25 177	4.43 1.57 3.69 1.47 5.88 176	3.22 1.47 4.36 1.37 5.81 198	2.51 1.57 4.78 1.79 6.49 221	1.62 1.50 6.07 1.99 7.93	1.67 1.05 2.52 8.28 162

LAT/LON	NAL	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	V 0 <i>N</i>	DEC
38 N QS 123 W QB QE QC QN 085	1 • 17 1 • 40 2 • 34 1 • 19 3 • 42 484	1.56 1.24 1.99 1.10 2.90 513	2.16 1.26 1.19 3.25	2.43 1.19 2.32 1.27 3.50 594	3 · 15 1 · 32 2 · 12 1 · 36 3 · 61 479	3.28 1.26 1.94 1.29 3.44	3.16 1.23 1.65 1.12 3.33 583	3.04 1.34 1.99 1.28 3.55 537	2.49 1.31 1.71 1.07 2.94 505	1.99 1.41 2.14 1.25 3.451	1.33 1.38 1.89 .87 2.66	1.40 2.44 1.61 3.446
38 N QS 124 W QB QE QC QN 03S	1.79 2.17 3.88 1.95 5.57	2.42 1.93 4.31 2.43 6.37	3.44 1.92 3.87 1.68 5.41 211	3.42 1.60 3.30 1.57 4.53 296	4.02 1.64 3.26 1.82 5.18 291	3.95 1.52 2.72 1.71 4.68	4.30 1.69 2.93 2.07 5.43 318	3.65 1.56 2.86 1.78 5.01	3.35 1.67 2.77 1.54 4.43 314	2.97 1.90 3.67 1.62 5.09 238	1.82 1.85 4.66 2.01 6.41	1.33 1.78 4.46 2.16 6.19 224
38 N US 125 W QB QE QC QN OBS	1.98 2.42 5.75 2.90 3.45	2.73 2.34 5.58 2.85 8.10	3.91 2.24 5.46 2.36 7.24 153	4.01 1.85 3.99 1.92 5.64 205	4.48 1.72 4.22 2.00 6.37 187	4.95 1.87 3.97 2.30 6.82 221	5.22 2.02 4.06 2.66 7.22 216	4.29 1.76 3.26 1.90 5.65 250	3.71 1.88 3.46 1.80 5.61 212	3.22 2.17 5.24 2.38 7.29 165	2.14 2.11 4.02 1.84 5.79	1.70 2.32 5.23 2.33 7.32 136
38 N QS 126 W QB QC QN 03S	2.46 2.71 6.96 4.36 11.16	2.87 2.30 4.81 2.64 7.09	4.27 2.35 5.26 2.56 7.83	4.63 2.23 5.96 3.15 8.86 139	4.75 1.90 4.58 2.04 6.85 151	5.64 2.04 4.58 2.50 7.17 161	5.23 1.92 4.08 2.22 6.95 187	4.59 1.83 4.32 2.42 6.89 205	3.88 1.94 4.70 2.16 6.79 202	3.38 2.14 5.13 2.21 7.06 163	2.25 2.13 5.31 2.49 7.73	1.57 2.09 6.46 2.76 9.03
38 N QS 127 W 98 QE QC QN 03S	2.33 2.63 3.32 4.19 12.54	3.33 2.66 5.57 2.50 7.85	3.76 2.03 5.10 3.06 7.80 129	4.61 2.00 5.14 2.69 7.82 137	4.45 1.74 3.91 1.72 6.28 179	4.94 1.78 4.81 2.17 6.97	4.59 4.03 2.18 5.48 222	3.97 1.53 4.46 2.55 213	3 · 89 1 · 84 4 · 50 2 · 00 6 · 51 187	3.05 1.97 6.00 2.30 8.19 150	2.08 5.38 2.20 7.26	1.65 2.30 6.08 2.71 8.62
38 N QS 128 ₩ QB QC QN O3S	2.23 2.39 9.66 4.68 14.26	3.27 2.63 5.93 3.28 8.72	4.53 2.21 5.31 2.84 8.93	4.64 2.07 4.51 2.37 6.64 141	3.81 1.47 3.25 1.69 5.03 207	4.24 1.50 3.61 1.98 5.74 207	3.78 1.36 3.46 1.79 5.58 244	3.80 1.41 3.47 5.20 253	3.31 1.57 3.66 1.66 5.16 254	3.08 1.89 5.88 2.34 7.92	2.08 1.88 6.28 2.40 8.53	1.50 1.98 6.69 2.96 9.47
38 N QS 129 W QB QE QC QN 035	1.77 2.38 7.64 4.54 11.55	2.71 2.16 5.29 2.95 8.80 113	3.62 2.16 5.88 3.03 8.68	4.37 1.97 4.86 2.49 7.45 122	4.72 1.80 3.43 1.81 5.81	4.76 1.67 3.99 2.08 6.63	4.19 1.47 1.89 6.05 219	4.10 1.59 4.82 6.64 203	3.59 1.67 4.54 1.81 6.27 193	3.09 1.92 5.39 1.08 146	2.05 1.99 6.86 2.85 9.48	1.44 1.93 6.60 3.07 9.29
38 N QS 130 W QB QC QC QN 03S	2.18 2.57 9.21 5.04 14.15	3.10 2.32 6.41 3.45 9.86 105	4.19 2.18 6.72 3.51 10.12	4.63 1.99 5.76 2.37 8.33 100	4.69 1.78 3.93 2.38 6.46 152	5.01 1.74 3.99 2.09 6.76 156	4.27 1.48 4.33 1.67 6.59	4.02 1.56 4.07 1.69 5.94 188	3.60 1.66 4.31 1.47 5.53	3.26 2.04 6.48 2.03 8.35 132	1.88 1.99 8.39 2.95 10.92	1.50 2.00 7.21 2.61 9.73
38 N QS 131 W QB QC QC QN OBS	2.01 2.25 6.73 3.46 9.90	2.92 2.42 7.47 4.13 11.30	4.09 2.38 8.48 3.68 11.71	4.79 2.14 6.72 3.27 9.94	4.38 1.65 3.87 1.84 5.67	5.95 1.95 4.11 2.49 1.43	4.13 1.41 3.40 1.88 5.67 158	4.47 3.46 190	4.04 1.84 5.04 7.15 144	3.11 1.97 6.64 2.27 8.78 121	2.20 2.12 7.07 2.65 9.35	1.46 1.98 7.64 3.25 10.74
38 N QS 132 W QB QC QC QN 03S	2.25 2.34 9.35 5.13 14.33	3.11 2.39 3.23 11.38	3.62 2.66 5.18 2.73 7.48	4.89 2.19 7.73 3.85 11.89	4.82 1.87 4.04 1.91 6.47	5.46 1.91 1.81 6.53 126	4.49 3.48 1.65 15	4.56 4.53 1.55 1.66 166	3.87 1.73 4.83 1.72 6.73	3.13 2.01 6.98 2.10 8.66 136	1.99 1.80 6.87 2.95 124	1.48 1.99 8.95 3.75 12.37

1000

LAT/LON	JAN	Fć8	MAR	APR	MAY	NUL	JUL	AUG	SEP	OCT	NOV	DEC
40 N QS 124 H QB QE QC QC QC 035	1.13 1.57 2.78 1.47 4.14 341	1.58 1.30 1.84 1.63 2.83 404	2.29 1.28 1.79 1.07 2.50 506	2.53 1.25 1.57 2.39 505	3.36 1.32 2.35 1.50 4.26 431	4.05 1.52 2.07 1.67 4.41	4.65 1.85 2.55 1.89 5.26	4.78 1.95 2.50 1.83 5.17	3.10 1.68 2.67 2.02 5.10 228	2.83 2.00 2.93 1.97 4.96 209	1.60 1.74 2.32 1.51 3.67 227	1.25 3.67 4.47 211
40 N QS 125 W QB QE QC QN 035	2.12 2.32 7.35 3.73 1).68	3.15 2.65 5.39 3.16 8.96 102	3.91 2.51 5.10 3.17 7.59 115	4.99 2.39 4.78 2.74 7.37 148	7.04 2.89 5.22 3.14 8.36	5.88 2.21 3.60 2.39 6.33	6.43 2.49 4.41 3.00 8.56 141	5.51 2.39 4.04 2.94 7.32 151	5.12 2.69 5.30 3.17 8.26 123	3.79 2.80 5.83 2.97 8.36	2.14 2.46 5.22 2.86 7.78 122	1.64 2.70 7.56 4.24 11.79
40 N QS 126 W QB QE QC QN 03S	2.41 3.31 8.28 3.56 11.65	5.16 4.45 6.38 3.71 9.74	6.03 3.51 11.01 6.05 16.41	6.86 3.20 6.17 3.81 9.74	7.54 3.10 6.81 3.46 9.75 79	8.30 3.18 5.63 3.62 8.25	8.01 2.96 5.22 3.39 9.01 83	7.05 2.92 5.13 2.88 8.33	6.45 3.20 6.41 2.75 9.34	4.79 3.57 8.33 3.69 11.88	3.20 3.55 9.38 4.67 13.57	31 342 39 829 50 15 15
40 N US 127 W 08 전문 전문 전 전 03S	2.22 3.33 7.26 4.14 11.50 62	3.85 3.52 7.18 4.26 10.92	4.95 3.20 6.19 3.16 8.86	5.48 2.38 4.59 2.98 7.72	6.21 2.53 5.37 2.60 3.11	5.72 2.03 4.15 2.00 6.49 122	5.37 1.90 5.63 2.49 8.26 122	4.81 2.01 5.03 2.08 7.07 165	5.61 2.72 6.44 2.87 9.13	3.71 2.46 6.94 2.68 9.19	3.64 3.98 9.23 3.44 12.66	2.39 3.81 8.77 4.19 13.09
43 N QS 128 W 29 QE QC QC QS	1.22 1.65 5.32 2.39 7.60 147	3.22 2.87 6.30 3.64 9.47 70	4.74 2.60 6.30 3.19 9.42 79	4.69 2.24 4.74 2.33 7.00 119	5.63 2.27 4.13 2.52 6.84 112	5.02 1.80 3.81 2.12 5.98 156	4.60 1.63 3.64 1.73 6.14 182	4.63 1.78 4.57 1.84 6.61 156	4.41 2.17 5.70 2.17 7.78 121	3.87 2.55 6.27 2.71 8.78 102	3.07 3.29 9.10 3.58 11.90	1.59 2.42 3.70 10.70
49 N QS 129 W QB QQC QQS OB	1.59 2.18 7.36 3.99 11.67	2.70 2.24 5.35 2.67 7.87	3.05 1.72 4.28 2.67 6.80 149	3.67 1.75 4.21 2.31 6.03 165	4.50 1.71 3.83 1.93 5.96	4.87 1.75 4.21 2.14 6.72 124	4.60 1.50 4.00 1.88 6.56	4.74 1.78 4.52 2.04 7.07 144	4.38 2.01 5.28 1.90 7.24	2.66 2.06 6.27 2.22 8.11	2.24 2.37 8.28 3.26 10.95	1.91 2.82 7.94 3.46 11.94
43 N QS 130 W QBE QQC QQN 005	2.14 5.65 3.21 8.77	2.41 1.90 4.40 2.30 6.56 156	2.17 1.32 3.13 1.47 4.37 274	2.81 1.38 4.00 2.06 5.76 262	3.03 1.21 2.77 1.16 4.08 269	3.05 1.04 3.41 1.46 4.97 258	3.22 1.11 3.17 1.50 4.70 266	3.47 1.20 4.37 1.69 6.17 208	3.02 1.42 4.86 1.67 6.36 194	2.07 1.51 3.88 1.33 5.17	1.68 1.66 5.72 2.25 7.73	1.65 7.72 3.55 11.07
4) N QS 131 W QB QE QC QN 03S	2.10 2.70 8.73 4.98 13.84	3.54 2.71 7.23 3.49 10.99	4.16 2.34 6.32 3.43 9.50 85	5.87 2.40 6.28 3.37 10.50	5.13 1.92 4.96 3.62 8.63	6.33 2.22 5.22 8.46 96	5.75 1.96 4.56 2.04 7.58 107	5.05 1.84 4.89 1.91 7.47 126	4.12 1.95 5.70 2.08 7.60 105	3.49 2.53 7.17 3.00 9.84	2.74 2.79 10.15 4.45 14.16	1.61 9.538 9.48 13.78
43 N QS 132 W QBE QQS 085	1.97 2.46 8.11 4.70 13.00	2.36 2.18 5.61 2.38 7.71 80	3.80 2.74 5.23 8.87 92	5.07 2.37 6.99 3.60 10.50	5.48 2.34 3.95 6.138 114	4.89 4.158 4.58 6.124	4.58 1.59 1.40 5.42 5.425	4.43 4.43 4.67 5.25 15.22	4.26 1.96 5.05 1.68 7.11 124	3.08 2.00 6.73 2.43 8.99	2.18 2.23 8.50 4.15 12.66	1.57 2.58 9.88 14.52
133 W QS QE QE QC OS	1.80 2.33 8.34 4.79 12.78 88	32539 32539 32538	3.849 1.49 1.49 117 8	3.49 1.57 4.14 2.84 180	5.99 1.99 3.149 6.149	4.50 5.52 4.50 4.73 1.79	3.62 1.23 1.23 1.72 186	3.56 1.69 1.16 199	3.93 1.43 1.56 1.71 2.19	2.33 1.838 1.833 1.24	1.66 1.75 7.13 2.95 10.17	1.23 1.92 7.77 3.24 10.94

and the same

LAT/LON	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP	OCT	V 0N	DEC
42 N QS 124 W QB QE QC QN 08S	4.40 6.54 14.69 8.85 23.32	6.47 6.59 13.55 6.63 19.87	13.64 7.96 5.36 3.73 10.62	16.44 7.72 11.88 6.36 19.57	20.97 3.83 16.69 6.24 14.58	15.21 5.63 3.94 3.38 10.14	14.65 13.85 13.85 22.55 25	13.94 4.65 4.65 3.51 11.84	11.21 6.11 6.78 4.57 11.34	10.23 7.10 15.14 5.05 19.42	6.45 7.21 11.13 8.70 18.67	5.73 8.75 10.85 6.19 13.31
42 N QS 125 W QB QC QC QS 088	1.65 2.45 3.61 3.61 8.25	2.21 1.98 3.58 1.70 4.80 154	3.69 2.34 3.51 1.99 5.25 165	4.15 2.08 3.49 2.13 5.18	6.26 2.62 4.15 2.89 6.87 123	4.89 1.85 3.29 5.29 209	6.01 2.37 3.64 2.70 6.81 158	5.81 2.44 3.52 2.71 6.84 136	4.67 2.49 4.59 2.74 7.40	3.36 2.48 4.10 2.34 6.53	1.80 2.34 4.10 1.98 5.82	1.48 2.83 6.96 3.75 10.03
42 N QS 126 W QBE QC QC QS	2.94 3.85 8.60 4.74 13.23	5.25 4.54 8.89 4.00 12.60	6.81 3.94 5.58 3.82 9.28	6.59 3.59 6.55 3.55 9.35 45	3.53 3.26 7.43 4.65 13.24	11.64 4.18 8.38 4.61 13.13	9.90 3.65 8.11 4.77 13.28	9.48 3.68 7.50 4.68 13.77	10.49 5.41 10.52 5.50 15.44	5.83 3.90 7.68 4.31 10.53	3.91 4.25 10.49 3.99 14.26	2.55 4.44 9.63 6.30 15.78
42 N QS 127 W QB QE QC QN 03S	2.94 4.71 5.03 13	4.48 3.96 6.09 3.33 8.83	5.34 3.23 6.98 3.94 8.22	6.03 2.67 7.48 4.77 11.95	7.29 2.74 6.27 2.79 9.40 51	9.12 3.32 4.96 4.06 8.96	9.38 3.43 7.12 4.84 13.16	8.85 3.35 5.47 2.98 9.90 48	7.57 3.57 9.48 4.99 14.97	5.26 3.62 10.48 4.76 14.69	2.72 3.23 7.44 3.77 11.02 58	1.73 3.14 8.89 4.56 13.34
42 N QS 128 W QB QC QC QN 03S	2.84 3.80 6.84 4.38 10.72	3.98 3.94 7.69 3.75 11.24	5.73 3.65 5.24 3.97 7.98 52	6.49 3.58 7.41 4.72 11.13	7.76 3.06 4.67 2.48 7.62	9.95 3.74 6.29 4.12 11.62	7.63 2.58 6.18 2.52 13.59	7.47 2.94 1J.39 4.98 15.93	8.31 4.19 11.32 3.21 13.83	5.17 3.91 10.21 3.76 13.05	2.79 3.14 10.00 4.36 13.76	1.65 3.08 8.54 5.70 13.97
42 N QS 129 W QB QC QC QN OBS	1.44 2.33 3.47 4.86 13.21	2.66 2.53 6.25 3.51 9.24	3.16 1.71 3.97 2.18 5.84	3.53 1.56 3.44 2.26 5.88 131	3.97 1.55 4.36 2.06 6.38 137	6.73 2.44 4.43 2.21 7.52	5.95 2.47 4.39 2.98 3.84	4.80 1.80 4.12 1.67 6.50	7.85 3.74 11.79 4.38 15.95	4.84 3.94 10.83 3.70 13.41	2.33 2.69 7.53 3.48 10.60	1.07 1.81 5.60 2.88 8.42 125
42 N QS 130 W QB QC QN 03S	2.16 2.87 9.67 5.33 14.80	2.83 2.32 3.35 8.76	4.72 2.68 6.24 3.32 9.63	645995 6253365 6253365	6.95 2.41 7.65 3.57 11.29	5.17 2.19 4.17 1.52 6.65	5.71 2.01 2.01 2.09 6.09	6.48 2.48 5.96 3.08 11.27	7.26 3.55 9.25 3.41 12.82	4.35 2.96 11.55 15.30	2.14 2.66 9.49 3.02 12.38	1.38 2.35 9.40 4.78 13.84
42 N QS 131 W QB QC QN 08S	1.82 2.43 5.83 9.99	2.73 2.33 6.36 3.83 10.08	3.05 6.65 6.59 106	4.72 2.08 4.55 2.89 7.89	7.03 2.73 4.06 1.85 6.81	5.47 1.95 4.60 6.18 102	4.40 1.52 1.76 1.76 151	4.67 3.54 1.14 5.83	4.12 1.90 6.64 2.19 8.43	3.45 2.42 6.35 2.69 8.77	1.86 2.21 7.45 3.48 10.51	1.45 2.659 5.03 14.79
42 N QS 132 W QB QC QC QC QC QS OBS	1.91 28.82 5.82 14.69	2.96 2.33 7.48 4.74 11.64	5.09 2.76 8.00 4.26 12.46	4.81 2.29 5.93 8.11 117	4.45 1.75 3.869 13.4	4.60 3.87 1.31 6.33	4.08 1.45 2.09 161	4.03 1.61 3.96 1.82 15.80	4.14 2.22 4.68 1.73 6.22	2.99 2.05 6.83 2.92 9.48	1.99 2.29 11.51 5.63 16.94	1.32 2.33 8.30 4.35 12.36
42 N QS 133 W QB QC QC QN 08S	1.49 2.30 13.62 5.70 16.23	3.37 6.61 3.84 9.63	3.63 2.61 6.37 3.22 8.95	445 545 113	4.79 3.09 2.356 156	4.046 3.68 1.68 1.65 1.65	4.539 4.539	3.81 1.42 3.95 1.47 167	3.53 1.75 5.37 1.96 7.05	2.98 1.86 6.67 2.65 9.10	1.83 2.04 9.78 5.33 14.74	1.22 2.28 10.12 4.77 14.70

LAT/	LON	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP	OCT	NOV	066
43 f 124 f	SBECONS CCCNS CCCNS	4.29 6.71 8.83 5.81 14.16	7.52 7.58 9.81 7.95 18.91	13.97 9.56 6.36 4.35 12.19	13.58 6.32 9.69 5.18 15.33	15.94 6.90 9.68 5.09 20.07	17.13 5.85 7.85 4.39 15.43	19.74 6.78 8.96 12.18 29.43	12.66 5.61 7.82 7.55 17.97	7.02 3.65 4.36 5.70 9.28	7.27 5.36 5.38 1.80 7.18	3.89 7.18 7.65 6.57 11.53	5.50 10.45 18.14 26.69
125 I	SE OF	1.59 24.33 4.29 8.00 116	1.92 1.94 3.74 2.79	3.51 2.27 4.17 2.32 6.09	4.055 3.055 3.18 2.18 3.153	5.30429 5.30429 5.426	5.29 1.93 3.53 2.61 6.47	6.08 2.30 3.47 2.24 6.57	6.01 2.44 3.08 2.08 129	4.84 2.66 4.36 2.88 7.27 115	3.77 2.70 4.48 2.56 123	1.74 2.28 4.24 2.21 6.31	2553934 2519314
43 126	N QS QB QC QN OBS	2.93 4.47 7.92 5.69 12.42	3.45 8.15 8.26 15.39	7.64 4.03 8.42 4.21 12.73	8.5û 4.23 7.18 3.45 9.133	10.35 3.97 6.38 3.44 11.32	8.05 2.97 7.59 4.47 11.33	11.28 3.76 19.22 5.03 17.65	11.30 4.44 7.88 3.84 12.70	9.80 5.41 10.35 5.53 15.72	6.54 4.74 9.82 3.82 12.33	3.32 3.99 7.90 3.36 10.32	2.94 5.61 11.30 5.82 17.06
43 I	N QS QB QC QC QB OBS	1.46 2.56 9.12 6.27 14.91	4.66 3.45 11.58 6.06 16.60	4.83 3.03 7.16 3.73 10.33	7.35 3.55 8.12 4.18 12.05	9.75 4.11 5.93 8.98 35	11.38 4.05 6.92 3.59 12.86	10.06 3.57 6.36 3.83 11.80	7.65 3.33 12.61 5.32 16.42	9.44 5.12 9.35 2.87 11.10	4.17 3.25 8.48 3.94 11.81	2.17 3.73 9.28 4.60 13.66	1.68 3.21 10.19 6.35 16.72
43 128	N QS QB QE QC QN QSS	2.04 2.73 11.35 6.56 17.33	3.33 3.24 8.21 4.72 11.88	5.57 3.81 6.49 5.19 11.95	6.59 3.03 3.23 4.10 11.45	8.35 3.00 5.09 3.68 10.11	8.71 2.98 6.61 4.15 12.77	9.87 3.26 7.77 4.08 14.48	8.38 3.72 6.73 3.17 10.39	6.91 3.62 8.72 4.79 13.49	4.57 3.21 10.90 3.82 14.38	2.28 3.01 10.93 4.33 14.47	1.61 2.97 9.88 5.94 15.60
43 129	N QS QB QC QC QC QC QC QC	2.12 2.93 8.47 4.38 13.29	7691 7681 7681 7681 7681 7681 7681 7681 768	3.98 2.46 5.38 3.40 8.61	6.48 3.96 5.56 4.25 13.44	6.02 38 5.51 2.58 8.57 78	7.16 2.57 6.36 4.03 13.92	9.04 3.24 6.69 3.36 12.00	6.36 2.28 8.54 3.59 11.92	5.49 2.77 7.21 3.17 10.77	4.35 3.34 10.71 3.47 13.22	2.24 3.21 9.37 4.34 13.85	1.33 2.67 10.88 5.42 16.60
43 130	N 08 QB QE QC QN OS	1.11 1.62 3.97 2.62 6.51	2.33 1.89 4.77 2.71 7.00 102	2.60 1.61 4.05 2.17 5.97 185	3.02 1.43 3.84 1.96 5.76 192	3.49 1.39 2.68 1.41 3.97	4.62 1.71 2.69 1.36 4.73	4.20 1.41 3.42 1.76 185	3.39 1.29 3.10 1.19 4.53 195	3.55 1.76 5.21 1.60 6.51 154	2.79 2.02 6.30 2.45 8.34	2.24 2.62 7.65 4.12 11.57	.85 1.64 4.98 2.45 7.15
43 131	N QS QBEQQN QCS OSS	1.75 2.54 7.37 5.62 12.92	2.56 2.43 6.56 3.96 19.47	3.85 2.54 6.55 3.69 10.31 79	6.38 2.78 6.61 3.67 10.19	4.83 1.88 5.19 2.61 8.18	5.22 1.91 4.72 2.38 7.87	5.848400 5.848400 5.6400 5.6400	5.12 2.13 2.18 7.106	4.30 2.26 3.24 2.53 10.12	2.77 2.30 7.75 2.70 9.60	1.97 2.28 9.14 4.75 13.82	1.32 2.62 9.41 5.05 13.89
43 132	N USBECONS	1.58 2.63 9.68 6.76 15.76	3.13 3.11 6.65 4.37 11.07	4.11 2.39 6.46 3.25 9.43	6.28 3.04 5.16 3.71 9.38 62	6.93 2.69 5.63 3.59 8.57	7.49 2.65 5.53 2.74 9.85	6.96 2.27 7.87 1.89 13.51	6.82 5.74 5.24 2.35 2.75 2.75	5.06 7.47 2.53 9.53	3.04 2.70 12.46 4.76 16.61	2.48 3.01 11.26 5.73 16.03	1.71 3.20 11.84 6.54 18.16
43 133	N QS QQ QQ QQ QQ QQ QQ QQ QQ QQ QQ QQ QQ Q	1.99 2.56 1].42 5.67 16.16	3.5 5.6 5.6 5.6 5.6 5.6 13	4.52 2.54 6.76 3.47 9.87	6.13 2.76 7.30 3.79 11.07	7 • 18 26 • 22 3 • 53 9 • 53	5.01 1.73 6.45 2.54 8.54	5.79 2.11 4.69 8.63 8.63	6.35 2.38 5.17 2.46 17.10	6.55 3.29 8.85 8.65 11.49	3.42 2.56 9.46 4.21 13.70	2.07 2.80 12.01 5.51 17.34	1.58 2.94 8.19 4.39 12.49

80

88

035

LAT/LON	NAL	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP	OCT	иом	DEC
46 N QS 124 W QB QC QC QN 08S	.70 1.434 2.025	1.26 1.46 1.86 1.41 3.08	1.97 1.356 1.569 2.424	2.16 1.13 1.51 .98 2.66 490	2.78 1.08 1.45 .95 3.10 456	2.72 .96 1.31 .74 2.82 537	3.08 1.10 1.41 .83 3.12 502	2.72 1.15 1.09 .59 2.36 512	2.11 1.17 1.23 .68 2.48 475	1.61 1.30 1.62 .88 2.64 471	.90 1.24 1.80 1.33 3.09 433	.49 1.31 2.13 1.76 3.96
46 N QS 125 W QB QE QC QN 03S	1.25 2.34 4.39 3.19 7.56 104	2.62 2.58 4.72 3.18 7.73	3.12 2.21 4.16 2.42 6.64 119	4.62 2.47 3.55 2.19 5.49	5.71 2.30 3.65 1.91 6.01	4.25 1.52 3.50 1.56 5.25 173	5.15 1.90 3.51 1.86 5.85	5.09 2.06 3.82 1.88 6.07	4.39 2.44 4.80 2.31 7.31	2.95 2.24 5.88 2.31 7.65 119	1.91 2.79 5.27 2.71 7.79	1.50 3.76 7.11 3.86 10.53
46 N QS 126 W QB QE QC QN 08S	1.89 3.09 9.46 6.26 15.10	4.46 4.035 4.035 8.79	5.37 3.82 6.55 3.77 10.71	8.07 3.97 7.62 3.89 11.40	9.76 4.23 7.08 3.56 11.71	8.10 2.92 7.11 2.92 11.02	7.61 25.65 8.65 8.65 8.65 8.65	7.37 3.54 6.92 2.86 10.23	6.78 3.67 8.88 4.43 13.44	5.45 4.33 8.82 4.43 12.08	3.02 4.61 10.88 5.31 15.00	1.95 4.67 9.09 5.18 13.37
46 N QS 127 W QB QE QC QN 03S	1.44 2.74 8.20 6.02 14.22	3.57 3.40 6.51 4.58 11.40 55	4.15 3.28 5.50 4.01 9.83 71	7.09 3.32 4.38 3.28 8.29	7.74 3.18 4.19 2.24 8.02	7.25 2.69 7.43 3.32 12.01 61	7.64 2.83 5.36 2.72 9.01	6.22 2.60 5.40 2.01 7.96 61	6.23 3.36 9.28 2.76 11.54	3.58 2.79 9.73 4.05 13.56	1.54 2.37 6.71 3.30 10.00	1.18 2.95 7.92 5.12 12.76
46 N QS 128 W QB QE QC QN 08S	1.55 2.55 6.49 4.40 10.26 75	2.86 3.19 5.04 3.12 7.76 59	3.82 2.52 5.87 3.41 9.25 88	6.13 3.13 5.59 3.54 8.65	8.33 3.34 4.51 2.12 7.58 48	6.75 2.40 4.64 2.57 8.77	8.21 2.94 4.49 2.59 8.38	5.02 2.26 4.90 2.37 7.73	5.73 2.95 7.27 2.82 10.30	3.16 2.89 9.51 4.57 14.07	1.63 2.82 8.15 3.42 11.65	2.37 7.09 4.53 11.34
46 N QS 129 W QB QE QC QN 085	1.17 2.19 6.41 5.ú2 10.91 81	2.12 2.55 5.86 4.94 9.48	3.49 2.38 5.18 4.09 9.00	5.61 2.75 4.23 3.10 7.46 82	6.88 2.66 4.03 2.40 7.37	6.77 2.60 4.76 3.08 7.91 72	7.68 2.86 5.19 2.91 7.42 58	5.63 2.33 5.83 2.58 9.12 74	4.69 2.57 7.64 2.85 10.93	3.64 2.74 8.05 3.18 10.89 68	1.93 2.76 7.45 3.83 10.86	2.18 6.23 3.93 10.19
46 N QS 130 W QB QE QC QN 085	1.35 2.45 6.56 5.13 11.43	2.57 2.64 5.92 3.68 9.28 79	3.33 2.18 5.97 3.72 9.78 115	5.21 2.80 5.43 3.41 8.69	5.88 2.34 3.87 2.67 6.83	5.23 1.97 4.50 2.17 7.13	5.36 1.86 3.49 2.14 6.62 85	4.65 1.96 5.45 2.90 8.18 81	4.91 2.74 6.26 2.33 d.85	3.13 2.50 7.34 3.20 10.17	1.73 2.55 6.74 3.83 10.60	2.17 7.20 4.21 11.12
46 N QS 131 W QB QE QC QN 085	1.26 2.23 5.99 4.42 11.16 85	2.07 2.11 4.75 3.30 7.44 65	3.73 2.52 5.27 4.58 9.93 74	4.70 2.36 4.57 3.03 6.69	5.77 2.49 3.79 2.30 6.90 89	5.54 1.94 3.29 2.34 6.71	4.80 1.64 3.95 2.03 6.76	4.12 1.64 3.53 1.88 5.60	4.91 2.65 6.26 2.86 8.95	2.68 2.15 8.70 3.81 12.10	1.43 2.06 7.30 3.47 10.65	2.12 7.23 4.23 11.49
46 N QS 132 W QB QE QC QN OBS	1.36 2.18 4.71 3.42 8.ú3 128	1.85 1.92 5.20 3.52 8.23	3.19 2.07 3.73 3.01 6.64 146	3.66 1.72 2.75 1.84 4.68 165	5.31 2.16 3.53 2.13 6.82 127	5.17 1.75 3.65 2.57 6.83	5.38 1.92 4.38 2.53 7.10	4.16 1.83 6.08 1.87 7.81	4.52 2.34 6.03 2.61 8.58	3.15 2.50 7.27 3.22 10.20	1.97 2.50 8.72 4.43 12.79	.79 2.00 7.15 4.29 11.74
46 N QS 133 W QB QC QN QS	1.14 26.52 6.566 11.80	2.95 2.97 6.87 4.83 11.55	3.33 2.93 5.88 3.670	5.63 2.83 5.55 3.55 7.55 7.55 7.55 7.55 7.55 7.5	5.27 5.17 5.16 5.06 5.06	6.40 2.37 2.03 7.03	62.198 62.198 62.439	5.25 2.07 5.11 2.97 3.97	4.54 2.66 7.75 3.18 10.16	2.93 2.35 8.87 3.63 12.28	2.02 2.73 9.12 5.56 14.10	2.07 8.84 5.51 14.15

DEC

NOV

JAN

LAT/LON

QN

035

11.26

13.48

63

11.83

49

8.33

57

8.77

50

9.48

63

7.35

7.30

7.69

59

13.96

17.29

FEB

MAR

APR

MAY

JUN

JUL

AUG

SEP

OCT

JAN

LAT/LON

FEB

MAR

APR

MAY

JUN

JUL

AUG

SEP

OCT

NOV

DEC

MAY

JUN

APR

FEB

JAN

LAT/LON

MAR

JUL

AUG

SEP

OCT

DEC

NOV

LAT/LON	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP	OCT	ΝΟУ	DEC
50 N QS 127 W QB QC QC QN OBS	3.20 16.33 14.91 36.71	4.10 3.95 14.81 17.70 32.07	6.76 9.04 14.39 14.60 28.12	9.30 6.18 13.24 6.13 15.99	21.86 10.41 20.80 4.91 24.61	9.71 3.78 7.95 8.21 17.03	17.97 6.20 8.43 7.52 21.13	11.98 4.98 4.33 4.06 9.30 24	11.06 5.12 7.45 6.01 13.36	6.95 6.75 12.31 6.12 17.29	3.67 7.43 22.54 18.66 39.16	1.63 6.53 13.96 13.75 11.79
50 N QS 128 W QB QE QC QN 08S	1.35 4.04 8.64 7.63 16.56	4.55 5.01 10.75 6.83 16.43	5.27 3.60 6.97 3.10 10.12	8.03 4.24 5.60 3.61 9.22 41	10.74 3.93 5.00 4.36 10.56	8.41 3.03 5.78 3.19 10.69	9.07 3.50 5.86 2.94 9.82 59	8.98 3.85 6.62 4.08 11.05	7 • 24 3 • 85 5 • 46 3 • 73 9 • 75	4.33 3.84 7.96 5.21 13.05	1.47 3.33 4.85 2.87 7.84	.96 4.19 11.08 6.14 18.39
50 N 2S 129 W 2GBEC 2000 000 000 000	1.39 3.37 5.87 4.60 11.45	2.29 2.89 8.15 5.12 12.53	3.92 3.91 6.92 4.95 11.94	5.04 3.13 6.21 4.41 10.50 71	6.34 2.62 4.74 2.31 7.60 84	6.72 2.41 5.10 3.40 9.82	5.64 2.52 4.19 2.47 7.57	4.89 2.05 4.28 2.19 7.43	4.40 2.59 5.44 2.94 8.31	3.36 3.16 6.39 3.34 8.89	1.41 2.92 5.78 3.97 9.64	3.02 7.27 4.84 11.84
50 N QS 130 W QB QE QC QN OBS	1.03 2.99 7.19 5.79 13.54 61	2.09 2.59 6.25 3.93 10.02	3.77 2.74 6.51 4.52 11.33	5.04 2.63 5.45 3.34 9.13	5.64 2.46 3.21 2.05 6.13	5.26 1.90 3.07 1.96 6.44	5.34 1.87 3.04 1.55 5.88 118	4.69 2.00 4.42 2.67 7.04 93	3.71 2.24 4.15 2.15 6.02	2.86 2.42 6.76 3.63 10.06	1.23 2.68 6.48 3.94 10.39 74	2.90 7.42 4.84 12.50
50 N QS 131 W QB QE QC QN 08S	1.J4 2.64 5.96 4.68 10.78 85	2.70 3.12 5.69 3.62 9.17	3.33 2.28 6.52 4.38 10.95	3.84 1.97 3.46 2.20 5.84	4.75 2.11 2.91 2.06 4.99 127	4.63 1.71 2.99 1.93 5.40	4.05 1.45 2.22 1.66 4.64	3.49 1.50 3.18 1.87 5.33	3.27 1.83 4.57 2.02 6.27 143	2.37 2.00 6.09 2.75 8.56	1.19 2.17 5.27 3.64 9.63	2.69 2.65 5.65 4.25 12.75
50 N QS 132 W QB QE QC QN 035	1.11 2.38 7.71 5.81 13.87	2.04 2.43 4.90 4.58 9.29	3.24 2.38 4.52 3.48 8.21	4.68 2.35 2.79 2.67 6.09	5.09 2.14 2.94 2.18 5.68 114	4.21 1.51 3.21 1.88 5.64	3.80 1.41 2.35 1.21 3.75 140	4.01 1.72 3.51 1.90 5.63	3.11 2.06 3.61 1.73 5.17	2.32 2.34 6.89 3.24 9.83	1.27 1.95 6.09 3.92 9.75	3.17 6.54 4.82 11.34
50 N QS 133 W QGE QGE QGS 095	.97 2.43 5.40 5.14 11.72 64	2.66 2.51 5.62 4.73 3.83	3.54 2.52 5.74 3.54 9.64	4.41 2.25 3.93 3.00 7.36	5.15 2.19 3.14 2.25 5.41	4.39 1.57 2.93 2.44 5.86 108	4.37 1.56 2.31 1.76 5.20	3.93 1.63 3.48 1.76 5.61	3.53 2.11 5.50 3.21 8.72	2.57 2.27 6.71 2.61 9.03	1.12 2.19 6.18 4.25 10.28	2.28 6.89 5.05 12.01
50 N QS 134 W QB QC QC QC ORS	.669 4.56 3.44 8.08	1.50 1.73 3.36 2.68 5.81	2.56 1.63 3.27 1.97 5.41 160	3.25 1.66 2.49 1.91 4.34 168	3.68 1.61 2.84 1.97 4.90 160	2.72 .96 2.15 1.52 3.82 208	3.87 1.44 1.85 1.16 3.67 162	3.15 1.36 2.79 1.34 4.34	3.24 1.99 4.55 2.23 6.39	2.34 2.10 7.25 3.18 9.70 87	.93 1.58 5.03 3.30 8.25 170	.44 \ 1.80 5.68 3.98 139
50 N QS 135 W QB QE QC QN OBS	.78 2.31 5.71 4.78 13.47	1.45 1.98 4.38 3.34 7.56	2.82 1.98 5.58 3.22 3.65	4.20 2.10 3.85 2.99 123	4.10 1.66 2.79 2.07 4.93	3.17 1.11 2.61 1.61 4.43	3.26 1.20 2.27 1.67 4.31 131	3.29 1.36 3.28 1.54 5.00	1.70 1.15 2.65 1.36 3.52	1.80 1.80 6.12 3.19 9.18	.95 1.67 5.59 3.25 8.92	.46 1.86 5.42 3.80 9.12 116
50 N QS 136 W QB QE QB OBS	1.17 2.894 4.82	1.11 1.32 2.76 2.74 4.76	1.37 1.035 1.035 1.35 1.35 431	1.65 .89 1.58 .96 2.64	2.04 .89 1.77 1.05 2.73 487	1.88 .67 1.76 1.18 2.94	2.16 .79 1.34 1.13 2.77	1.96 .84 2.09 1.02 3.09	2.18 1.31 3.22 1.51 4.270	1.23 1.09 3.79 1.80 5.52	.51 1.00 2.89 1.85 4.651	.23 .25 2.78 1.89 4.79

APPENDIX III

Monthly Mean Surface Atmospheric Properties

The following tables list the long-term monthly mean surface atmospheric properties approximately corresponding to the distributions of monthly mean heat exchange components displayed in Appendix I. Each page contains values for 10 1° squares. Within each group of 10, all 1° squares are defined by a common latitude. The first set of values corresponds to the 1° square adjacent to the coast. The final tabulations refer to the 1° square farthest from the coast.

Monthly mean properties are tabulated for windspeed (SPD, m/s), surface air temperature (AIR, °C), sea surface temperature (SEA, °C), vapor pressure of the air (VPA, mbar), saturation vapor pressure at the sea surface temperature (VPS, mbar), and total cloud amount (CLD, \$). These estimates of monthly mean surface properties were used to calculate the heat exchange components, $Q_n(M)$, for comparisons with the heat exchange values computed from individual reports, $Q_n(I)$, shown in Figures 5, 6, and 7, and in Table 1.

APR

MAY

JUN

JUL

AUG

MAR

DEC

NOV

SEP

OCT

LAT/LON

JAN

FEB

y" y 111	×									
986	SUSPENSION OF SU	400000 400004 004000 400004	とこれでは はないない。 とこれではない。 というない。 というない。	500000 500000 500000 500000	00100 00100 00100 00100 00100	467174 467174 671767 671767	200422 20022 20022 20040 20040 20040	20-1-02 20-1-02 20-1-1-02 20-1-1-02	60110 60110 60110 60110	NUMUE NUME SOMMON SOMMON
AON	440000 440000 440000 440000 440000 440000	42222 42222 42222 42222 42222 42222 42222 422 42 4	HODENS ACCENS AC	30000000000000000000000000000000000000	HOUNDS TOPOGO TO	22000 22000 22000 2000 2000 2000 2000	00000 0000 0000 0000 0000 0000	NG@N6 1.000 € 10 1.000 € 10	200000 510000 100000 100000	00400 00000 00000 00000 00000 00000 00000 0000
00	400000 040000 040000	MUNNN STAFONE	140000 00000 00000 00000 00000	TOURN TOURN TOURN TOURN	MOJEME STANDO ST	495500 49500 49500 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000	422 422 422 423 423 423 433 433 433 433	6777777 6777777 6777777777777777777777	604040 604040 604040	60470 60470 60470 60470
SEP	08084V 08084V 08084V	SANNN SANN SANNN S	0000 0000 0000 0000 0000 0000 0000 0000 0000	のイントロの のイントロの のとりとう のまってい	64000 64000 030000 030000	7447 7447 7447 7447 7447 7447 7447 744	78000 04400 04400 04400 04400 04400 04400 04400 04400 04400 0440 040 040 040 040 040 040 040 040 040 040 040 04	140 140 10 10 10 10 10 10 10 10 10 10 10 10 10	2000 2000 2000 2000 2000 2000 2000 200	BEANNE 1000 1000 1000 1000 1000 1000 1000
AUG	4 W2222 4 W2222 4 H H B F W W H F L D W G	を でして の の で し り り り り り り り り り り り り り り り り り り	500000 5000000 50000000000000000000000	044075 246040 246040 246040	6114446 611446 611446 66969	642 642 642 642 642 642 642 642 642 642	242 242 242 242 242 242 242 242 242 242	72554 72554 67620 74520 74520	944000 9440 9440 9440 9440 9440 9440	20000000000000000000000000000000000000
701	らいい かいしょう ちょうしょう ちょうしょう ちょうしょう ちょうしょう ちょうしょう ちょうしょう いいしょう いいしょう いいしょう いいしょう いいしょう いいしょう しょうしょう いんしょう しょうしょう しょう	40000 500000 500000 500000 500	MUTCOR SOLUTE JOHNNE THIONIO	600000 600000 60000 60000 60000	000000 000000 000000 000000	100000 011110 00000 10000 10000 10000	700000 100000 100000 1000000	20112 20112 20112 2012 2013 2013 2013	222.18 221.18 221.98 20 62 62 62 62 62 63 63 64 65 65 65 65 65 65 65 65 65 65 65 65 65	92410 24122 2412
N N	527777 527777 527777 52777 5277 5277 52	6059 6059 6059 6059 6059 6059 6059 6059	655 655 655 655 655 655 656 656 656 656	200 210 210 20 20 20 20 20 20 20 20 20 20 20 20 20	854 854 854 854 859 859 859	8259 655 655 655 655 655 655 655 655 655 6	0000 0000 0000 0000 0000 0000 0000 0000	200 200 200 200 200 200 200 200 200 200	684004 64004 64004 64004	504000 604000 6040000 60400000
HAY	401100 60110 60110 60110 60110	546 546 546 546 546 546 546 546 546 546	6 20 20 20 20 20 20 20 20 20 20 20 20 20	100 100 100 100 100 100 100 100 100 100	1100 1100 1100 1100 1100 1100 1100 110	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	55.00 20.00 25.00 55.00	36014 36014 36014 36014 36014 36014 36014
APR	74 000 00 00 00 00 00 00 00 00 00 00 00 0	1100 1100 1100 1100 1100 1100 1100 110	01100 1100 1400 1400 1400 1400 1400 140	00000000000000000000000000000000000000	2100 2100 2100 2100 2100 2100 2100 2100	100 100 100 100 100 100 100 100 100 100	6.61 119.92 119.65 28.03 0.02 0.02	6.00 119.00 119.00 125.65 72.55 72.55	6.03 20.79 7.10.09 7.10.09 7.10.09	1186 1189 1189 128 188 188 188 188 188 188 188 188 188
MAR	MOHUN MUMHON MATAWA MATAWA MATAWA MATAWA	1000 1000 1000 1000 1000 1000 1000 100	704000 000000 0000000 000000		400 400 400 400 400 400 400 400 400 400	6266 6266 6266 6266 6266 6266 6266 626	1100.00 22.00 727.00 720.00 720.00	1177 1177 1199 1199 1199 1199 1199 1199	0.00 0.00 0.00 0.00 0.00 0.00 0.00	00000000000000000000000000000000000000
FEB	200 201 201 201 200 200 200 200 200 200	のサイグイグ	2271120 2271130 2371304 3144304	00000V	WEFUND	404070	F460000	PI DUNG O	100.000000	
NAD	FOUNT	21-20-10	4020 4021 4021 4042 4142 4142 4142 4142	മാലവസ	ישיטשיטסה	W(0.3.0.0.0	440ca0	WE 0000		
z	G-HMG-G-T	C C C S B B B B B B B B B B B B B B B B	C< <sand CONAND</sand 				OK KARA C PPA C PSA C PS			a -waa -
Ë	23	ZZ	ZI	ZX	ZZ	ZZ	ZZ	Z3	ZX	ZT
AT/LO	11	25	25 35	125	25	16	122	24	25	202
ت	· · ·	**	~ ~	ੇ ਜ	*	+		-	-	-

LATZLON	JAN	FEB	MAR	APR	HAY	NUL	JUL	AUG	SEP	OCT	NOV	DEC
23 N SPO	4.88	5.16	5.88	6.23	6.60	5.93	4.39	4.78	5.13	4.94	4.95	5.10
111 W AIR	20.45	19.64	19.32	18.97	19.20	20.19	24.46	26.61	27.19	26.03	24.08	21.96
SEA	22.30	20.76	20.05	19.44	19.51	20.22	24.29	26.92	27.82	27.04	25.61	23.78
VPA	17.95	17.20	17.35	17.74	18.14	19.89	25.69	28.45	29.28	26.30	22.25	19.38
VPS	26.56	24.62	23.59	22.74	22.89	23.93	30.68	35.74	37.59	35.93	33.00	29.61
CLO	42.58	33.85	37.29	39.31	39.36	42.76	39.60	41.71	35.90	33.35	33.90	44.85
23 N SPD	4.89	5.10	5.72	6.60	6.86	6.23	4.29	4.81	5.50	5.07	4.89	5.02
112 W AIR	20.14	19.41	19.12	18.46	19.09	20.12	23.96	26.09	26.14	24.67	23.41	21.58
SEA	22.01	20.55	20.04	19.42	19.29	20.18	23.86	26.21	26.79	26.06	24.70	23.34
VPA	17.54	17.03	17.09	17.02	18.04	19.37	25.12	27.56	27.99	24.69	21.83	18.98
VPS	26.56	24.31	23.56	22.67	22.49	23.80	29.78	34.20	35.44	33.91	31.30	26.80
CLD	51.05	37.35	41.22	43.98	46.99	57.34	42.83	43.09	45.40	36.81	32.63	41.58
23 N SPD	5.18	4.28	5.67	5.94	6.21	6.05	4.39	5.03	5.95	4.99	4.59	4:44
113 W AIR	19.72	19.90	18.38	18.78	18.93	19.99	23.24	24.85	25.02	24.51	22.94	20:89
SEA	21.08	21.05	20.08	19.85	19.51	20.23	23.21	25.17	25.53	25.50	24.39	22:47
VPA	17.27	17.17	16.49	16.58	17.49	18.97	23.95	26.13	25.75	24.32	21.29	19:03
VPS	25.08	25.02	23.60	23.23	22.78	23.81	28.64	32.18	32.87	32.74	30.66	27:33
GLD	51.31	61.39	50.35	52.22	50.76	60.76	46.92	59.95	45.59	42.00	46.77	59:68
23 N SPD	4.31	4.36	5.89	7.08	6.19	5.72	4.61	5.03	5.71	5.48	4.98	5.13
114 H AIR	19.64	19.02	18.41	18.40	18.86	19.40	22.61	24.67	24.75	23.70	21.92	20.36
SEA	20.66	20.25	19.86	19.44	19.38	19.83	23.10	24.97	25.44	24.55	23.54	21.68
VPA	16.63	16.19	15.86	16.66	17.09	18.18	22.81	25.39	26.20	22.36	20.46	18.36
VPS	24.47	23.86	23.26	22.66	22.61	23.22	28.42	31.76	32.70	31.03	29.12	26.03
GLD	48.71	49.26	55.70	56.13	71.30	70.70	51.62	64.82	48.65	42.54	33.33	57.63
23 N SPO 115 H AIR SEA VPA VPS GLD	5.04 18.97 19.94 16.18 23.37 48.92	5.43 18.65 19.91 16.79 23.42 48.78	5.84 18.09 19.58 15.86 22.86 57.55	6.22 18.32 19.66 16.07 22.97 64.88	6.91 18.80 19.83 17.22 23.23 66.66	4.90 19.65 20.35 18.29 23.96 65.72	4.62 21.99 22.17 22.35 26.86 55.78	4.85 24.04 25.04 25.10 31.90 56.11	6.06 24.77 24.55 31.41 57.37	5.43 23.63 24.08 22.70 30.09 55.62	5.55 21.29 23.50 29.50 28.40 45.58	5.42 19.62 21.06 17.12 25.07 61.98
23 N SPO	5.47	5.66	6.15	6.31	6.29	5.20	4.73	4.56	5.47	5.02	5.26	5.77
116 W AIR	17.82	16.13	18.64	18.65	18.61	19.18	21.51	23.94	23.78	22.58	21.07	19.32
SEA	19.80	16.93	19.25	19.81	19.88	20.12	22.23	24.03	24.19	23.72	22.51	21.23
VPA	15.51	15.83	15.25	15.60	16.80	17.44	21.47	24.03	23.75	21.72	19.16	17.65
VPS	23.18	21.93	22.59	23.20	23.29	23.69	26.93	30.50	31.38	29.23	27.34	25.34
CLO	59.21	58.33	63.14	70.06	77.25	84.37	69.39	63.02	53.53	62.50	59.01	57.95
23 N SPD	6.27	6.05	5.44	6.20	7.09	5.78	4.93	6.51	6.47	5.13	6.57	5.27
117 W AIR	18.91	18.10	17.97	18.82	17.94	18.93	21.09	23.11	22.78	22.03	20.97	19.60
SEA	19.93	18.78	18.83	19.57	19.41	20.20	21.91	24.59	24.01	23.21	22.64	21.04
VPA	16.56	16.02	16.10	15.69	15.77	17.40	21.07	23.23	22.62	20.71	19.60	17.51
VPS	23.34	21.80	21.83	22.87	22.60	23.75	26.35	30.98	30.03	26.51	27.61	25.08
CLD	63.06	46.55	57.10	72.85	65.90	86.58	74.32	77.71	64.77	60.63	48.14	66.57
23 N SPD	5.68	6.17	5.17	6.65	6.37	6.46	5.25	5.43	6.29	5.66	5.03	4.83 1
118 W AIR	18.29	17.78	17.82	18.42	17.78	19.47	20.98	23.50	23.22	22.36	20.41	18.98
SEA	19.55	18.87	18.91	19.18	19.24	20.32	21.97	23.89	23.99	23.66	21.40	20.46
VPA	15.62	15.78	14.45	15.62	15.60	17.79	20.76	22.87	23.09	19.87	17.99	17.12
VPS	22.84	21.90	21.99	22.33	22.44	23.93	26.54	29.73	29.93	29.36	25.50	24.16
CLD	53.36	58.00	67.61	74.58	75.00	86.50	72.39	79.86	66.34	63.58	53.80	68.75
23 N SPD 119 W AIR SEA VPA VPS GLD	6.01 17.88 19.66 14.99 22.99 57.89	6.08 17.35 18.65 15.49 21.54 64.22	5.35 17.23 18.67 15.20 21.67 61.25	6.50 17.73 19.24 15.17 22.37 75.00	5.86 18.15 19.42 15.95 22.62 75.80	5.71 19.54 20.76 17.71 24.62 80.41	5.05 21.05 22.05 21.66 26.65	5.31 23.13 23.33 23.18 28.72 71.66	6.66 223.31 20.80 28.70 85.41	5.12 21.29 22.33 19.49 27.12 45.45	6.43 21.31 22.09 18.87 26.63 61.60	6.69 19.76 21.16 17.68 25.24 55.35
23 N SPD 120 W AIR SEA VPA VPS CLD	6.63 18.18 19.55 15.50 22.80 62.50	5.33 17.18 18.27 14.50 21.08 66.44	4.94 18.39 19.23 14.89 22.36 69.23	7.07 18.33 19.34 15.18 22.49 72.65	4.87 18.93 20.23 16.53 23.89 76.66	4.79 19.86 20.83 18.18 24.65 78.84	6.43 22.04 22.39 26.98 82.29	4.63 23.50 23.93 24.85 29.77 74.26	6.97 22.20 23.57 21.15 29.14 76.75	5.35 52.85 22.95 27.96 53.84	5.43 20.26 22.07 17.63 26.70 73.36	5.83 19.58 21.55 16.44 25.49

LAT/LON	NAL	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
25 N SPO 113 H AIR SEA VPA VPS CLO	4.75 18.86 19.99 16.16 23.49 43.75	5.49 18.32 19.03 15.83 22.12 39.20	6.19 17.62 18.07 15.60 20.83 41.48	6.51 17.61 17.66 16.23 20.30	6.61 17.68 17.52 16.65 20.10 48.26	6.02 18.68 18.25 18.08 21.06 50.12	4.96 21.73 21.32 22.34 25.56 42.87	5.03 23.97 24.19 25.11 30.46 41.90	5.44 24.84 25.26 26.02 32.43 32.41	5.19 23.62 24.77 23.36 31.47 31.72	4.95 21.74 23.03 19.72 28.31 38.19	4.91 20.10 21.69 17.34 26.10 42.32
25 N SPO 114 W AIR SEA VPA VPS CLO	5.06 18.51 19.57 16.55 22.91 44.83	5.73 17.72 18.47 15.06 21.35	7.28 17.07 17.87 15.13 20.57 42.58	6.61 17.36 17.62 15.75 20.23 50.78	7.21 17.90 17.62 16.63 20.22 53.90	6.80 18.61 18.32 17.75 21.12 63.17	5.35 21.07 21.09 21.33 25.17 52.83	5.31 23.22 23.12 24.15 28.44 50.69	5.71 23.76 24.09 24.72 30.20 39.47	5.62 22.56 23.71 21.78 29.48 36.10	5.63 21.55 22.52 19.81 27.46 38.51	5.39 19.42 20.85 16.60 24.80 41.11
25 N SPD 115 W AIR SEA VPA VPS CLD	6.69 17.83 18.95 16.42 21.99 48.75	5.27 18.25 18.26 15.50 21.06 49.50	6.15 17.17 17.77 15.01 20.46 51.72	6.38 17.60 18.16 15.93 20.91 66.07	6.47 17.86 18.04 16.59 20.74 59.09	6.49 18.09 18.36 17.26 21.19 71.35	5.35 20.88 20.84 20.77 24.78 63.97	5.00 23.16 23.17 23.69 28.54 59.31	6.14 23.12 22.91 23.47 28.08 49.09	5.40 21.88 22.61 20.23 27.58 56.12	4.79 20.63 21.87 19.29 26.40 42.50	5.42 19.36 20.35 17.32 24.09
25 N SPD 116 W AIR SEA VPA VPS CLD	5.70 17.41 18.30 14.92 20.69 50.00	5.35 17.13 18.29 14.95 21.06 38.12	6.49 17.82 18.08 14.76 20.83 48.80	5.25 17.44 17.46 15.18 20.03 66.44	6.85 17.42 18.04 15.83 20.79 66.40	5.98 18.47 18.38 17.30 21.19 79.31	4.71 20.81 20.85 20.56 24.71 63.17	4.93 23.11 23.22 23.11 28.61 67.56	5.71 23.06 23.52 23.13 29.11 56.64	5.61 21.28 22.22 19.68 26.89 58.12	4.91 20.14 20.97 18.43 24.88 41.34	6.52 18.56 20.00 17.09 23.45 47.22
25 N SPD 117 W AIR SEA VPA VPS GLD	5.19 16.84 17.90 15.02 20.57 42.26	6.02 17.34 17.93 14.75 20.61 64.67	6.28 17.27 18.00 16.04 20.75 55.00	6.05 16.88 17.87 14.67 20.53 58.45	6.59 18.02 18.32 16.06 21.11 76.27	6.04 18.78 18.77 17.49 21.78 81.94	5.53 21.00 20.88 20.13 24.76 69.79	4.77 22.35 23.02 22.35 28.21 70.75	5.49 22.34 22.63 22.28 27.56 54.86	5.92 21.29 22.00 19.45 26.52 53.71	5.00 20.27 21.10 18.41 25.08 55.46	5.58 18.40 19.48 16.61 22.74 43.75
25 N SPD 118 W AIR SEA VPA VPS CLD	5.44 17.12 18.09 14.89 2J.84 54.16	5.29 17.58 18.02 15.29 20.71 52.60	6.74 17.29 17.73 14.99 20.35 54.62	7.29 17.19 17.75 15.04 20.38 64.93	6.93 18.10 18.40 15.62 21.21 72.36	5.50 18.84 19.34 17.58 22.50 82.90	4.72 20.50 20.79 19.43 24.66 71.87	5.39 22.28 22.88 21.98 28.00 74.07	5.38 21.77 22.36 20.85 27.11 69.47	5.14 21.10 22.20 19.16 26.87 55.46	5.95 19.70 21.03 18.06 25.00 62.50	5.45 17.96 19.38 15.31 22.58 42.85
25 N SPD 119 W AIR SEA VPS VPS CLD	6.14 17.02 18.53 14.94 21.41 53.33	5.43 17.09 17.55 14.72 20.13 72.22	5.56 16.65 17.55 14.52 20.10 70.06	7.43 17.20 17.94 14.46 20.60 65.38	6.46 17.57 18.49 15.35 21.33 68.51	5.70 18.80 19.10 16.33 22.16 83.60	5.17 19.57 20.60 18.85 24.65	5.06 21.76 22.42 21.53 27.23 79.16	6.18 21.26 22.34 20.35 27.07 70.28	5.47 21.23 22.21 19.50 26.82 50.23	5.71 19.42 21.16 17.42 25.19 53.12	5.39 17.78 19.28 15.59 22.39 67.70
25 N SPO 120 W AIR SEA VPA VPS CLO	6.03 16.85 18.71 14.90 21.62 65.47	5.77 17.10 18.10 14.76 20.82 61.29	5.09 17.19 17.61 14.56 20.19 67.81	6.14 17.26 18.43 14.41 21.26 81.11	6.42 18.01 18.86 15.55 21.82 81.83	5.58 18.88 19.15 16.62 22.23 83.12	4.84 19.80 20.76 19.07 24.56 84.23	4.43 21.94 22.57 21.06 27.50 67.61	5.25 21.39 21.84 19.78 26.28 73.57	5.50 20.78 22.07 19.10 26.64 57.81	5.62 19.78 20.99 17.60 24.92 67.85	5.94 \ 17.99 19.61 14.68 22.93 69.39
25 N SPD 121 W AIR SEA VPS CLD	5.90 17.15 18.60 14.13 21.48 70.50	5.49 16.50 17.70 14.53 20.34 75.00	5.88 16.72 18.29 13.81 21.13 69.16	6.14 17.13 18.13 14.96 20.85 79.16	5.98 17.60 18.99 15.16 22.03 75.00	5.82 19.01 19.51 17.31 22.82	5.21 19.41 20.37 18.17 24.04 83.92	6.34 21.14 21.52 20.23 25.80 81.61	6.19 21.33 22.20 20.69 26.86 77.85	5.86 21.33 22.22 19.19 26.88 59.21	6.03 19.53 21.09 16.39 25.08 69.71	5.66 18.50 19.67 15.88 22.98 69.31
25 N SPO 122 W AIR SEA VPA VPS CLO	4.61 17.88 18.79 15.19 21.75 62.98	6.29 17.50 18.24 15.74 21.62 69.75	5.81 17.18 18.31 14.11 21.10 70.56	5.96 17.73 18.52 15.08 21.40 74.14	5.43 18.16 18.85 15.14 21.85 78.04	5.38 18.64 19.48 17.12 22.82 81.77	5.82 19.90 20.33 18.91 23.90 88.28	5.20 20.96 22.06 20.60 26.61 83.92	7.05 21.19 22.35 19.86 27.11 63.88	5.24 20.79 21.59 17.93 25.84 72.22	6.13 19.64 21.46 16.73 25.62 75.92	6.02 17.82 19.54 15:64 22.77

	LAT/LO	N	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEG
	26 N 113 W	SPD AIR SEA VPA VPS CLD	5.41 18.32 19.59 15.92 22.52	5.30 17.81 18.43 15.35 21.31	6.21 17.21 17.62 15.39 20.24 38.19	6.73 16.98 17.06 15.72 19.53 41.88	6.65 17.16 17.14 16.13 19.64 39.34	6.38 18.05 17.60 17.57 20.22 41.62	4.80 21.07 20.70 21.79 24.62 38.17	5.29 23.00 23.20 23.97 28.66 36.33	5.59 23.63 24.47 24.63 30.94 32.87	5.74 22.78 22.15 22.09 30.35 30.42	5.22 21.36 22.62 19.13 27.61	5.21 19.48 21.15 16.64 25.27 37.62
• .	26 N 114 H	SPD AIR SEA VPA VPS CLD	5.26 17.76 18.87 15.22 21.91 41.31	5.78 17.40 18.12 14.92 20.89 39.76	6.56 16.85 17.30 14.91 19.84 40.47	6.76 16.89 16.97 15.34 19.41 42.13	6.95 17.22 17.12 16.07 19.61 44.33	6.63 17.96 17.70 17.30 20.36 43.55	5.48 20.45 20.22 20.80 23.86 40.75	5.42 22.38 22.43 23.20 27.39 34.54	5.74 23.20 23.61 24.09 29.37 32.32	5.67 22.22 23.18 21.46 28.61 29.66	5.38 20.59 21.69 18.54 26.10 37.23	5.44 18.95 20.36 16.16 24.07 39.48
	26 N 115 W	SPD AIR SEA VPA VPS CLD	5.72 17.77 18.09 15.71 20.87 48.23	6.10 17.15 17.56 14.79 20.16 37.00	6.87 16.87 16.85 14.83 19.25 47.27	6.70 16.65 17.15 15.84 19.63	7.78 17.39 17.53 16.08 20.11 54.38	7.12 18.17 17.99 16.72 20.68 59.31	5.61 20.10 20.16 20.30 23.75 50.68	5.25 22.54 22.23 22.90 26.96 53.21	6.32 22.46 22.85 23.42 27.99 48.23	5.70 21.71 22.49 20.63 27.42 39.18	5.22 20.32 21.11 18.75 25.16 43.53	5.40 15.22 19.52 15.90 22.64
	26 N 116 W	SPD AIR SEA VPA VPS CLD	5.89 17.12 17.90 15.62 20.57 52.60	6.98 16.67 17.58 14.40 20.19 43.75	7.33 16.67 17.30 13.90 19.80 55.20	8.07 17.01 17.24 14.98 19.72 56.08	6.90 17.43 17.66 15.82 20.26 70.83	6.39 18.40 18.05 16.96 20.79 75.43	5.14 20.47 20.23 20.13 23.83 64.35	4.63 21.97 22.39 22.13 27.15 66.56	6.36 21.89 22.33 21.96 27.19 51.78	5.21 21.15 21.80 20.09 26.23 44.03	5.82 20.17 20.60 18.60 24.69 30.68	5.86 18.27 19.07 17.81 22.18 51.25
	26 N 117 H	SPO AIR SEA VPA VPS CLO	4.76 16.31 17.94 14.22 20.67 51.04	6.54 16.82 17.42 14.42 19.25	8.65 17.07 17.11 15.27 19.58 25.00	6.37 16.59 17.50 14.96 20.06 66.93	5.03 17.43 17.98 15.43 20.68 76.78	5.38 18.23 18.37 16.81 21.20 75.00	5.05 19.95 19.93 18.94 23.38 73.05	5.21 22.40 22.24 22.46 26.96 67.81	5.55 21.04 21.76 20.66 26.12 56.25	4.79 20.94 21.18 18.56 25.21 58.46	5.39 19.10 20.13 16.76 23.64 56.00	5.86 17.54 18.81 15.44 21.78 52.50
	26 N 118 W	SPD AIR SEA VPA VPS CLD	5.27 16.42 17.40 15.06 19.92 62.00	6.32 16.61 17.33 13.94 19.82 38.69	6.28 16.01 16.90 13.45 19.33 61.60	5.79 17.04 17.30 15.28 19.83 69.56	5.99 17.24 17.81 14.28 20.43 77.82	6.22 18.20 18.25 16.19 21.01 88.70	4.90 19.87 19.79 18.62 23.17 89.45	5.31 21.92 21.79 21.44 26.20 73.02	6.18 21.11 21.75 20.61 26.12 64.50	5.72 20.40 21.28 18.67 25.35 56.04	4.94 18.93 19.72 17.67 23.06 43.75	5.66 17.43 18.01 15.69 20.78 55.76
	26 N 119 W	SPO AIR SEA VPA VPS CLO	5.78 16.26 17.50 14.29 20.06 50.00	6.12 16.28 17.51 14.26 20.06 60.71	5.52 17.19 17.27 14.41 19.75 63.81	6.98 15.98 17.06 14.14 19.50 52.91	6.54 17.73 17.71 15.80 20.32 80.99	5.73 18.55 18.58 16.46 21.49 86.11	5.40 19.48 19.98 18.77 23.44 81.90	4.97 20.80 21.45 20.27 25.63 64.64	5.54 21.52 21.68 19.81 26.92 73.86	5.29 19.94 21.47 18.02 25.71 52.00	5.56 18.98 20.13 16.41 23.61 67.96	5.54 18.15 19.01 16.15 22.05 53.67
	26 N 120 W	SPD AIR SEA VPA VPS CLD	5.29 17.05 17.64 15.49 20.22 58.92	6.33 17.01 17.53 13.55 20.04 71.87	6.57 16.67 17.64 14.85 20.20 60.18	7.17 16.83 17.16 14.50 19.63 67.27	6.49 17.27 18.09 15.31 20.81 68.99	5.03 18.41 19.04 16.43 22.11 77.55	5.66 19.20 19.83 18.19 23.20 87.23	5.18 21.00 21.72 20.33 26.07	5.96 20.94 21.77 20.01 26.15 70.83	5.31 20.36 21.51 18.28 25.75 64.72	5.11 19.56 20.59 17.62 24.38 70.31	5.62 17.95 18.93 15.49 21.96 62.91
	26 N 121 W	SPD AIR SEA VPA VPS CLO	5.67 17.50 18.44 14.83 21.26 61.36	4.28 16.77 17.71 14.57 20.30 62.50	5.55 16.17 17.46 14.24 20.00 78.44	6.36 16.70 17.61 14.27 20.18 65.48	6.41 17.64 18.45 15.06 21.35 74.72	5.70 18.16 18.80 16.28 21.75 83.68	5.88 19.24 20.29 18.56 23.86 74.35	5.72 20.80 21.24 20.02 25.39 78.38	6.42 20.83 21.41 19.13 25.56 71.13	5.53 20.41 21.09 18.45 25.05 57.77	5.97 18.69 20.52 16.95 24.19 69.64	6.70 17.54 18.92 14.80 22.03 67.96
	26 N 122 W	SPD AIR SEA VPA VPS CLO	5.42 16.81 18.73 14.65 21.68 72.39	5.56 16.60 18.26 14.15 21.03 68.75	6.21 16.50 17.99 13.87 20.66 71.25	6.25 16.54 17.96 13.92 20.62 65.35	6.58 17.54 18.31 14.99 21.10 79.72	5.13 18.33 18.75 16.51 21.70 81.64	5.42 19.38 20.25 17.75 23.63 86.00	5.65 20.71 21.02 20.75 24.98 82.44	6.28 20.76 21.77 18.85 26.17 77.81	5.26 20.68 21.19 18.38 25.23 69.47	4.88 19.19 20.87 17.11 24.77 65.27	5.93 18.45 15.46 22.66 75.00

LAT/LO	N	NAL	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP	oct	ном	DEC
27 N 114 W	SPD AIR SEA VPA VPS CLD	5.45 17.32 18.55 14.57 21.48 39.54	5.78 16.83 17.56 14.48 20.16 39.25	6.15 16.29 16.70 14.25 19.09 37.56	6.43 16.45 16.53 15.24 18.89 39.52	6.96 16.74 16.65 15.67 19.03	6.46 17.34 17.01 16.87 19.50 37.21	5.53 19.97 19.44 20.14 22.74 38.05	5.33 21.90 21.63 22.35 26.10 31.19	5.67 22.69 23.26 23.21 28.77 31.33	5.53 21.65 22.79 20.61 27.96 31.31	5.13 20.17 21.36 18.04 25.59 33.47	5.29 18.79 20.02 15.79 23.60 39.14
27 N 115 W	SPO AIR SEA VPA VPS CLD	5.48 17.03 17.86 14.67 20.57	6.16 16.60 17.08 14.41 19.57 39.41	6.68 16.19 16.31 14.33 18.62 42.63	6.87 16.30 16.33 14.86 18.63 42.41	6.96 16.79 16.61 15.50 18.99 46.66	6.91 17.35 17.15 16.58 19.66 49.95	5.89 19.59 19.59 22.52 44.75	5.73 21.34 21.20 21.55 25.36 37.62	6.03 21.95 22.21 22.11 26.97 35.70	6.02 21.02 21.78 19.98 26.28 34.07	5.63 19.73 20.45 17.75 24.21 36.07	5.91 18.03 19.19 15.21 22.26 39.03
27 N 116 W	SPD AIR SEA VPA VPS CLD	6.21 16.72 17.30 14.92 19.80 51.29	7.04 16.37 16.80 14.05 19.19 35.03	6.24 16.40 16.48 14.35 18.79 55.32	6.12 16.50 16.61 14.74 18.97 64.83	7.22 16.76 17.02 14.92 19.49 72.94	7.10 18.12 18.08 16.99 20.83 76.96	5.70 19.59 19.74 19.31 23.16 76.08	5.08 21.44 21.38 21.69 25.58 57.52	6.05 21.93 21.90 22.07 26.41 54.55	5.90 20.54 21.13 19.93 25.24 49.78	5.41 20.06 20.15 18.27 23.72 42.36	6.42 17.54 19.01 15.86 22.08 44.23
27 N 117 H	SPD AIR SEA VPA VPS CLD	6.32 16.37 16.82 15.30 19.18 63.54	5.54 16.24 16.97 14.01 19.41 53.33	6.72 16.39 16.31 13.89 18.60 60.41	6.84 16.57 16.77 14.52 19.14 67.81	6.90 17.12 17.76 15.72 20.37 75.56	6.08 17.66 18.16 16.71 20.92 79.08	5.39 19.86 19.81 19.41 23.22 71.18	4.96 21.52 21.50 21.35 25.74 74.31	5.68 20.92 21.59 20.39 25.87 62.69	6.15 20.10 20.71 18.85 24.51 67.15	5.60 19.04 19.97 17.24 23.40 44.07	6.04 17.54 18.07 15.83 20.87 43.42
27 N 118 H	SPO AIR SEA VPA VPS CLD	5.39 16.52 17.10 14.92 19.56 64.88	6.79 16.40 17.16 13.90 19.61 59.16	7.61 16.49 16.86 14.82 19.25 55.83	6.58 16.14 17.15 14.76 19.61 69.16	5.13 17.03 17.45 15.21 19.97 79.43	5.62 17.88 17.54 16.00 20.10	5.23 19.58 19.50 18.58 22.75 78.07	5.62 21.02 21.05 20.24 25.02 76.70	6.65 20.94 21.24 20.27 25.32 59.30	4.36 19.98 21.01 18.11 24.93 57.00	5.62 18.92 19.59 17.46 22.86 55.09	6.53 18.67 16.54 21.63 64.84
27 N 119 H	SPO AIR SEA VPA VPS CLD	5.28 16.19 17.41 15.33 19.93 45.10	5.86 16.68 17.15 14.86 19.57 43.75	5.97 16.85 17.13 14.69 19.55 65.00	7.14 16.71 17.33 14.40 19.83 60.93	5.50 17.05 17.83 14.82 20.53 79.31	5.34 18.15 18.13 16.82 20.82 76.29	4.89 19.12 19.03 17.82 22.07 82.81	4.54 20.33 20.21 18.74 23.74 76.25	5.58 21.12 20.82 19.15 24.67 64.33	5.02 19.96 20.84 18.29 24.68 63.63	4.79 19.04 19.61 17.01 22.91 60.79	5.79 16.88 18.14 14.41 20.93 67.70
27 N 120 H	SPO AIR SEA VPA VPS CLD	6.10 16.67 17.92 14.67 20.60 42.85	6.17 16.38 17.72 15.04 20.32 67.04	5.85 15.81 17.30 13.13 19.80 76.97	7.00 16.31 16.87 13.75 19.28 59.02	6.36 17.15 17.53 14.59 20.09 84.82	4.99 17.85 17.44 15.56 19.99 91.14	5.34 16.51 19.13 17.78 22.20 83.17	4.60 21.04 20.71 20.06 24.52 72.72	5.30 20.43 21.11 18.88 25.22 65.23	5.41 19.78 21.17 17.29 25.25 66.84	5.83 18.98 19.63 17.09 22.88 62.50	4.54 17.31 18.66 14.82 21.56 64.58
27 N 121 W	SPD AIR SEA VPA VPS CLO	5.86 16.32 17.32 14.70 19.85 53.12	4.54 16.74 17.35 14.62 19.82 56.61	6.63 17.21 17.40 14.43 19.90 54.41	7.17 16.17 16.98 14.46 19.42 62.86	6.02 17.90 17.49 15.38 20.03 72.36	4.66 17.91 18.58 15.72 21.53 88.97	5.10 18.77 19.36 17.93 22.52 84.25	5.44 19.99 20.55 19.35 24.22 66.37	5.10 20.61 21.07 19.03 25.04 72.82	5.01 19.94 21.10 17.61 25.09 62.50	5.28 16.93 19.60 16.27 22.84 52.71	6.43 16.29 14.59 21.10 50.00
27 N 122 W	SPD AIR SEA VPA VPS CLD	5.08 16.00 18.04 14.03 20.75 58.85	6.32 16.01 17.87 13.57 20.51 75.00	6.08 16.63 16.97 14.67 19.38 66.66	6.71 16.55 17.09 14.05 19.53 66.34	6.05 17.56 18.15 14.98 20.91 71.73	6.64 17.33 18.46 15.62 21.30	6.40 19.16 19.67 17.85 23.02	6.31 20.20 20.34 19.60 24.00 67.37	5.75 20.90 19.12 24.76 73.43	4.92 19.63 16.45 24.28	6.21 19.28 19.90 17.57 23.29 67.12	5.56 17.63 18.91 21.84 66.87
27 N 123 H	SPD AIR SEA VPA VPS CLD	5.46 16.25 17.72 14.41 20.37 74.30	5.93 16.59 17.44 15.32 19.98 62.50	6.15 16.49 17.48 14.35 20.01 71.34	6.77 16.25 17.58 14.17 20.14 65.48	6.15 17.03 17.54 14.94 20.10 80.70	6.25 18.11 18.94 16.43 21.97	5.99 18.66 19.61 17.25 22.88 82.03	5.63 19.91 20.28 13.77 23.83 77.45	5.35 20.46 20.66 18.83 24.74 75.00	5.09 20.98 18.89 24.89	6.27 18.42 19.93 17.01 23.34	6.45 18.42 15.21 21.35

LAT/LO	N	JAN	FEB	HAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
28 N 115 W	SPO AIR SEA VPA VPS CLD	5.83 16.79 17.45 14.17 20.03	6.34 16.18 16.46 13.92 18.81 41.96	6.82 16.08 16.00 13.90 18.26 49.02	6.68 16.22 15.94 14.63 18.19 53.16	6.74 16.96 16.27 15.24 18.59 59.03	6.47 17.38 16.87 16.23 19.31 64.91	5.67 19.14 18.72 18.92 21.72 55.64	5.31 20.81 20.40 20.65 24.16 45.21	5.86 21.40 21.59 21.28 25.98 44.56	5.83 20.36 21.16 19.17 25.31 42.83	5.77 18.93 19.82 17.08 23.29 38.47	5.84 17.74 18.84 15.24 21.98 43.69
28 N 116 W	SPD AIR SEA VPA VPS CLD	5.72 16.22 16.92 14.41 19.37	6.16 15.84 16.32 13.96 18.63	6.48 15.96 15.92 14.16 18.16 52.86	6.65 16.33 16.15 14.67 18.42 59.19	6.64 16.87 16.63 15.29 18.99 69.63	6.20 17.48 17.18 16.44 19.65 81.76	5.70 19.32 18.95 18.92 22.01 74.33	5.36 20.84 20.70 20.58 24.55 64.71	5.55 21.16 21.20 20.97 25.31 56.35	5.61 20.13 20.74 18.97 24.62 48.56	5.70 18.65 19.29 16.83 22.49 44.34	6.10 17.08 17.99 14.66 20.75 45.96
28 N 117 W	SPD AIR SEA VPA VPS CLO	5.50 16.52 16.76 14.95 19.12 48.52	5.39 15.95 16.64 14.09 18.99 54.32	6.15 15.94 16.01 13.93 18.23 64.75	6.52 16.61 16.53 14.98 18.86 59.61	6.47 17.52 17.07 15.23 19.52 71.13	5.56 17.44 17.34 16.14 19.87 88.58	5.25 19.53 19.42 19.39 22.64 78.43	5.31 21.08 21.11 21.27 25.14 69.79	5.08 21.39 21.16 20.98 25.19 66.74	5.57 19.78 20.11 18.48 23.60 48.69	4.47 18.90 18.84 17.62 21.87 48.02	7.27 17.98 17.70 15.35 20.26
28 N 118 W	SPD AIR SEA VPA VPS CLD	4.92 16.01 16.28 13.81 18.54 62.00	5.73 16.12 16.52 14.34 18.83 60.62	5.21 15.42 16.64 13.22 18.98 45.00	7.69 16.03 16.70 14.31 19.04 64.77	6.43 16.75 17.22 14.55 19.77 75.41	6.30 17.62 17.96 16.55 20.63	4.79 19.46 19.10 18.69 22.23 75.00	5.26 20.05 20.80 19.91 24.69 62.25	5.82 20.25 20.66 18.87 24.48 69.59	5.14 19.37 20.20 17.61 23.72 63.97	5.86 19.24 19.65 17.14 22.93 63.88	6.38 16.94 17.68 15.68 20.29 57.81
28 N 119 W	SPD AIR SEA VPA VPS GLD	4.86 16.37 16.64 14.26 18.97 57.95	5.66 16.51 16.54 14.24 18.84 57.40	5.68 16.09 16.30 13.93 18.56 70.67	6.73 16.09 16.76 14.51 19.11 67.43	6.08 16.73 17.17 14.97 3.63 82.55	6.14 17.37 17.85 15.70 20.54 85.71	5.57 19.07 19.34 18.42 22.62 81.14	5.72 19.94 20.17 18.98 23.71 75.50	6.88 19.68 20.82 19.13 24.71 70.25	4.91 19.13 19.70 16.85 23.00 55.74	5.78 18.74 19.33 16.82 22.50 52.50	6.69 16.95 17.72 15.26 20.39 50.96
28 N 120 W	SPO AIR SEA VPA VPS CLO	5.70 15.68 17.74 12.56 20.59 68.75	7.63 15.54 16.89 13.82 19.27 61.45	5.72 16.12 17.09 13.52 19.52 65.72	6.37 16.03 17.15 13.56 19.63 73.12	6.43 16.58 16.92 14.88 19.32 75.00	5.97 17.38 17.69 15.95 20.29 86.69	5.88 18.75 18.86 17.58 21.87	5.60 19.04 19.62 17.75 22.88 82.95	5.12 19.88 20.50 17.93 24.17 70.83	5.31 20.13 20.26 18.08 23.83 45.23	5.37 18.00 18.92 16.08 21.92 60.86	6.85 16.98 17.60 14.15 20.23 51.56
28 N 121 W	SPO AIR SEA VPA VPS CLO	6.46 16.44 17.23 15.06 19.70 42.50	5.98 16.38 16.83 15.51 19.24 62.50	6.83 16.91 16.94 14.36 19.39	6.69 16.22 17.07 14.34 19.49 53.30	5.31 17.15 17.68 14.16 20.46 69.90	6.58 17.58 17.81 15.49 20.43	5.76 18.75 19.42 17.80 22.60 79.16	5.63 19.36 19.67 18.18 22.97 87.85	5.68 19.97 20.40 18.33 24.04 69.19	4.79 19.41 20.35 17.61 23.97 68.53	5.04 18.26 19.57 15.83 22.82 57.29	5.92 17.29 18.08 15.07 20.86 52.34
28 N 122 W	SPD AIR SEA VPA VPS GLO	5.40 15.52 17.12 13.71 19.57	5.23 16.32 17.55 14.97 20.10 57.63	6.45 15.44 16.69 12.89 19.07 58.92	7.15 15.72 16.63 14.01 18.95 55.26	7.20 16.94 17.23 14.96 19.71 80.85	6.43 17.24 17.98 15.45 20.65 85.54	5.54 19.52 19.23 17.01 22.33 92.14	5.53 19.87 20.13 18.78 23.75 75.33	5.27 19.46 20.20 17.96 23.74 69.62	6.06 19.26 19.70 17.38 23.07	4.27 18.08 18.96 16.93 21.96 53.90	6.03 17.24 18.09 14.47 20.80 56.81
28 N 123 W	SPO AIR SEA VPA VPS CLD	6.44 15.70 17.26 13.42 19.78 58.79	5.79 15.92 17.34 14.31 19.83 65.10	6.55 15.82 17.02 12.93 19.42 70.67	6.70 16.51 16.64 14.35 19.00 77.56	6.71 17.24 17.32 14.71 19.81 75.00	6.34 17.62 18.44 15.95 21.26	6.04 19.03 19.42 16.03 22.77 83.45	6.53 19.65 19.95 18.55 23.35 74.03	5.66 20.10 20.63 18.92 24.59 66.37	5.27 19.18 20.64 17.72 24.40 65.31	5.94 18.24 19.36 16.04 22.53 68.24	6.21 16.60 18.33 14.45 21.11 65.62
28 N 124 H	SPO AIR SEA VPA VPS CLO	5.91 15.40 17.25 14.33 19.75 62.47	5.58 16.22 17.59 14.64 20.13 73.12	7.34 16.39 17.34 13.37 19.85 69.23	6.47 16.35 17.27 14.58 19.81 70.56	6.32 17.28 17.45 14.26 19.98 78.94	6.24 17.69 17.98 16.45 20.73 77.70	6.55 18.59 19.04 17.08 22.07 86.39	6.34 20.14 20.14 18.99 23.70 75.80	5.51 19.87 20.44 17.67 24.11 72.05	5.41 19.40 20.60 18.27 54.4	6.22 18.41 19.60 16.73 22.85 66.28	5.84 17.13 18.62 14.71 21.51 63.79

LAT/LO	N	JAN	FEB	MAR	APR	HAY	NUL	JUL	AUG	SEP	OCT	ио₩	DEC
29 N 115 W	SPD AIR SEA VPA VPS CLD	6.25 15.88 16.54 13.95 18.88 40.88	6.10 16.08 16.28 14.31 18.60 43.65	7.35 15.37 15.42 13.41 17.56 48.23	7.17 15.87 15.84 14.39 18.10 59.95	8.05 16.13 15.70 14.97 17.94 52.03	6.23 16.50 16.37 16.03 18.71 79.07	6.39 18.65 18.30 18.85 21.15 62.21	5.98 20.10 20.11 19.74 23.81 53.19	6.58 20.13 20.47 19.74 24.25 59.29	6.19 19.18 19.65 18.20 23.04 41.66	5.58 17.78 19.02 16.26 22.15 43.75	5.73 17.33 18.05 14.69 20.83 37.75
29 N 116 W	SPD AIR SEA VPA VPS CLD	5.63 15.81 16.44 13.87 18.78 43.79	6.00 15.78 16.10 13.79 18.37 44.00	6.85 15.75 15.66 13.66 17.86 56.37	6.78 16.16 16.02 14.43 18.27 59.20	7.02 16.57 16.39 14.91 18.71 71.84	6.31 17.22 17.03 16.14 19.48 80.74	5.83 18.78 18.78 18.57 21.78 75.01	5.59 20.31 20.34 20.03 24.02 66.44	6.23 20.63 20.71 20.28 24.57 57.49	5.92 19.55 20.06 18.49 23.59 53.50	5.80 18.36 18.86 16.66 21.89	5.90 16.82 17.66 14.76 20.31 44.88
29 N 117 W	SPD AIR SEA VPA VPS CLD	5.36 15.84 16.32 14.14 18.62	5.97 15.75 16.05 14.04 18.29 53.54	6.77 15.67 15.87 13.96 18.09 55.40	6.56 16.06 16.02 14.52 18.25 64.21	6.87 16.76 16.76 15.00 19.16 71.59	6.57 17.36 17.40 16.19 19.92 65.03	5.92 18.65 18.76 18.16 21.72 78.85	5.37 20.52 20.36 19.97 24.00 70.54	5.83 20.61 20.84 20.92 24.76 58.41	5.82 19.88 20.24 18.81 23.83 48.88	5.60 18.33 18.63 16.50 21.81 47.67	5.79 16.62 17.24 14.45 19.77 50.64
29 N 118 W	SPD AIR SEA VPA VPS CLO	4.81 16.76 16.16 14.24 18.39 47.05	5.51 16.24 16.15 14.55 18.38 48.25	5.80 16.12 16.05 13.90 18.30 59.32	6.61 15.92 16.04 14.63 18.25 58.89	6.08 16.58 17.16 14.49 19.60 55.63	6.23 17.73 17.58 16.54 20.13 77.90	5.71 18.52 18.73 18.19 21.65 66.07	4.98 20.16 20.57 20.21 24.34 55.27	4.73 20.00 20.56 19.03 24.29 59.37	5.89 19.02 19.53 18.17 22.76 46.96	4.94 18.70 19.28 16.66 22.40 43.85	5.87 16.63 17.57 14.95 20.16 39.91
29 N 119 W	SPD AIR SEA VPA VPS CLO	4.97 15.70 17.00 14.70 19.47 55.83	4.78 16.26 16.29 14.01 18.55 67.64	6.87 16.01 15.98 14.02 18.28 73.07	6.08 15.77 16.23 13.80 18.47 81.48	6.48 16.66 16.91 14.91 19.29 72.42	6.40 17.40 17.24 16.17 19.72 68.96	4.51 18.51 18.46 17.80 21.35 87.13	5.92 20.08 19.96 19.67 23.40 72.91	6.81 19.35 20.46 18.61 24.12 61.39	5.86 19.20 19.74 18.47 23.06 39.94	5.12 17.27 18.61 14.63 21.48 61.93	6.92 16.67 16.06 13.52 20.80 66.87
29 N 120 W	SPD AIR SEA VPA VPS CLD	3.98 16.16 16.42 13.35 18.70 57.23	5.47 15.83 16.40 14.58 18.77 65.00	5.87 15.47 15.44 13.35 17.61 59.55	7.27 16.03 16.39 13.88 18.79 64.66	6.30 16.52 17.11 14.71 19.57 74.71	6.44 17.64 17.47 16.05 20.03 70.83	6.05 18.12 18.27 17.04 21.04 85.97	5.63 18.91 19.37 17.54 22.54 85.49	5.89 19.11 19.56 17.84 22.83 72.81	5.82 18.78 19.08 17.17 22.21 61.29	5.17 18.64 18.48 16.40 21.33	5.44 16.33 18.20 13.99 20.93 66.37
29 N 121 H	SPO AIR SEA VPA VPS CLO	5.61 15.72 16.79 13.48 19.19 69.03	6.06 15.95 15.90 14.16 18.11 63.04	5.66 16.69 16.60 15.03 18.97 54.83	7.41 15.47 16.52 13.94 18.85 67.43	6.36 16.49 16.46 14.24 18.79 68.88	6.00 17.28 17.38 15.25 19.90 78.57	6.04 18.31 18.33 17.23 21.15 82.84	6.28 19.08 19.31 17.85 22.44 79.48	5.66 19.33 19.77 17.99 23.11 76.38	5.46 19.02 19.71 17.32 23.02 62.50	4.87 18.16 18.83 15.98 21.81 54.04	5.12 16.68 17.27 13.92 19.76 59.25
29 N 122 W	SPD AIR SEA VPA VPS CLO	6.27 15.99 16.48 13.84 18.81 55.55	6.82 15.54 15.98 14.46 18.20 64.93	7.78 15.10 16.23 13.42 18.49 61.84	7.13 15.85 16.72 13.96 19.08 60.55	6.63 16.19 16.62 14.48 18.94 76.13	5.85 17.06 17.22 15.56 19.73 74.32	6.84 18.71 19.06 17.85 22.10 82.55	5.98 19.17 19.30 18.02 22.44 79.16	6.12 19.71 19.97 18.59 23.41 63.19	6.36 19.05 20.05 17.73 23.55 61.40	5.76 17.70 18.83 16.10 21.80 56.61	6.40 16.19 17.59 14.72 20.15 62.93
29 N 123 W	SPO AIR SEA VPA VPS GLO	7.22 15.40 16.70 13.14 19.06 66.07	6.00 15.59 16.68 13.52 19.05 71.52	6.19 15.99 16.79 13.36 19.16 70.50	6.38 15.65 16.78 13.78 19.15 72.00	6.79 16.56 16.93 14.23 19.37 75.85	6.88 17.16 17.28 15.54 19.76 69.07	6.93 18.41 18.73 17.41 21.65 85.50	6.48 18.99 19.26 17.56 22.38 78.27	5.87 19.11 19.78 17.69 23.11 75.30	5.51 19.09 19.84 17.27 23.28	5.19 17.82 18.64 15.89 21.60 74.40	5.64 16.23 17.66 14.66 20.24 75.52
29 N 124 W	SPD AIR SEA VPA VPS GLO	6.10 15.55 16.78 14.07 19.19 66.37	5.17 17.02 16.90 15.07 19.31 71.25	6.69 15.80 16.54 13.62 18.86 63.12	6.88 15.36 16.62 13.31 18.95 65.94	6.82 16.25 16.69 14.31 19.03 70.83	6.49 17.30 17.43 15.94 19.40	7.41 18.10 18.39 16.50 21.21 84.37	5.97 19.02 19.48 18.70 87.12	5.64 20.33 20.36 17.63 24.10 72.76	6.69 18.66 19.55 16.76 22.79 76.20	5.51 17.92 18.86 16.22 21.86 59.21	5.57 16.17 17.74 13.64 20.40 67.74

FEB

JAN

LAT/LON

APR

MAR

MAY

JUN

JUL

AUG

SEP

OCT

NOV

DEC

LATZLON	NAL	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	моу	DEC
35 N SPD	6.10	6.55	7.57	7.79	8.00	7.51	6.71	7.11	6.18	6.01	5.66	6.19
121 W AIR	12.75	12.66	12.68	12.65	13.16	14.21	14.60	15.48	16.15	16.25	14.97	13.99
SEA	13.14	12.95	12.77	12.40	12.84	13.63	14.26	15.58	16.10	16.71	15.17	14.23
VPA	11.69	11.56	11.73	12.02	12.66	13.64	14.58	15.37	15.65	15.29	13.94	11.96
VPS	15.16	14.99	14.82	14.49	14.92	15.70	16.38	17.83	18.44	19.18	17.33	16.31
CLD	40.34	46.70	46.36	47.80	54.37	59.37	68.56	66.37	55.54	47.47	41.12	44.27
35 N SPD	7.08	6.75	7.69	8.02	7.92	7.61	8.00	7.78	7.12	6.71	6.50	9.82
122 W AIR	13.01	12.38	12.59	12.93	13.49	14.34	14.99	15.90	16.67	16.03	15.00	13.91
SEA	13.40	13.04	13.12	13.20	13.21	14.03	14.78	15.68	16.28	16.28	15.21	14.09
VPA	12.36	11.46	11.82	12.09	12.88	13.93	14.89	15.72	16.11	15.48	14.32	12.77
VPS	15.43	15.07	15.18	15.23	15.27	16.10	16.89	17.91	18.61	18.61	17.37	16.13
CLD	56.79	48.76	50.06	55.41	61.17	64.81	75.68	63.66	55.43	52.69	51.74	46.46
35 N SPD	7.30	8.12	7.53	8.26	8.53	8.37	8.24	8.16	6.52	6.29	6.64	7.74
123 W AIR	12.99	12.55	12.95	13.19	13.61	14.78	15.55	16.73	16.71	16.35	15.25	13.76
SEA	13.47	13.25	13.20	13.43	13.87	14.24	15.65	16.33	17.00	16.59	15.05	14.28
VPA	12.43	12.19	11.96	11.92	12.83	14.32	15.17	16.41	16.25	15.73	14.31	12.74
VPS	15.48	15.28	15.24	15.45	15.93	16.31	17.86	18.65	19.46	18.97	17.22	16.36
CLD	67.15	60.67	56.25	56.25	67.22	65.64	67.70	69.05	64.01	51.76	54.03	56.54
35 N SPD	7.15	7.41	7.51	7.79	7.17	8.43	7.57	7.17	7.03	6.01	6.93	7.61
124 H AIR	13.01	12.97	12.99	13.41	13.83	15.04	16.20	17.06	17.02	17.14	15.34	13.68
SEA	13.70	13.15	13.59	13.49	13.82	14.80	15.97	17.06	17.34	17.14	16.00	14.75
VPA	12.57	12.32	12.12	12.45	12.85	14.57	15.86	16.75	16.33	16.50	14.56	12.73
VPS	15.74	15.17	15.64	15.52	15.90	16.92	18.22	19.56	19.94	19.62	18.28	16.86
CLD	65.55	65.68	57.32	58.82	61.78	61.21	74.91	67.60	63.42	52.97	55.72	51.76
35 N SPD 125 W AIR SEA VPA VPS CLD	7.04 13.07 13.94 12.70 15.99 67.99	7.65 12.60 13.54 12.21 15.59 65.26	7.48 13.13 13.60 12.14 15.64 58.76	8.38 13.20 13.61 11.91 15.66 60.52	7.74 14.15 14.17 13.20 16.22 71.42	7.83 15.09 14.91 14.32 17.07 72.93	8.44 16.37 16.21 15.79 18.48 75.64	7.94 17.52 17.41 17.19 20.02 65.35	7.53 18.16 17.53 16.81 20.15 56.89	6.46 17.02 17.50 16.14 20.06	6.63 16.97 16.38 15.00 18.72 62.00	8.15 14.48 15.11 13.49 17.23 67.50
35 N SPD 126 W AIR SEA VPA VPS CLD	7.82 13.86 14.20 13.41 16.20 67.80	6.93 13.26 13.67 12.65 15.71 73.61	7.39 12.83 13.85 11.96 15.91 58.37	9.27 13.27 14.02 11.61 16.06 62.95	8.07 14.18 14.35 13.07 16.40 72.25	8.65 15.73 15.38 14.82 17.56 68.15	8.70 16.23 16.24 15.59 18.53 80.90	7.20 17.92 17.94 17.44 20.68 68.56	6.83 17.89 17.99 16.70 20.75 65.52	6.42 17.26 17.87 16.16 20.55 61.74	7.67 15.83 16.43 14.61 18.77 62.77	7.31 14.52 13.26 17.68 64.85
35 N SPD 127 W AIR SEA VPA VPS CLO	7.46 13.85 14.57 13.05 16.67 72.59	7.95 13.32 14.09 12.58 16.15 69.25	7.94 13.32 13.75 12.44 15.80 69.61	8.45 13.38 13.86 12.14 15.90 66.37	8.34 14.38 14.53 13.28 16.60 69.58	8.02 15.69 15.75 15.00 18.01 73.50	7.68 16.82 16.95 15.96 19.39 79.53	7.94 18.21 19.13 17.22 20.92 64.54	6.67 18.45 18.56 17.24 21.61 64.55	7.12 17.55 18.21 16.29 21.02 66.42	7.95 16.07 17.00 14.53 19.45 67.91	8.25 14.58 15.29 17.73 70.11
35 N SPD	7.51	8 • 1 2	7.86	7.87	7.47	7.92	7.94	7.32	7.14	6.69	6.51	7.35
128 W AIR	13.98	13 • 43	13.63	13.55	14.68	16.19	17.20	18.41	18.61	17.81	16.33	14.96
SEA	14.85	14 • 24	14.01	13.87	14.70	16.11	17.14	18.14	18.97	18.03	17.35	16.04
VPA	12.95	12 • 57	12.27	11.99	13.34	15.07	16.07	17.55	17.20	16.76	15.04	13.67
VPS	16.97	16 • 32	16.06	15.90	16.80	18.38	19.62	20.91	22.02	20.75	19.88	18.31
CLD	71.08	72 • 05	69.97	70.35	70.38	76.53	80.09	73.97	67.47	64.54	64.97	67.37
35 N SPD	7.73	7.89	7.77	7.88	7.15	7.60	7.56	6.65	7.25	7.13	6.87	7.23
129 W AIR	14.07	13.58	13.36	13.80		16.30	17.51	18.63	19.06	18.17	16.64	15.20
SEA	15.08	14.58	14.19	14.26		16.52	17.64	18.62	19.42	18.69	17.50	16.32
VPA	13.03	12.55	12.25	12.26		15.04	16.22	17.74	17.72	16.72	15.20	14.05
VPS	17.21	16.68	16.25	16.32		18.89	20.26	21.56	22.66	21.63	20.08	18.62
CLD	71.76	69.87	69.62	71.91		74.39	81.43	72.44	67.45	65.46	63.12	71.02
35 N SPD 130 W AIR SEA VRA VPS CLO	8.00 13.96 15.35 12.90 17.51 73.61	7.74 13.66 14.62 12.53 16.72 70.74	7.83 13.47 14.41 12.35 16.48 71.52	7.36 13.69 14.48 11.99 16.55 70.35	6.91 14.88 15.24 13.51 17.38 72.72	6.98 16.75 15.56 19.16 74.02	7.27 17.68 18.08 16.48 20.81 79.09	6.12 19.37 19.37 16.29 22.57	7.02 19.21 19.65 17.61 22.98 66.56	6.82 18.24 18.96 16.67 21.99 67.00	7.30 16.88 17.86 15.29 20.53 65.13	7.38 15.42 16.60 14.18 18.96 70.08

LAT/LON	4	JAN	FEB	HAR	APR	HAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
36 N 122 W	SPD AIR SEA VPA VPS CLD	6.50 12.32 12.80 11.41 14.82 51.49	7.26 12.26 12.68 11.46 14.71 47.69	7.06 12.39 12.46 11.46 14.52 46.27	8.05 12.35 12.30 11.73 14.38 49.50	8.70 12.72 12.49 12.29 14.56 51.97	8.66 14.00 13.17 13.50 15.28 60.27	7.37 15.06 14.46 14.72 16.61 65.46	7.55 15.25 14.75 15.06 16.89 57.31	7.04 15.96 15.91 15.31 18.20 52.06	6.84 15.55 15.40 14.80 17.62	5.95 14.51 14.61 13.33 16.72 43.01	6.71 13.18 13.75 12.05 15.79 43.11
36 N 123 W	SPD AIR SEA VPA VPS CLD	7.29 12.24 12.98 11.24 15.00 50.58	8.02 12.33 12.77 11.46 14.79 62.15	7.97 12.31 12.77 11.15 14.82 50.78	8.82 12.42 12.34 11.79 14.41 53.99	8.36 13.25 13.41 12.65 15.46 61.79	8.43 14.21 14.26 13.76 16.36 67.39	8.55 15.25 15.20 14.83 17.36 65.86	8.38 15.99 15.97 15.81 18.25 59.24	7.40 16.67 16.54 15.82 18.90 49.31	7.84 15.44 15.68 14.62 17.90 49.60	7.04 14.54 14.99 14.01 17.11 50.77	7.62 13.16 13.96 11.73 16.01 49.12
36 N 124 W	SPD AIR SEA VPA VPS CLD	7.53 12.32 13.18 12.21 15.23 60.25	6.57 12.09 13.12 11.66 15.15 66.66	6.99 12.47 12.64 11.88 14.67 60.85	8.05 12.64 12.98 11.84 15.01 56.05	7.97 13.76 13.43 12.89 15.46 61.21	9.01 14.53 13.90 14.03 15.97 62.07	8.22 15.58 15.31 15.12 17.47 67.91	7.81 16.61 16.52 16.42 18.87 62.73	7.19 17.10 16.69 16.86 19.13 56.00	7.04 15.93 16.61 15.37 19.01 56.30	6.05 14.79 15.21 13.99 17.36 56.36	6.45 13.64 14.36 12.88 16.41 58.01
36 N 125 W	SPD AIR SEA VPA VPS CLO	8.03 12.51 13.33 12.33 15.36 66.79	7.45 12.40 13.21 12.08 15.25 63.01	7.89 12.41 12.79 11.70 14.82 63.80	9.02 12.75 13.13 11.63 15.18 55.75	8.79 13.71 13.68 12.88 15.73 64.25	8.88 14.53 14.17 13.91 16.23 64.67	8.88 15.64 15.56 15.24 17.76 71.65	8.25 16.85 16.71 16.59 19.10 62.12	6.67 17.16 17.24 16.70 19.79 58.67	7.48 16.52 16.97 15.61 19.41 55.94	7.19 14.92 15.68 14.03 17.90 59.79	7.29 13.30 14.39 12.56 16.46 55.42
36 N 126 W	SPO AIR SEA VPA VPS CLO	7.92 12.92 13.48 12.27 15.52 65.32	7.89 12.35 13.10 11.84 15.15 67.18	8.01 12.36 13.05 11.64 15.09 68.28	8.84 12.35 12.99 11.46 15.02 64.60	7.87 13.56 13.75 12.79 15.80 66.86	8.90 14.97 14.89 14.26 17.02 64.91	8.58 16.11 15.96 15.59 18.23 71.53	7.62 17.14 16.88 16.73 19.32 64.07	7.18 17.67 17.98 16.93 20.72 61.03	7.84 16.78 17.16 15.79 19.67 55.21	7.16 15.31 15.97 14.29 18.25 62.20	7.80 13.80 14.83 12.91 16.96 62.31
36 N 127 W	SPD AIR SEA VPA VPS CLD	7.61 13.08 13.52 12.23 15.59 69.15	7.71 12.66 13.15 12.13 15.19 67.26	8.06 12.78 13.16 11.66 15.19 66.73	7.93 12.86 13.35 11.69 15.37 66.22	7.93 13.75 14.04 12.76 16.11 71.11	8.46 15.16 15.20 14.47 17.35 70.95	8.48 16.27 16.15 15.74 18.44 76.15	7.54 17.66 17.47 17.03 20.07 63.17	7.33 18.11 18.13 17.12 20.92 58.45	7.48 17.02 17.48 15.90 20.06 63.11	7.30 15.79 16.44 14.59 18.81 63.03	7.35 14.28 15.13 13.37 17.28 67.38
36 N 128 W	SPD AIR SEA VPA VPS CLD	7.21 13.74 14.74 12.87 16.87 69.38	7.72 12.88 13.78 11.94 15.83 69.44	7.64 13.02 13.61 11.76 15.65 60.31	7.82 13.51 13.59 12.11 15.62 66.03	7.42 14.49 14.44 13.24 16.50 70.05	8.26 16.08 16.11 14.96 18.39 67.38	8.15 17.00 17.14 16.09 19.62 77.43	7.20 18.24 18.10 17.29 20.85 71.18	7.14 18.40 18.57 17.20 21.46 63.53	7.07 17.62 17.80 16.18 20.46 63.64	7.16 16.34 17.20 15.01 19.71 64.17	7.45 14.83 15.77 13.60 18.00 68.65
36 N 129 W	SPD AIR SEA VPA VPS CLD	7.69 13.55 14.59 12.57 16.69 72.45	7.74 13.04 13.87 12.24 15.93 68.65	7.94 13.65 11.75 15.68 69.67	7.60 13.33 13.85 12.02 15.88 69.88	7.45 14.20 14.49 12.93 16.57 71.98	7.46 16.08 16.24 15.08 18.55 75.72	7.42 17.15 17.32 16.25 19.84 81.13	6.72 18.57 18.50 17.70 21.38 71.40	6.94 18.91 19.29 17.61 22.45 64.54	6.85 17.76 18.25 16.52 21.05 67.19	7.33 16.25 17.15 14.93 19.65 67.30	7.57 14.66 15.78 13.60 18.01 71.57
36 N 130 W	SPD AIR SEA VPA VPS CLD	8.01 13.68 14.65 12.91 16.76 73.28	7.55 13.13 13.99 12.39 16.04 70.27	7.71 13.10 13.85 12.10 15.89 75.18	7.85 13.24 13.96 11.95 15.99 71.12	6.98 14.50 14.70 13.20 16.79 70.67	7.20 16.12 16.18 14.98 18.47 75.98	7.23 17.47 17.68 16.51 20.31 80.57	6.18 19.12 19.27 18.31 22.47 69.05	7.45 18.95 19.43 17.58 22.66 68.86	6.46 17.95 18.53 16.36 21.42 67.65	7.22 16.53 17.37 15.21 19.95 71.19	7.96 15.12 16.15 14.14 18.42 72.80
36 N 131 W	SPD AIR SEA VPA VPS CLD	8.39 13.61 14.91 12.56 17.04 72.10	7.44 13.62 14.14 12.49 16.19 72.10	8.02 13.51 14.16 12.12 16.20 73.83	7.65 13.19 14.11 11.74 16.17 69.68	7.17 14.55 14.97 13.30 17.12 73.67	6.78 16.26 16.39 15.45 18.72 78.22	6.37 18.07 18.05 17.10 20.78 74.39	6.24 19.82 19.82 18.24 72.05	6.99 19.45 19.63 18.10 22.94 67.53	6.47 18.39 19.02 17.05 22.08 62.42	8.25 16.81 17.75 14.99 20.39 70.74	8.44 14.99 16.04 13.63 18.30 76.75

LAT/LON	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	мом	DEC
37 N SPD 122 W AIR SEA VPA VPS CLD	6.92 11.79 12.70 11.21 14.74 53.10	6.87 12.19 12.66 11.58 14.71 50.38	6.47 12.39 12.26 11.68 14.34 45.71	7.28 12.32 11.83 11.57 13.93 46.23	7.76 12.71 12.39 12.43 14.47 61.58	7.01 13.54 13.08 13.27 15.16 62.11	6.21 14.25 13.75 14.03 15.84 57.48	5.85 14.48 14.41 14.39 16.52 62.13	5.68 15.79 15.37 15.13 17.62 44.47	6.05 15.22 14.88 14.30 17.02 46.92	6.30 14.13 14.18 13.00 16.25 53.97	6.64 12.47 13.08 11.21 15.12 38.87
37 N SPD 123 W AIR SEA VPA VPS CLD	7.58 11.51 12.41 10.89 14.46 55.78	8.01 11.74 12.31 10.98 14.37 53.69	7.87 11.87 12.26 11.09 14.34 53.24	6.32 11.95 12.11 11.46 14.21 52.67	8.86 12.67 12.55 12.26 14.62 54.66	8.00 13.74 13.43 13.55 15.50 57.93	7.62 14.35 14.48 14.22 16.60 63.59	7.86 15.01 14.86 14.91 17.01 58.36	6.89 15.70 15.65 15.18 17.92 52.05	7.02 15.11 15.20 14.25 17.38 43.68	6.90 14.08 14.19 13.27 16.27 51.25	6.79 12.67 13.54 15.26 48.59
37 N SPD 124 W AIR SEA VPS VPS CLD	7.93 11.86 12.58 11.41 14.63 62.57	8.11 11.66 12.23 11.42 14.31 59.18	8.05 11.63 12.23 11.03 14.32 57.65	9.23 11.90 12.29 11.21 14.38 54.01	9.00 12.53 12.59 12.17 14.67 55.60	8.79 13.99 13.65 13.66 15.74 58.14	8.75 14.77 14.62 14.72 16.74 60.96	8.78 15.53 15.19 15.55 17.38 48.63	7.31 16.17 16.09 15.94 18.46 45.07	7.51 15.11 15.34 14.64 17.55 46.26	7.06 14.02 14.49 13.53 16.59 53.86	7.50 12.87 13.55 12.20 15.61 57.19
37 N SPD 125 W AIR SEA VPS CLD	7.39 11.97 12.65 11.57 14.71 61.53	7.82 11.75 12.52 11.44 14.58 62.25	8.09 11.86 12.52 11.24 14.58 61.09	8.99 12.10 12.55 11.42 14.62 57.91	9.08 12.88 12.97 12.26 15.01 63.97	9.41 14.31 14.05 13.96 16.15 56.93	8.73 15.24 14.76 14.93 16.89 65.96	8.24 16.33 15.98 16.23 18.28 57.49	7.53 16.70 16.59 16.26 19.00 50.58	7.47 15.62 16.02 15.09 18.31 48.81	7.03 14.41 14.96 13.81 17.11 55.98	7.56 12.91 13.70 12.36 15.76 62.52
37 N SPD 126 W AIR SEA VPA VPS CLD	7.92 12.36 13.16 12.01 15.20 65.68	7.86 11.89 12.67 11.46 14.72 66.14	7.94 11.83 12.51 11.08 14.59 62.25	8.73 12.15 12.74 11.25 14.80 63.72	8.75 13.22 13.26 12.62 15.30 64.76	8.81 14.67 14.25 14.01 16.32 66.49	8.77 15.74 15.50 15.44 17.72 68.93	7.80 17.02 16.72 16.69 19.15 62.46	7.40 17.20 17.03 16.68 19.56 50.97	7.45 16.30 16.59 15.37 19.01 53.69	7.24 14.83 15.57 14.00 17.81 62.13	7.18 13.35 14.26 12.75 16.34 63.94
37 N SPD 127 W AIR SEA VPA VPS CLD	7.59 12.67 13.33 12.66 15.36 67.05	8.28 12.19 12.77 11.47 14.81 66.71	8.47 12.25 12.80 11.40 14.84 68.18	8.44 12.44 12.83 11.51 14.87 66.92	8.30 13.51 13.62 12.50 15.65 70.22	8.67 15.01 14.56 14.25 16.66 70.51	8.07 16.05 15.75 15.59 17.09 75.46	7.87 17.36 17.03 16.98 19.53 65.76	7.37 17.75 17.50 17.06 20.13 53.79	7.11 16.58 16.70 15.70 19.12 64.16	7.19 15.52 15.69 14.74 17.94 61.90	7.54 13.54 14.24 12.61 16.32 70.13
37 N SPD 128 W AIR SEA VPS VPS CLD	8.31 13.06 13.75 12.54 15.82 68.28	8.15 12.45 13.11 11.63 15.15 72.36	8.12 12.44 12.85 11.46 14.91 71.29	8.35 12.61 13.05 11.43 15.07 71.79	7.69 13.85 13.79 12.78 15.82 68.51	8.38 15.25 14.87 14.54 16.99 74.63	8.18 16.74 16.23 15.85 18.52 74.80	7.47 18.29 17.55 17.55 20.17 63.35	7.69 18.17 17.94 17.26 20.69 62.09	7.05 17.10 17.22 15.71 19.77 56.64	7.25 15.79 16.50 14.79 18.88 64.75	7.81 13.87 14.91 12.92 17.04 69.73
37 N SPD 129 W AIR SEA VPS CLD	7.54 12.90 14.18 12.02 16.30 69.68	8.38 12.24 13.32 11.75 15.39 73.45	8.01 12.36 13.08 11.60 15.11 71.23	7.71 12.64 13.36 11.50 15.38 70.15	8.11 13.67 13.99 12.57 16.04 73.87	7.57 15.58 15.51 14.65 17.70 72.80	7.84 17.09 16.86 16.28 19.28	6.88 18.73 18.56 17.92 21.49 68.01	7.13 18.54 18.42 17.34 21.31 62.77	6.84 17.40 17.61 15.87 20.23 61.90	7.56 16.10 16.76 14.85 19.17 70.81	8.21 14.28 15.29 13.15 17.47 74.18
37 N SPD 130 W AIR SEA VPA VPS CLD	8.25 13.52 14.40 12.80 16.47 74.66	6.03 12.77 13.65 12.00 15.70 72.90	8.13 12.50 13.35 11.53 15.37 74.43	7.73 13.04 13.48 11.78 15.50 72.28	7.27 14.05 14.21 12.64 16.26 77.31	7.27 15.95 15.64 14.93 17.85 75.52	7.19 17.36 17.25 16.55 19.76 74.66	6.75 18.92 19.55 17.75 21.47 68.37	7.44 18.70 19.26 17.60 22.44 62.93	6.81 17.88 18.43 16.23 21.28 62.04	7.34 16.07 17.18 14.70 19.67 72.36	8.43 14.51 15.49 13.67 71.52
37 N SPD 131 W AIR SEA VPA VPS CLD	8.58 13.27 14.59 12.51 16.68 74.01	7.96 12.51 13.84 11.63 15.75	8.60 12.68 13.46 11.64 15.49 73.55	7.34 12.92 13.67 11.82 15.70 68.11	6.67 13.92 14.17 12.65 16.21 77.58	7.22 15.76 15.80 14.68 18.03 73.85	7.10 17.47 17.57 16.62 20.19 79.94	6.03 19.05 19.08 17.85 22.19 68.39	6.40 19.01 19.36 18.00 22.57 66.22	7.03 17.66 18.56 16.03 21.46 66.68	7.94 16.40 17.41 15.05 19.96 72.17	7.76 14.54 15.61 13.32 16.84 71.37

LAT	T/LON	JAN	FEB	MAR	APR	HAY	NUL	JUL	AUG	SEP	OCT	NOV	DEC
38 123	8 N SPO 3 W AIR SEA VPA VPS CLO	11.44	6.71 11.82 11.92 11.68 14.01 53.43	7.46 11.91 11.86 11.31 13.96 48.47	8.52 11.45 11.61 11.08 13.77 41.18	7.88 12.47 12.46 12.07 14.68 46.79	7.85 13.45 12.82 13.22 14.95 52.93	6.27 14.06 13.53 14.00 15.65 60.99	6.69 14.48 14.10 14.19 16.26 53.93	5.46 14.98 14.33 14.31 16.47 40.12	5.89 14.37 14.35 13.63 16.45 47.28	5.69 13.59 13.78 12.99 15.81 58.09	6.98 11.81 12.59 11.30 14.64 58.18
31 124	8 N SPC 4 W AIR SEA VPA VPS CLC	11.48 12.12 10.89	8.48 11.22 12.12 10.98 14.20 52.54	7.88 11.40 11.72 10.78 13.84 54.20	8.94 11.45 11.75 10.87 13.86 47.88	9.26 12.33 12.11 12.13 14.22 51.89	8.93 13.45 12.83 13.21 14.94 55.03	8.93 14.06 13.40 14.00 15.49 56.09	8.53 714.72 14.26 14.82 16.40 60.06	7.15 15.33 14.88 15.15 17.05 53.94	6.54 14.87 14.85 14.43 17.01 46.63	7.37 13.96 14.29 13.56 16.39 54.18	8.26 12.47 13.40 11.85 15.44 58.37
3 12	8 N SPC 5 W AIR VPA VPS CLC	12.87 11.50 14.91	8.69 11.14 12.25 11.21 14.35 62.40	8.77 11.27 11.82 10.80 13.96 62.17	8.36 11.71 12.15 11.34 14.23 60.67	8.76 12.77 12.73 12.16 14.82 61.56	9.58 13.99 13.74 13.49 15.87 58.14	9.88 15.04 14.60 14.68 16.74 57.11	8.80 15.78 15.13 15.74 17.33 54.09	7.25 15.98 15.76 15.92 18.05 48.52	7.27 15.25 15.52 14.73 17.74 48.03	6.49 14.19 15.08 13.87 17.24 58.13	7.60 12.72 13.46 12.12 15.50 64.79
33 12	8 N SPO 6 W AIR VPA VPS CLU	11.09	8.58 10.98 12.11 11.11 14.19 62.04	7.46 11.73 12.36 11.13 14.40 64.27	8.84 11.85 12.41 10.94 14.46 64.20	8.58 12.76 12.87 12.24 14.91 68.62	9.23 14.25 14.06 13.88 16.15 67.70	9.25 15.41 15.12 14.99 17.29 66.44	8.56 16.52 15.80 16.19 18.08 60.85	7.74 16.91 16.49 16.35 18.90 53.71	7.35 15.95 16.36 15.31 18.71 52.99	7.57 14.67 15.35 13.98 17.52 56.01	8.38 12.87 14.00 12.26 16.08 70.12
3. 12	8 N SPI 7 H AIF VP/ VP: CLI	11.74 5 15.28	8.46 11.61 12.35 11.25 14.42 72.72	8.17 11.69 12.23 11.08 14.27 68.21	8.17 11.76 12.71 11.18 14.77 68.88	7.88 13.17 13.16 12.00 15.19 68.01	9.38 14.79 14.60 14.04 16.73 68.41	8.66 15.95 15.78 15.37 18.84 72.69	8.35 17.26 16.68 16.64 19.12 67.42	7.52 17.59 17.17 16.91 19.70 51.13	7.77 16.49 16.77 15.29 19.17 59.16	7.12 15.36 15.72 14.43 17.94 66.51	8.17 13.43 14.53 12.62 16.61 69.84
3 12	8 N SPI 8 H AII SE/ VP: VP: CLI	R 11.91 A 13.44 A 11.28 S 15.46	8.38 12.11 12.87 11.50 14.92 68.68	8.44 11.73 12.58 10.73 14.63 59.27	7.49 12.42 12.58 11.35 14.61 62.23	7.39 13.48 13.53 12.28 15.58 69.86	8.26 15.06 14.72 14.44 16.83 75.36	8.25 16.40 16.25 15.57 18.58 78.63	7.31 17.87 17.44 17.29 20.05 66.74	7.44 18.20 17.70 17.11 20.36 56.54	7.65 16.86 17.43 15.73 19.98 59.54	7.37 15.45 16.22 14.43 16.52 62.32	8.58 13.41 14.81 12.72 16.93 72.39
3 12	8 N SPI 9 W AII VP VP CL	A 13.84 A 12.00 S 15.91	7.98 12.13 13.00 11.34 15.04 70.13	8.33 11.95 12.70 11.02 14.74 71.48	8.10 12.11 13.08 11.06 15.11 73.77	7.49 13.48 13.50 12.67 15.53 69.18	7.90 15.61 15.43 14.64 17.62 70.42	8.27 16.79 16.55 16.09 18.91 74.14	7.58 17.95 17.96 17.00 20.71 68.10	7.27 18.57 18.57 17.37 21.51 59.00	7.41 17.26 17.90 15.97 20.59 63.52	7.59 15.66 16.49 14.52 18.84 65.93	8.22 14.05 15.38 13.02 17.54 74.46
13 13	8 N SP 0 W AI SE VP VP CL	A 11.95 S 15.93	8.57 12.15 13.27 11.31 15.32 68.57	8.29 11.71 12.85 11.15 14.90 68.98	7.62 12.45 12.95 11.16 14.97 73.00	7.20 13.60 13.54 12.31 15.59 71.46	7.57 15.22 15.23 14.29 17.39 73.07	7.54 16.84 17.13 15.78 19.63 79.70	7.05 18.39 18.39 17.53 21.26 70.07	6.97 18.79 18.87 17.34 21.86 63.58	7.11 17.57 18.20 15.97 20.97 62.50	8.39 15.64 16.82 14.43 19.21 74.31	8.75 13.92 15.31 13.14 17.47
3 13	8 N SP 1 W AI SE VP VP CL	R 13.95 A 13.91 A 11.89 S 15.94	8.52 12.45 13.28 11.52 15.30 73.67	8.18 12.14 12.91 11.37 14.93 73.21	7.95 12.73 13.20 11.17 15.24 71.21	6.76 14.04 14.41 12.96 16.48 78.58	7.55 15.71 15.73 14.68 17.94 68.09	7.33 17.31 17.33 16.37 19.86 82.91	6.11 19.03 18.81 17.93 21.84 66.90	7.21 18.79 19.29 17.55 22.47 66.49	7.35 17.79 18.42 16.27 21.25 62.08	7.32 16.09 16.92 14.79 19.37 67.06	8.14 14.34 15.59 13.60 17.77
3 13	8 N SP 2 W AI SE VP VP CL	R 12.59 A 13.90 A 12.16 S 15.98	8.30 12.67 13.60 11.79 15.66 76.12	8.31 12.10 13.24 11.38 15.29 74.21	7.74 12.36 13.16 11.21 15.20 72.72	6.91 13.68 13.99 12.30 16.04 75.53	6.97 15.63 15.83 14.77 18.08 75.49	6.58 17.41 17.65 16.77 20.26 79.24	6.83 18.86 19.32 17.81 22.52 68.59	6.42 19.57 17.55 22.84 63.61	7.48 17.96 18.71 16.24 21.63 68.29	8.10 15.03 17.04 14.49 19.49 74.39	9.12 14.61 15.74 13.41 17.95 70.66

LAT/LON	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP	OCT	NOV	DEC
39 N SPD 124 H AIR SEA VPA VPS CLO	7.64 13.76 11.46 10.58 13.58 58.64	7.79 11.08 11.38 10.90 13.51 56.07	7.59 10.91 11.03 10.58 13.21 51.83	7.51 10.88 10.70 10.67 12.97 45.42	9.11 11.83 11.23 11.52 13.39 47.23	8.80 13.32 12.11 13.04 14.24 48.09	8.99 13.45 12.42 13.51 14.55 46.63	8.63 14.43 13.06 14.39 15.17 42.40	6.29 14.46 13.55 14.26 15.68 42.19	6.79 13.94 13.66 13.42 15.75 41.24	6.28 13.40 13.58 12.98 15.62 51.28	6.93 11.55 12.39 11.15 14.47 53.48
39 N SPD 125 W AIR SEA VPA VPS CLD	7.98 11.53 11.89 11.36 13.97 60.73	7.63 11.18 11.80 10.92 13.89 61.96	8.79 11.27 11.50 10.61 13.61 58.89	9.07 11.51 11.57 11.02 13.67 59.00	9.02 12.34 12.29 12.29 14.37 60.38	9.40 14.06 13.57 15.60 55.57	9.65 14.89 14.52 14.65 16.66	9.12 15.84 14.81 15.49 17.02 51.71	8.31 15.78 15.53 15.26 17.80 47.08	7.60 15.22 15.56 14.43 17.79 46.12	7.37 14.10 14.56 13.58 16.74 62.20	7.72 12.21 13.29 11.82 15.32 60.80
39 N SPO 126 W AIR Sea VPA VPS CLO	8.77 11.60 12.61 11.43 14.65 66.76	7.60 11.29 11.98 11.55 14.07 64.66	8.19 10.95 11.78 10.51 13.88 61.85	8.08 11.48 12.05 10.83 14.10 57.55	8.22 12.87 12.90 12.29 14.94 63.38	9.07 14.47 14.19 13.71 16.25 65.42	9.36 15.62 15.16 15.12 17.35 66.11	8.63 16.59 15.97 16.38 18.27 63.75	7.96 17.17 17.13 16.32 19.66 45.09	6.81 15.77 16.18 14.61 18.49 51.23	7.31 14.25 15.34 13.43 17.57 60.52	7.76 12.53 13.64 12.00 15.71 60.36
39 N SPD 127 H AIR SEA VPA VPS CLD	8.85 11.42 12.60 11.52 14.68 75.20	7.34 10.84 11.67 10.77 13.79 65.90	8.27 10.97 11.72 10.68 13.80 65.88	8.16 11.73 12.07 10.85 14.12 64.28	8.95 12.46 13.10 11.71 15.12 71.30	8.98 14.11 14.16 13.64 16.22 72.22	9.26 16.06 15.55 15.41 17.75 68.75	7.95 17.31 17.03 16.75 19.53 58.04	7.99 17.37 17.14 16.29 19.65 55.86	7.15 16.54 17.03 15.65 19.49 54.57	8.04 14.80 15.85 13.88 13.08 64.51	8.46 12.28 13.81 12.02 15.84 65.62
39 N SPD 128 W AIR SEA VPA VPS CLD	8.23 12.43 13.22 11.84 15.26 77.20	8.56 11.61 11.96 11.36 14.03 71.54	8.21 11.38 11.75 10.66 13.83 67.37	8.49 11.53 12.06 10.87 14.13 71.71	8.24 13.11 13.16 12.30 15.21 73.02	8.34 14.90 14.87 14.16 16.99 69.35	7.97 16.58 16.34 15.67 18.65 68.21	8.10 17.79 17.84 17.01 20.55 67.27	7.83 17.83 17.66 16.92 20.28 61.79	7.09 16.64 17.07 15.56 19.54 61.57	8.51 15.20 16.27 14.51 18.58 68.82	8.17 12.66 14.52 12.05 16.60 67.65
39 N SPO 129 W AIR SEA VPA VPS CLD	8.17 12.66 13.63 12.32 15.67	8.25 11.91 12.62 11.68 14.66 68.39	8.26 11.39 11.93 10.86 14.00 69.30	8.01 12.28 12.55 11.48 14.60 72.82	7.05 13.01 13.59 11.98 15.63 76.93	7.60 14.70 14.90 14.07 17.01 69.58	7.87 16.68 16.70 15.90 19.11 75.60	7.61 18.08 17.91 16.89 20.63 72.01	7.75 18.10 18.30 17.36 21.14 61.58	6.64 16.68 17.80 15.29 20.43 61.96	8.33 15.36 16.18 14.35 18.45 74.22	8.03 12.99 14.44 12.18 16.50 71.84
39 N SPD 130 W AIR SEA VPA VPS CLO	8.62 12.80 13.65 12.30 15.66 76.54	8.69 12.63 12.16 11.81 14.21 69.08	7.81 11.57 11.95 11.03 14.02 65.12	7.17 11.67 12.34 11.00 14.38 75.00	6.84 13.09 13.04 11.72 15.06 74.72	6.60 14.84 14.91 14.07 17.02 73.74	7.72 16.62 16.73 15.71 19.11 78.56	6.73 18.53 18.68 17.44 21.64 71.39	7.36 18.29 18.51 17.14 21.39 64.34	7.65 17.13 17.67 15.72 20.27 61.44	8.18 15.63 16.54 13.98 18.89 68.23	6.10 13.31 14.94 16.06 72.45
39 N SPD 131 W AIR SEA VPA VPS CLD	9.50 12.13 13.23 11.35 15.26 75.41	8.14 11.37 12.44 11.09 14.48 68.00	8.16 11.37 12.14 10.62 14.18 72.12	7.24 12.18 12.59 11.24 14.64 69.09	6.85 13.80 13.90 12.66 15.94 74.76	6.79 15.22 15.05 14.21 17.17 75.68	6.86 17.19 17.20 16.42 19.68 80.64	6.23 18.84 18.85 17.94 21.87	6.86 18.95 19.00 17.75 22.07 64.54	7.26 17.07 17.97 15.80 20.66 63.17	8.42 15.67 16.19 14.54 18.48 72.82	6.31 13.63 14.63 12.57 16.90 72.76
39 N SPD 132 W AIR SEA VPA VPS GLD	9.24 11.83 13.58 11.49 15.67 76.89	8.17 12.01 12.60 11.05 14.64 75.46	8.86 11.55 12.49 10.54 14.54 66.92	7.26 11.85 12.60 10.77 14.65 72.09	7.23 13.13 13.46 12.66 15.50 71.63	7.06 15.24 15.32 14.47 17.47 73.74	6.76 16.85 17.33 16.02 19.87 73.86	18.86 19.27 18.09 22.45 71.74	7.49 18.54 18.91 17.54 21.95 72.95	6.98 17.25 18.00 15.86 20.71 66.29	8.75 15.31 16.39 14.13 18.70 78.17	9.74 13.70 14.86 12.77 16.96 76.82
39 N SPO 133 W AIR SEA VPA VPS CLD	9.55 12.68 13.72 12.09 15.77 79.56	7.81 11.86 12.84 11.44 14.88 76.95	8.35 11.83 12.62 10.91 14.66 68.55	8.16 11.88 12.68 10.99 14.73 72.70	6.81 13.33 13.69 12.23 15.71 80.96	6.13 15.51 15.65 14.21 17.83 80.62	6.35 17.17 17.67 16.32 20.28 83.91	6.04 18.83 19.29 17.55 22.45 74.79	7.13 18.80 19.55 17.44 22.80 68.62	7.15 17.78 18.75 16.21 21.70 65.98	8.57 15.72 16.80 14.58 19.17 74.81	8.24 14.05 15.26 13.38 17.39

LAT/LO	N	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP	OCT	NOV	DEC
41 N 124 W	SPD AIR SEA VPA VPS CLD	7.12 10.11 10.87 10.36 13.05 71.71	7.13 9.44 10.41 9.72 12.66 44.04	7.31 10.63 10.76 10.62 12.95 62.50	6.45 10.70 10.70 10.50 12.86 67.30	6.47 11.78 10.89 11.49 13.08 52.60	8.60 12.86 11.27 12.76 13.44 48.00	9.18 13.31 11.64 13.55 13.80 56.73	5.72 14.39 12.69 14.54 14.81 51.56	5.17 13.84 13.40 14.32 15.95 56.25	7.13 13.22 12.77 12.77 14.91 50.54	6.78 11.90 12.35 12.14 14.39 52.20	6.89 10.77 11.95 10.85 14.03 61.25
41 N 125 W	SPD AIR SEA VPA VPS CLD	8.01 10.09 11.19 10.02 13.35 65.18	8.33 10.47 10.80 10.46 13.00 68.45	7.38 10.83 10.85 10.24 13.04 61.05	7.73 10.93 10.85 10.53 13.06 54.13	8.15 12.27 11.53 11.83 13.67 55.53	7.92 13.52 12.36 13.08 14.47 55.54	8.77 14.33 12.61 14.19 14.74 59.64	7.41 14.81 13.29 14.88 15.43	7.21 14.80 13.59 14.29 15.72 45.09	6.83 13.72 13.08 12.94 15.15 45.25	7.50 12.71 12.88 12.54 14.92 59.39	8.80 11.11 11.77 11.11 13.88 68.23
41 N 126 W	SPO AIR SEA VPA VPS CLO	9.32 10.54 11.30 10.48 13.17 68.75	8.07 11.10 10.85 10.99 13.04 65.54	8.13 11.19 10.78 10.70 12.98 73.00	8.71 10.70 11.22 10.18 13.36 68.93	8.10 12.26 11.77 11.67 13.86 65.86	8.05 14.56 13.43 13.67 15.51 57.21	7.84 15.37 14.79 14.42 16.93 62.67	7.89 16.63 15.80 16.40 18.04 57.72	8.08 16.31 15.63 15.76 17.93 46.59	8.96 14.69 14.47 14.10 16.56 58.39	7.50 12.78 13.22 12.54 15.28 55.66	9.23 10.79 12.04 10.77 14.10 67.72
41 N 127 W	SPD AIR SEA VPA VPS CLD	9.63 10.56 11.56 10.30 13.68 75.00	8.72 10.38 10.81 10.93 13.00 72.22	9.05 10.29 10.59 10.16 12.82 68.45	7.94 11.03 11.37 10.06 13.48 73.46	8.08 11.79 11.93 11.05 14.01 67.94	8.54 14.34 13.53 13.54 15.58 71.38	9.02 16.16 15.36 14.90 17.54 71.46	8.02 17.16 16.35 16.60 13.72 57.58	8.92 16.91 16.86 15.57 19.31 40.15	7.39 14.80 15.63 13.79 17.83 55.23	9.69 13.32 13.88 12.25 15.97 59.12	9.07 11.98 13.04 11.53 15.09 69.07
41 N 128 W	SPD AIR SEA VPA VPS CLD	9.44 11.28 12.10 11.25 14.16 58.12	6.86 10.78 11.48 11.42 13.62 75.41	8.87 10.24 11.08 10.38 13.23 62.86	7.00 10.97 11.29 10.11 13.41 71.75	7.83 12.34 12.23 11.96 14.29 73.80	7.64 14.56 14.19 13.65 16.29 70.58	8.17 16.08 15.85 15.83 18.08 80.76	7.30 17.38 17.07 16.80 19.56 63.55	6.59 17.99 17.89 16.70 20.55 65.05	7.63 15.68 16.12 14.49 18.40 58.15	9.00 13.74 15.09 13.09 17.24 67.81	8.54 12.18 13.19 11.54 15.24 66.66
41 N 129 W	SPD AIR SEA VPA VPS CLD	9.97 11.34 12.16 11.56 14.23 78.07	9.70 10.23 11.37 10.61 13.49 73.93	8.16 10.47 11.09 10.42 13.24 72.80	6.54 11.05 11.39 10.60 13.51 68.58	7.16 12.27 12.36 11.96 14.41 64.50	6.78 14.89 14.48 13.82 16.56 71.26	7.23 16.00 16.17 15.17 18.48 79.30	7.09 17.69 17.51 17.05 20.09 72.88	7.02 17.90 18.05 16.74 20.78 69.59	8.06 16.37 17.07 15.39 19.52 63.55	8.33 14.80 15.88 14.44 18.11 64.15	9.41 12.63 13.73 11.89 15.80 70.83
41 N 130 H	SPD AIR SEA VPA VPS CLD	9.57 11.27 12.47 10.83 14.50 79.61	9.36 10.59 11.43 10.57 13.55 72.24	8.23 10.59 11.21 10.26 13.36 75.26	6.83 11.22 11.63 10.50 13.72 73.10	7.08 12.27 12.40 11.64 14.45 71.30	7.17 14.28 14.49 13.40 16.58 77.24	7.13 16.19 16.14 15.51 18.43 74.11	7.02 17.82 17.66 16.91 20.29 69.82	7.32 17.75 18.12 16.50 20.86 66.95	7.28 16.86 17.47 15.98 20.03 58.77	7.55 14.55 15.50 13.18 17.66 68.35	8.24 12.72 13.78 12.42 15.82 60.71
41 N 131 H	SPD AIR SEA VPA VPS CLD	9.56 11.87 11.89 11.35 13.99 82.93	9.90 11.23 11.25 11.35 13.39 74.29	9.21 10.49 11.30 10.27 13.45 76.56	7.55 10.67 11.31 10.69 13.47 72.90	6.90 12.17 12.20 11.71 14.26 75.08	6.31 14.57 14.38 13.83 16.43 75.72	6.48 16.46 16.67 15.50 19.86 80.91	6.59 18.14 18.11 17.15 20.88 71.75	7.09 18.48 18.59 17.59 21.50 75.51	7.57 16.82 17.28 15.42 19.80 65.20	9.11 14.91 15.84 13.78 18.07 71.55	9.081 12.27 13.96 11.84 16.01 74.85
41 N 132 H	SPD AIR SEA VPA VPS CLD	8.90 11.30 12.50 11.23 14.54 8J.44	9.32 11.09 11.68 11.48 13.79	9.05 10.14 11.25 10.16 13.40 77.11	7.97 10.86 11.27 10.56 13.40 74.03	7.47 12.19 12.22 11.70 14.28 80.19	6.19 14.28 14.53 13.45 16.60 79.21	6.64 16.28 16.53 15.79 18.90 83.87	6.71 17.92 18.42 17.08 21.31 75.29	7.69 17.83 18.64 16.87 21.58 73.51	7.29 16.50 17.50 15.13 20.06 68.31	9.03 14.59 15.59 18.18 18.48	10.85 12.67 13.94 12.23 15.99 75.84
41 N 133 W	SPD AIR SEA VPA VPS CLO	9.87 11.03 12.48 10.80 14.59 77.77	9.27 11.25 11.60 11.43 13.71 78.07	9.67 10.52 11.95 10.59 14.04 77.08	7.13 11.15 11.81 10.78 13.90 74.26	7.16 12.09 12.48 11.56 14.52 77.92	6.38 14.13 14.57 13.22 16.65 81.58	6.45 16.65 16.22 16.12 18.51 82.98	5.53 18.08 18.34 17.16 21.17 72.78	6.89 18.12 18.52 16.45 21.41 69.37	8.41 16.66 17.70 14.98 20.28 69.05	9.43 14.25 15.60 13.29 17.79 81.65	9.20 12.98 14.12 12.49 16.18 74.15

LAT/LO	N	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP	OCT	мом	DEC
42 N 124 H	SPD AIR SEA VPA VPS CLD	7.72 8.99 10.46 10.17 12.72 71.15	9.45 8.71 9.98 8.93 12.31 67.10	7.46 10.49 10.25 10.60 12.54 58.75	5.75 9.50 10.16 9.22 12.42 50.00	7.34 11.16 10.47 10.79 12.74 52.27	5.88 13.53 12.09 13.04 14.17 59.50	9.10 12.84 11.96 13.04 14.23 40.86	5.31 16.72 14.93 15.91 17.12 32.66	5.35 13.73 12.07 13.64 14.14 67.04	6.85 13.67 12.64 12.93 14.76 50.65	8.71 12.12 12.72 12.53 14.76 63.39	7.27 10.45 10.89 10.15 13.07 67.18
42 N 125 W	SPD AIR SEA VPA VPS GLD	8.27 9.81 10.78 9.69 12.98 69.64	7.40 10.26 10.54 10.31 12.77 75.40	7.53 10.15 10.60 9.98 12.84 57.37	7.94 10.61 10.65 10.24 12.86 58.51	9.10 12.02 11.29 11.40 13.45 48.78	8.04 13.47 12.30 13.06 14.42 54.60	9.39 13.85 12.75 13.83 14.87 46.28	7.52 14.78 13.19 14.62 15.32 50.18	7.61 14.64 13.63 14.37 15.79 43.42	6.87 13.61 13.06 13.14 15.11 47.05	7.55 12.58 12.85 12.30 14.69 63.62	8.28 10.81 11.78 10.47 13.90 66.93
42 N 126 W	SPO AIR SEA VPA VPS CLD	8.43 9.82 11.07 10.16 13.23 63.81	8.31 10.32 10.82 10.51 13.01 64.93	8.50 10.63 10.79 10.63 12.98 68.43	7.55 11.13 10.91 10.72 13.08 66.66	8.47 12.57 11.97 11.42 14.05 61.45	7.60 14.59 13.76 13.76 15.81 70.19	7.71 15.98 14.78 14.87 16.92 69.72	8.40 17.50 16.07 16.47 18.40 58.42	8.18 16.21 14.79 15.54 17.00 43.14	7.67 14.64 14.07 13.94 16.18 49.37	7.45 12.57 13.08 12.33 15.10 58.88	8.21 11.14 11.82 11.01 13.97 71.12
42 N 127 W	SPD AIR SEA VPA VPS CLO	9.99 9.56 10.64 9.98 12.85 67.44	6.86 10.11 10.68 10.11 12.91 68.42	8.55 10.22 10.46 10.27 12.70 70.77	9.14 10.62 10.84 9.55 13.02 67.04	7.07 12.04 11.67 11.12 13.80 75.24	7.96 14.25 13.47 13.07 15.50 73.28	7.55 16.03 15.30 15.01 17.45 63.15	7.00 17.28 16.99 16.51 19.45 71.35	8.49 16.64 16.44 16.06 18.86 52.69	8.67 14.86 15.30 13.89 17.46 56.91	8.11 12.57 13.22 12.46 15.26 69.82	9.07 10.98 12.52 10.75 14.61 70.62
42 N 128 W	SPO AIR SEA VPA VPS CLD	8.12 10.55 11.17 13.57 13.39 67.30	7.61 10.18 10.67 10.55 12.88 73.92	7.52 9.89 10.39 10.22 12.66 71.87	8.16 10.21 10.97 9.73 13.13 61.98	6.86 11.65 11.80 11.19 13.88 72.72	8.58 14.41 13.82 14.05 15.87 71.73	7.66 15.43 15.58 14.59 17.78 77.67	7.97 17.96 17.48 16.57 20.07 68.22	5.92 17.33 17.15 15.94 19.62 65.00	7.76 15.82 16.08 14.39 18.33 53.50	8.54 13.66 14.55 12.79 16.66 69.68	9.88 10.89 12.46 10.58 14.53 70.83
42 N 129 W	SPO AIR SEA VPA VPS CLD	7.98 13.68 11.66 11.12 13.74 69.72	8.97 10.41 11.26 10.52 13.39 68.61	8.27 10.03 10.70 9.74 12.90 77.50	7.29 12.18 11.36 11.64 13.47 79.19	8.10 12.15 12.32 11.58 14.35 83.66	7.26 13.54 13.57 12.73 15.59 76.33	7.82 16.19 15.81 15.23 17.99 72.17	5.89 18.44 16.92 17.71 19.33 64.40	7.78 17.69 17.59 16.12 20.20 61.39	8.67 15.50 16.29 14.60 18.60 65.11	6.89 13.29 14.86 12.47 16.95 72.06	8.44 12.53 13.62 12.27 15.63 77.50
42 N 130 W	SPD AIR SEA VPA VPS CLD	8.66 1J.35 11.71 13.57 13.82 68.98	8.14 10.56 11.11 10.86 13.27 77.46	8.56 9.96 10.98 9.61 13.16 73.07	6.96 10.21 10.74 10.40 12.95 78.18	7.31 11.84 12.20 11.35 14.28 81.83	7.03 13.55 13.95 12.97 15.98 81.66	6.70 15.73 15.90 15.01 18.13	5.83 18.09 18.13 16.65 20.87 72.95	7.29 17.53 17.98 16.41 20.65 69.93	7.86 16.10 17.25 15.02 19.80 66.50	9.89 14.01 15.59 13.07 17.76 69.24	9.13 11.97 13.21 11.40 15.24 75.73
42 N 131 H	SPD AIR SEA VPA VPS CLD	8.88 11.53 11.26 11.24 13.41 73.19	9.61 10.91 11.39 11.54 13.54 78.12	8.26 9.74 10.91 9.58 13.14 76.41	7.14 10.36 10.50 10.70 12.74 72.56	6.76 12.02 11.95 11.58 14.02 69.88	6.46 14.25 14.20 14.10 16.23 81.86	6.88 16.29 16.67 15.93 19.07 83.11	6.05 18.00 18.48 17.41 21.35 70.75	7.24 17.98 19.05 16.92 22.12 72.07	7.34 16.44 16.57 15.05 18.92 63.63	8.68 14.90 15.30 13.76 17.45 71.71	10.10 12.38 13.99 12.09 16.09 76.10
42 N 132 H	SPD AIR SEA VPA VPS CLO	10.92 10.83 11.75 11.03 13.85 78.07	10.56 10.88 11.18 11.34 13.33 81.06	9.28 9.62 10.72 9.87 12.92 72.10	7.93 10.22 10.73 19.28 12.95 69.55	6.88 11.97 12.02 11.29 14.10 73.60	6.25 13.94 14.16 13.07 16.22 79.88	6.87 16.21 16.44 15.44 18.79 82.45	5.21 17.76 18.01 16.83 20.74 73.83	6.59 17.65 18.20 16.49 20.96 63.70	7.66 16.54 17.07 15.40 19.52 69.82	9.37 14.02 15.16 13.31 17.28 79.04	9.18 12.33 13.59 12.03 15.64 77.05
42 N 133 H	SPO AIR SEA VPA VPS CLU	11.04 13.99 11.86 13.80 13.95	9.85 10.38 11.18 10.42 13.34 75.53	9.61 10.04 10.61 9.97 13.00 72.54	7.94 10.40 11.01 10.46 13.16 76.52	7.87 11.98 11.89 11.41 13.97 77.32	6.29 13.80 14.17 13.06 16.25 54.13	6.12 15.84 16.22 15.09 18.53 79.40	5.81 17.66 17.93 16.82 20.64 76.87	6.87 17.71 18.17 16.61 20.92 70.32	7.71 16.57 17.26 15.52 19.76 70.18	9.53 14.12 15.02 13.44 17.17 81.89	10.53 11.73 13.31 11.06 15.33 72.22

LAT/LO	IN	NAL	FEB	MAR	APR	HAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
43 N 124 W	SPD AIR SEA VPS VPS CLD	6.79 9.17 10.78 9.98 13.02 65.00	7.97 8.74 9.90 9.65 12.22 61.87	6.94 9.28 10.06 10.15 12.41 52.50	7.03 9.91 10.13 9.59 12.40 69.16	6.92 11.53 11.81 11.57 13.92 65.38	5.93 13.53 12.85 13.30 14.93 75.00	8.71 15.04 12.17 14.85 14.31 39.42	5.72 14.73 13.42 14.28 15.56 60.15	6.15 15.36 12.23 13.64 14.29 36.56	5.68 13.39 13.26 13.89 15.27 58.12	8.55 12.47 12.31 11.75 14.40 75.00	6.69 8.18 9.84 8.69 12.21 48.21
43 N 125 W	SPD AIR SEA VPA VPS CLD	8.73 9.29 10.50 9.85 12.74 77.26	8.77 9.81 10.15 10.05 12.45 77.36	8.21 9.73 10.56 9.92 12.80 63.41	7.01 10.32 10.42 10.04 12.66 65.44	8.06 11.85 11.37 11.56 13.52 66.27	7.73 13.69 12.62 13.24 14.74 64.27	7.13 14.63 13.08 14.46 15.22 55.44	6.17 15.23 14.24 15.24 16.43 55.03	6.96 14.60 13.39 14.11 15.51 41.95	6.76 13.52 13.25 12.89 15.31 52.23	7.02 12.11 12.52 12.10 14.58 62.97	8.34 10.47 11.32 10.39 13.47 67.54
43 N 126 W	SPD AIR SEA VPA VPS CLD	9.64 10.16 10.38 10.61 12.63 70.07	9.00 9.86 10.07 10.55 12.37 80.46	7.52 10.22 10.45 9.67 12.69 69.48	6.27 10.72 10.86 9.69 13.04 66.28	7.35 12.65 12.01 11.63 14.08 71.05	7.70 14.75 14.24 13.62 16.29 82.08	8,29 16.18 15.42 15.57 17.63 65.62	7.56 16.93 16.07 16.26 18.34 49.21	7.29 16.06 16.51 15.23 18.89 44.16	7.47 13.82 13.93 12.82 15.97 53.03	7.85 12.89 12.61 12.46 14.64 65.06	5.23 10.92 11.44 10.39 13.57 64.35
43 N 127 H	SPD AIR SEA VPA VPS CLD	10.58 9.51 10.43 10.10 12.66 89.02	10.10 9.72 10.26 9.98 12.53 78.75	8.18 9.82 10.01 9.74 12.33 76.65	7.75 10.24 10.61 9.53 12.82 73.36	6.97 12.12 11.61 11.06 13.71 71.78	5.89 14.18 13.99 13.34 16.05 73.79	7.14 16.11 15.62 14.90 17.81 66.56	8.66 17.76 17.28 16.06 19.81 73.43	7.29 17.14 17.19 16.25 19.67 55.60	7.56 14.89 15.01 13.81 17.16 63.67	7.13 11.79 12.57 11.71 14.61 69.64	10.22 10.54 11.47 10.59 13.58
43 N 128 W	SPD AIR SEA VPA VPS CLD	8.85 9.40 10.77 9.40 12.97 77.13	9.34 9.52 10.09 9.81 12.41 77.50	9.63 9.55 10.07 9.70 12.40 69.89	8.45 10.01 10.12 9.57 12.43 79.26	6.59 11.67 11.39 11.04 13.50 76.30	6.72 13.67 13.20 13.07 15.23 79.16	7.59 15.89 15.70 15.13 17.93 71.51	6.30 17.61 17.50 16.76 20.05 64.32	7.66 17.07 17.09 15.77 19.58 65.05	8.30 14.98 15.34 14.04 17.56 71.39	9.07 12.86 13.43 11.60 15.48 68.65	9.98 10.54 11.89 10.16 13.98 71.12
43 N 129 H	SPO AIR SEA VPA VPS CLO	9.35 10.07 11.42 10.28 13.58 75.59	7.93 10.12 10.43 10.25 12.71 76.56	8.00 9.32 10.12 9.78 12.42 78.88	7.08 10.01 10.19 9.98 12.46 70.83	7.68 11.42 11.47 11.07 13.59 77.08	7.22 13.97 13.74 12.93 15.78 80.58	6.88 16.02 15.63 14.53 17.84 75.50	6.88 17.63 17.82 16.34 20.53 73.65	7.19 17.57 17.38 15.97 19.91 62.69	7.62 15.51 16.37 13.88 18.70 60.00	8.85 12.75 14.21 12.12 16.26 68.54	10.25 10.83 12.35 11.10 14.48 78.27
43 N 130 W	SPD AIR SEA VPA VPS CLO	10.36 10.95 12.35 11.30 14.41 80.01	9.07 10.31 10.89 10.67 13.08 62.10	9.57 9.64 10.51 9.98 12.73 73.17	8.53 9.66 10.48 9.52 12.70 79.42	6.89 11.30 11.85 10.73 13.93 81.61	5.85 13.57 13.98 12.94 16.01 75.19	7.17 16.13 16.43 15.34 18.72 77.22	6.02 18.08 17.92 16.97 20.59 77.94	7.72 17.77 18.19 15.77 20.92 68.50	8.25 16.04 17.18 14.60 19.66 70.27	9.08 13.09 14.60 12.26 16.67 69.81	9.15 11.82 13.34 11.55 15.37 78.33
43 N 131 H	SPD AIR SEA VPA VPS GLD	9.25 10.43 10.88 10.58 13.09 81.25	9.61 10.29 10.57 11.12 12.81 76.19	8.93 9.47 10.41 9.64 12.70 75.31	7.79 10.17 10.27 10.64 12.54 75.36	6.90 11.91 11.70 11.41 13.78 81.68	6.45 14.33 13.98 13.82 16.02 83.53	6.18 16.33 16.24 15.85 18.52 83.75	5.52 18.13 18.44 17.31 21.30 69.22	7.37 17.91 18.45 16.53 21.32 74.12	8.22 15.90 16.57 14.48 18.93 74.06	8.99 13.79 14.67 12.48 16.84 76.56	10.10 11.16 12.72 10.86 14.79 77.27
43 N 132 W	SPD AIR SEA VPA VPS CLO	10.39 9.79 11.95 11.36 13.13	11.40 10.31 10.07 10.77 12.38 79.68	9.48 9.48 10.34 9.76 12.61 78.08	8.07 9.94 10.47 9.74 12.71 75.00	7.26 11.32 11.53 11.01 13.64 79.38	6.46 13.27 13.35 12.78 15.37 82.50	5.20 15.81 16.14 15.16 18.42 83.33	6.0 / 17.89 17.88 17.30 20.57 75.73	7.16 17.27 17.87 15.92 20.56 72.64	8.37 15.39 16.63 14.20 18.99 80.92	8.67 13.94 14.76 12.50 16.87 72.70	11.08 10.77 12.78 10.48 14.85
43 N 133 W	SPD AIR SEA VPA VPS CLO	9.23 9.56 11.00 9.91 13.16 73.61	10.41 9.89 10.37 10.02 12.62 66.17	8.00 9.36 10.24 9.55 12.53 73.09	7.76 10.34 10.58 10.24 12.80 75.00	6.82 12.02 11.58 11.70 13.69 78.01	6.34 13.15 13.46 12.58 15.50 84.72	5.67 15.53 15.69 14.81 17.89 84.32	6.00 17.19 17.73 16.50 20.35 81.03	6.63 17.24 17.53 16.38 20.10 62.75	8.81 15.49 16.43 19.05 73.21	8.86 13.89 14.69 12.80 16.81	9.17 11.26 12.50 11.33 14.57 68.65

LAT/LO	N	JAN	FEB	MAR	APR	MAY	JUN	JUL	aug	SEP	OCT	иом	DEC
44 N 124 W	SPD AIR SEA VPA VPS CLD	7.23 8.09 9.60 8.20 11.99 69.88	7.49 8.58 9.72 9.14 12.08 73.61	8.16 9.55 9.85 9.83 12.20 68.10	6.11 9.95 10.06 9.77 12.35 59.64	5.76 10.80 10.92 10.64 13.08 66.56	4.82 13.56 13.14 13.08 15.24 63.00	5.35 13.79 12.41 13.76 14.59 50.96	3.26 14.49 13.19 14.71 15.39 66.66	5.52 15.21 14.20 14.44 16.35 49.43	5.04 13.34 12.65 12.79 14.70 46.98	6.51 11.74 12.51 11.52 14.54 65.20	7.18 9.49 10.90 10.05 13.14 79.16
44 N 125 W	SPD AIR SEA VPA VPS GLD	9.50 8.72 10.17 9.36 12.46 78.36	7.91 9.12 10.05 9.63 12.36 76.64	8.21 9.61 10.17 9.74 12.47 65.37	7.03 9.96 10.53 9.81 12.76 72.37	7.04 12.11 11.74 11.54 13.86 62.59	6.20 14.61 13.78 13.50 15.86 67.18	6.77 15.47 14.30 14.97 16.47 58.51	6.34 15.91 15.40 15.39 17.66 57.46	6.29 15.77 15.03 15.91 17.22 50.00	6.23 13.65 13.36 12.99 15.43 58.43	6.97 11.87 12.36 11.64 14.40 62.72	9.84 10.18 11.04 10.33 13.21 75.00
44 N 126 W	SPO AIR SEA VPA VPS CLD	7.51 10.18 10.65 10.92 12.88 70.41	8.31 9.80 10.35 10.08 12.61 69.71	7.33 9.52 10.23 9.34 12.51 61.93	7.20 10.48 10.42 10.13 12.65 65.71	5.92 12.07 11.72 10.95 13.83 66.32	6.84 14.48 14.12 13.05 16.17 75.58	7.84 16.13 16.26 15.02 18.61 71.22	6.18 17.13 16.81 16.04 19.25 60.67	6.97 17.15 16.85 16.35 19.25 63.88	8.90 13.96 14.20 12.72 16.30 59.84	8.14 12.64 12.13 14.65 57.85	10.62 10.19 11.16 10.30 13.33 68.50
44 N 127 W	SPO AIR SEA VPA VPS CLO	9.71 9.78 10.71 10.25 12.97 79.60	7.55 9.74 9.96 10.51 12.31 70.41	7.68 8.99 9.80 9.07 12.15 66.47	7.80 9.58 10.28 9.73 12.56 77.91	6.00 11.70 11.70 10.96 13.76 71.03	6.16 13.24 14.16 12.66 16.22 83.75	7.17 15.81 16.08 14.73 16.32 75.83	6.40 17.36 17.61 15.38 20.18 68.20	6.88 17.63 17.62 16.19 20.21 48.82	8.91 15.96 14.93 13.94 17.13 78.94	8.40 12.31 12.84 12.56 14.90 77.43	10.68 10.38 11.17 10.77 13.35 76.04
44 N 128 W	SPD AIR SEA VPA VPS CLD	9.60 8.54 10.09 9.33 12.39 76.85	8.26 8.80 9.42 9.58 11.86 79.54	9.25 8.89 9.67 9.22 12.05 71.07	7.64 9.73 10.10 9.52 12.41 73.26	6.84 11.52 11.53 10.95 13.65 73.49	6.33 13.45 13.77 13.07 15.81 82.32	7.08 15.43 16.10 14.73 18.35 80.76	6.63 17.36 17.51 15.78 20.08 67.18	6.86 17.06 17.29 16.04 19.78 59.30	8.29 15.22 15.74 14.39 17.93 73.54	9.01 12.99 13.77 12.59 15.79 68.52	9.86 10.35 11.68 10.54 13.80 76.92
44 N 129 H	SPD AIR SEA VPA VPS CLO	9.13 8.97 10.24 9.47 12.53 75.00	9.58 9.40 9.69 9.69 12.07 76.20	8.71 8.96 9.56 9.50 12.00 65.72	8.15 9.04 9.63 9.20 12.03 75.00	6.03 11.55 11.44 11.05 13.61 72.56	6.46 13.45 13.27 12.65 15.32 77.42	6.34 15.58 15.81 14.46 18.06	6.69 16.96 17.50 16.00 20.05 75.86	6.97 16.87 17.76 16.12 20.40 60.12	7.72 14.95 15.91 13.65 18.14 69.57	9.08 12.99 13.81 12.01 15.85 68.97	10.97 10.13 11.65 10.43 13.77 73.90
44 N 130 H	SPO AIR SEA VPA VPS CLO	9.56 9.30 10.59 3.68 12.84 77.10	9.58 9.43 9.82 10.06 12.19 75.64	9.28 9.23 9.52 9.65 11.93 74.82	8.52 9.43 9.42 9.32 11.86 70.04	6.65 11.30 11.23 10.83 13.43 72.27	6.59 13.44 12.99 12.64 15.03 80.03	6.96 15.32 15.55 14.48 17.74 82.58	6.25 17.11 17.39 15.90 19.94 79.54	7.30 17.00 17.53 15.58 20.09 71.91	8.63 14.94 15.51 13.71 17.71 74.00	9.70 13.05 14.44 12.35 16.52 72.40	9.35 10.83 12.28 10.43 14.35 74.65
44 N 131 W	SPD AIR SEA VPA VPS CLO	10.04 9.70 10.54 10.18 12.81 76.14	9.10 9.74 10.18 10.38 12.49 79.28	8.27 9.17 9.51 9.81 11.94 71.93	7.21 9.76 10.02 10.06 12.40 70.43	7.18 11.84 11.42 12.13 13.54 72.43	6.62 13.66 12.66 13.62 14.76 82.16	6.13 15.48 15.49 17.67 81.98	5.35 17.67 17.64 17.34 29.29 74.05	7.34 17.27 17.80 16.90 29.44 73.36	8.86 14.97 15.86 13.60 18.10 70.99	7.69 12.64 13.44 12.22 15.47 75.94	9.78 11.36 12.15 11.36 14.23 82.98
44 N 132 W	SPO AIR SEA VPA VPS CLO	10.58 9.24 10.46 9.66 12.72 78.23	10.41 9.52 9.86 9.97 12.21 85.11	9.43 9.27 10.04 9.73 12.36 72.91	7.05 9.63 9.57 10.10 11.96 66.34	6.56 11.40 11.43 11.31 13.55 79.07	6.49 13.92 13.44 13.57 15.54 76.28	5.67 15.48 15.42 14.73 17.59 83.59	5.59 17.31 17.77 16.37 20.40 69.44	6.74 17.21 17.39 16.58 19.91 68.56	8.06 15.20 16.10 14.05 18.37 64.06	9.43 12.50 13.75 11.85 15.78 73.40	10.88 10.51 11.87 10.79 13.99 74.53
44 N 133 H	SPO AIR SEA VPA VPS CLD	10.16 9.39 11.72 11.13 12.95 79.12	10.43 9.43 9.90 9.95 12.23 74.34	9.12 9.22 9.84 9.75 12.68	8.27 9.57 9.84 9.28 12.17 69.77	6.61 11.23 11.14 10.99 13.31 82.18	7.12 13.34 13.58 12.60 15.66 83.43	5.29 15.42 15.43 17.39 17.37	6.05 17.01 17.51 16.02 20.07 84.07	6.89 16.95 17.56 15.93 20.14 80.59	8.27 14.91 15.85 13.26 18.08 72.01	8.40 12.79 14.16 11.96 16.23 70.83	10.18 10.43 12.03 10.73 14.11 80.19

LAT/LO	N	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
46 N 124 W	SPD AIR SEA VPA VPS CLO	6.70 6.36 8.13 9.25 10.89 69.54	7.20 7.91 9.65 9.66 11.55	6.75 8.05 9.23 9.20 11.69 65.30	7.40 8.62 9.89 9.72 12.20 66.02	6.85 11.34 11.58 12.29 13.68 67.62	6.01 13.47 13.16 13.88 15.19 72.62	6.20 14.72 13.98 15.50 16.02 62.74	5.32 15.11 14.37 16.27 16.46 55.90	5.44 14.02 13.78 14.95 15.80 48.36	6.20 11.67 12.34 12.26 14.40 46.70	7.60 10.18 10.73 11.24 12.92 67.34	8.49 7.02 9.13 9.31 11.62 73.21
46 N 125 W	SPO AIR SEA VPA VPS CLD	8.50 7.98 9.38 9.00 11.83 78.12	7.48 8.14 9.23 8.49 11.69 66.78	7.89 8.94 9.47 9.39 11.89 73.52	6.71 9.70 9.96 9.49 12.29 67.88	6.01 11.86 11.82 11.39 13.92 65.13	6.23 13.97 14.35 13.17 16.44 77.09	6.15 15.55 15.21 14.52 17.37 68.63	5.89 16.53 16.33 15.64 18.71 63.37	6.23 16.13 15.84 15.14 18.12 58.30	6.82 13.82 14.10 12.87 16.16 69.43	7.45 11.52 12.26 11.39 14.35 64.32	8.84 9.44 10.61 9.86 12.84 70.70
46 N 126 H	SPD AIR SEA VPA VPS CLD	8.28 9.13 9.20 9.93 11.69 76.52	6.32 9.35 9.59 9.71 12.08 62.74	7.68 8.17 9.51 8.74 11.92 72.69	7.06 9.43 10.09 9.56 12.48 65.93	5.98 11.54 11.52 11.13 13.66 74.07	6.87 13.45 13.52 12.50 15.59 78.12	6.82 15.86 15.94 14.64 18.17 69.39	6.60 16.52 17.27 15.06 19.76 60.20	6.42 16.61 16.76 15.20 19.13 67.56	7.69 14.05 14.87 12.34 16.98 62.77	8.66 11.67 12.21 11.27 14.30 71.77	8.18 9.57 10.53 9.62 12.78 67.33
46 N 127 W	SPD AIR SEA VPA VPS CLO	9.78 8.55 9.60 9.75 12.00 78.42	8.20 9.03 9.45 9.82 11.91 75.68	9.04 7.94 9.32 8.72 11.78 66.02	6.94 8.81 9.37 9.11 11.80 69.41	5.61 10.87 11.09 11.03 13.26 69.79	6.42 13.17 13.80 12.60 15.90 82.37	5.95 15.18 15.36 13.97 17.54 75.98	6.08 16.65 17.31 15.59 19.83 75.61	7.31 16.45 17.38 15.23 19.92 68.75	8.64 13.71 15.09 12.51 17.23 72.04	8.89 11.48 12.67 11.37 14.69 76.02	8.91 9.46 10.64 10.05 12.88 75.96
46 N 128 W	SPO AIR SEA VPA VPS CLO	9.09 8.71 9.86 9.34 12.22 77.50	8.10 8.70 9.20 9.49 11.69 73.94	8.48 8.07 8.88 8.66 11.44 71.16	7.35 9.17 8.87 9.24 11.42 68.51	6.43 10.92 11.03 10.63 13.19 67.96	6.64 12.81 13.07 12.35 15.08 79.47	6.61 15.13 14.92 14.19 17.05 70.17	5.70 16.56 17.02 15.68 19.51 84.77	6.28 16.09 16.89 14.90 19.32 64.47	8.88 13.71 14.62 13.01 16.71 66.17	9.19 11.75 12.96 11.16 15.00 72.53	9.22 9.52 11.12 9.70 13.29 76.95
46 N 129 W	SPO AIR SEA VPA VPS CLO	9.19 8.09 9.54 9.14 11.97 77.93	8.87 8.82 9.39 9.51 11.85 76.85	8.40 7.87 8.86 8.49 11.42 69.72	8.14 8.71 8.89 9.16 11.43 71.49	6.96 11.05 10.77 10.53 12.98 72.57	5.89 13.07 12.94 12.33 15.01 78.99	5.64 14.96 14.84 14.05 16.96 70.47	5.89 16.94 17.22 15.81 19.73 74.32	6.77 16.28 16.92 14.86 19.34 63.20	8.75 14.36 15.23 13.51 17.37 72.24	8.38 12.15 12.99 11.33 15.03 72.10	9.23 10.06 10.84 10.60 13.03 75.57
46 N 130 W	SPO AIR SEA VPA VPS GLO	9.49 8.15 9.62 8.84 12.01 76.09	8.91 8.57 9.28 9.33 11.74 73.89	9.23 8.29 8.89 8.77 11.43 70.00	8.31 8.45 8.80 8.85 11.36 71.91	6.37 10.77 10.28 10.57 12.56 76.14	6.48 12.67 12.72 12.01 14.76 80.20	5.99 14.91 14.90 14.22 17.01 85.29	6.55 16.94 16.64 15.95 18.99 79.47	7.60 16.25 16.92 14.93 19.34 67.72	8.43 14.06 14.84 13.05 16.95 69.75	8.77 11.70 12.93 11.24 14.95 73.19	9.91 9.87 11.02 10.15 13.19 78.83
46 N 131 H	SPD AIR SEA VPA VPS GLD	9.55 7.89 9.28 8.94 11.75 79.11	9.30 8.49 8.93 9.58 11.50 82.88	9.00 7.91 8.51 8.81 11.15 74.49	8.24 8.89 8.65 9.20 11.27 77.13	6.46 10.62 10.16 10.44 12.49 78.23	6.37 13.01 12.62 12.22 14.70 81.37	5.06 14.85 14.66 14.36 16.77 84.67	5.60 17.00 16.77 15.88 19.16 79.95	7.82 16.31 16.40 15.56 18.73 67.39	8.65 14.12 14.94 12.88 17.07 73.61	10.08 12.00 12.89 11.68 14.92 76.75	9.96 9.32 10.63 9.91 12.88
46 N 132 W	SPD AIR SEA VPA VPS CLO	9.42 7.79 8.38 9.09 11.08 67.08	8.94 8.31 9.29 9.55 11.77 79.74	9.26 7.30 8.82 8.73 11.38 72.77	7.26 8.84 8.80 9.67 11.37 74.77	6.29 10.56 10.00 10.90 12.40 73.42	6.54 13.48 12.34 13.24 14.43 84.85	6.17 15.27 14.76 14.82 16.89 86.34	6.12 16.80 16.70 15.56 19.08 80.57	7.98 16.82 16.59 15.89 18.94 70.26	8.54 13.78 14.76 12.53 16.85 72.38	9.57 11.93 13.01 11.40 15.04 75.51	9.93 9.80 10.84 10.18 13.05 84.06
46 N 133 W	SPD AIR SEA VPA VPS CLO	9.76 7.32 9.21 8.38 11.69 77.96	11.25 8.24 9.61 9.44 11.23 75.76	9.21 7.69 8.40 8.42 11.06 83.21	8.90 8.18 8.73 8.82 11.31 77.08	7.86 10.21 9.64 10.18 12.03 84.12	6.22 12.75 12.10 12.29 14.19 85.65	6.37 15.09 14.46 14.12 16.52 85.71	6.53 16.29 16.56 15.23 18.91 82.24	7.55 15.84 16.63 18.59 77.84	8.90 13.69 14.68 12.82 16.78 73.38	10.81 11.57 12.59 11.08 14.65 74.28	10.97 8.70 10.43 12.68 80.85

s

LAT/LON	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP	OCT	NOV	DEC
47 N SPD	9.00	8.26	6.37	6.34	5.11	4.21	6.17	4.79	3.64	4.52	5.35	6.17
124 H AIR	7.23	7.25	8.92	9.08	10.88	12.92	15.03	14.58	15.13	11.80	10.01	10.08
SEA	8.24	8.58	9.62	10.00	10.75	12.75	13.21	13.43	15.06	12.34	10.19	11.28
VPA	8.43	8.57	9.39	9.46	10.43	12.03	13.91	14.89	14.29	11.65	9.86	10.69
VPS	10.97	11.21	12.01	12.30	12.99	14.81	15.28	15.49	17.17	14.48	12.46	13.39
CLD	81.25	73.68	73.43	71.42	58.03	74.21	40.62	58.65	57.69	58.33	75.12	75.00
47 N SPD	8.94	7.84	7.62	6.80	5.61	5.33	5.67	4.40	5.14	6.70	7.50	8.88
125 W AIR	7.77	8.36	8.08	9.18	11.89	13.61	14.79	15.94	15.41	12.43	10.61	8.93
SEA	9.11	8.86	9.08	9.69	11.69	13.77	14.26	15.89	15.02	13.01	11.53	10.95
VPA	8.90	8.85	8.81	9.42	11.34	13.08	14.29	15.52	14.70	12.06	10.39	9.53
VPS	11.61	11.43	11.59	12.06	13.82	15.82	16.36	18.16	17.20	15.06	13.65	12.38
CLO	77.16	69.92	71.31	71.70	69.55	72.09	66.48	58.86	57.18	70.65	69.45	76.07
47 N SPO	8.79	8.13	7.64	7.09	6.09	6.60	6.13	5.70	6.53	7.31	7.69	5.04
126 W AIR	7.40	8.43	8.01	8.84	11.31	13.73	15.11	15.92	15.44	13.57	11.12	9.08
SEA	9.10	8.77	8.40	9.12	11.21	13.35	14.93	16.33	15.91	13.82	11.57	10.08
VPA	8.85	9.42	8.63	9.33	11.10	13.07	14.74	15.21	14.61	12.96	10.99	9.48
VPS	11.62	11.35	11.04	11.61	13.37	15.42	17.06	18.66	18.20	15.87	13.68	12.42
CLO	76.42	70.23	66.01	71.76	68.45	79.11	62.16	69.96	56.41	62.30	72.91	67.30
47 N SPD	9.63	8.46	7.72	7.73	6.58	6.23	6.47	6.55	7.42	7.38	8.51	8.66
127 W AIR	7.75	8.05	7.53	8.68	11.07	13.53	15.16	16.69	15.84	13.63	11.36	9.00
SEA	9.06	9.07	8.58	8.87	11.06	13.50	15.33	16.82	16.00	14.00	12.08	10.10
VPA	8.82	9.14	8.37	9.09	10.94	12.82	14.33	15.48	14.87	12.81	11.30	9.57
VPS	11.57	11.61	11.21	11.42	13.25	15.54	17.50	19.22	18.29	16.08	14.09	12.41
CLO	71.11	68.45	69.04	71.48	67.40	80.95	69.04	68.09	57.08	60.03	75.42	75.37
47 N SPD	9.35	8.85	8.40	8.15	6.05	6.37	5.81	6.17	7.94	8.37	8.28	9.35
128 W AIR	7.93	7.93	7.93	8.77	10.41	12.81	15.24	16.46	16.02	14.23	11.73	9.62
SEA	8.93	8.49	8.51	8.72	10.46	13.16	15.43	16.91	16.55	15.21	12.91	10.53
VPA	9.10	9.25	8.67	9.22	10.47	12.34	14.40	16.12	14.60	13.76	11.21	9.95
VPS	11.47	11.13	11.14	11.31	12.77	15.23	17.58	19.32	18.91	17.33	14.98	12.76
CLO	76.00	79.86	65.21	79.70	71.64	81.42	73.30	71.25	62.27	75.48	70.67	76.63
47 N SPO 129 W AIR SEA VPS CLO	9.47 7.45 9.00 8.53 11.52 67.18	9.41 7.80 8.08 9.07 10.85 73.75	8.77 7.91 8.27 8.49 10.97 64.73	7.66 8.76 8.74 9.36 11.32 78.33	6.02 10.79 10.35 10.56 12.61 64.61	6.65 13.64 12.38 12.80 14.47 75.61	6.43 15.26 14.50 14.67 16.56 84.32	6.23 16.82 17.00 15.92 19.46 80.86	6.80 15.78 16.77 15.09 19.17 64.31	8.62 14.22 15.19 13.38 17.31 77.45	8.59 11.79 12.81 11.14 14.91 71.13	9.29 9.05 10.32 9.53 12.58 79.30
47 N SPD	19.64	10.93	9.88	7.07	6.04	6.85	6.09	6.38	7.45	9.84	10.48	9.04
130 W AIR	9.11	8.95	8.16	8.71	10.27	13.08	15.64	17.69	16.11	13.80	11.44	10.18
SEA	19.03	10.05	9.23	8.55	10.00	12.56	15.39	17.11	17.20	15.39	12.46	10.98
VPA	9.84	9.42	8.83	9.08	10.26	12.10	14.63	16.50	15.40	12.92	11.46	10.39
VPS	12.33	12.39	11.68	11.16	12.33	14.59	17.53	19.57	19.66	17.56	14.50	13.13
CLD	74.63	79.72	79.56	82.09	85.06	80.76	85.58	83.08	65.32	72.84	75.08	73.51
47 N SPO 131 W AIR SEA VPA VPS CLD	9.46 7.71 8.96 9.21 11.48 74.50	9.28 8.18 8.30 9.19 10.99 76.89	8.33 7.59 8.41 8.75 11.10 77.38	7.16 8.11 8.00 6.76 10.76 76.87	6.31 10.95 10.23 11.03 12.52 76.56	6.41 13.16 12.63 12.41 14.71 85.03	6.50 14.41 14.19 14.04 16.26 86.35	6.32 16.79 16.93 16.04 19.36 76.25	7.39 16.37 16.95 15.96 19.38 72.35	9.24 13.70 14.48 12.87 16.57 72.58	9.93 11.30 12.43 11.45 14.48 78.40	10.21 10.44 10.44 10.63 12.70 63.58
47 N. SPD 132 W AIR SEA VPA VPS CLD	10.70 7.50 8.66 8.88 11.26 73.86	8.71 7.42 8.00 8.82 10.76 76.10	8.87 7.49 8.11 8.72 10.86 72.45	8.35 8.23 7.97 9.09 10.73 73.50	6.56 10.32 9.99 10.77 12.35 77.27	6.43 12.17 11.10 12.21 13.31 85.18	6.81 14.40 14.27 14.09 16.34 86.07	6.58 16.29 16.21 15.91 18.53	7.65 16.20 16.36 15.J4 18.68 71.17	9.87 12.55 14.54 12.06 16.67 71.85	9.07 11.18 12.13 11.00 14.20 79.64	10.65 10.64 10.62 12.39 79.30
47 N SPD 133 W AIR SEA VPA VPS CLD	9.62 6.91 8.23 8.21 10.95 82.81	9.19 7.55 8.07 8.79 10.83 76.87	9.17 7.28 7.69 8.22 10.54 79.59	9.32 7.82 8.00 8.68 10.76 76.75	7.32 9.53 9.17 9.87 11.67 85.00	6.76 11.80 11.47 11.75 13.62 88.33	5.93 14.06 13.47 13.44 15.51 87.50	6.27 16.33 16.09 15.44 18.36	7.34 15.48 15.70 14.88 17.89 74.78	8.28 13.27 14.47 12.36 16.54 71.47	11.08 10.66 11.79 10.67 13.66 76.44	9.83 8.48 9.94 9.28 12.36

LAT/LO	N	JAN	FEB	MAR	APR	HAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
50 N 127 W	SPD AIR SEA VPA VPS CLD	7.26 6.12 7.18 7.83 10.22 88.88	9.33 7.75 7.25 9.25 10.22 87.50	8.27 7.33 6.64 7.70 9.81 70.19	7.57 8.48 8.55 8.39 11.17 68.75	5.84 10.31 10.48 9.43 12.78 64.77	4.41 11.86 11.38 11.29 13.60 88.54	6.04 14.67 13.68 14.31 15.83 57.89	3.83 13.74 11.31 13.08 13.59 73.43	5.50 12.88 10.80 12.91 13.14 63.58	7.39 11.10 10.44 10.61 12.78 78.57	9.99 7.21 9.72 8.74 12.07 83.33	8.69 7.57 7.42 8.12 10.39 81.25
50 N 128 W	SPO AIR SEA VPA VPS CLD	9.79 6.19 8.24 8.06 10.94 82.42	9.17 7.00 8.13 9.10 10.87 78.80	7.92 7.71 8.10 8.39 10.83 83.92	8.19 7.99 8.84 8.71 11.39 69.81	6.53 10.16 10.46 10.32 12.72 65.00	7.38 12.70 12.26 11.90 14.34 61.88	6.71 13.81 13.19 13.87 15.25 63.55	6.22 15.79 14.22 15.53 16.38 51.63	5.80 13.86 13.15 13.42 15.21 55.95	7.08 11.88 11.97 11.85 14.11 71.68	7.57 9.56 10.76 10.00 12.95 74.77	18:31 7.63 9.10 8.72 11.61 74.64
50 N 129 W	SPD AIR SEA VPA VPS CLD	9.32 7.01 8.36 8.41 11.04 79.77	9.14 7.54 7.95 8.82 10.73 78.92	8.90 6.80 7.74 8.29 10.59 78.62	9.20 7.87 8.51 8.76 11.14 68.13	6.25 10.31 9.93 10.23 12.28 67.41	7.65 12.45 12.26 12.23 14.35 79.43	7.22 14.28 13.79 13.82 15.86 67.13	6.46 15.48 15.04 15.19 17.19 74.87	7.89 14.54 14.30 14.12 16.39 65.43	8.64 12.02 12.50 11.83 14.55 64.85	9.17 9.18 10.40 9.79 12.66 79.16	9.02 6.89 8.79 8.21 11.36 77.55
50 N 130 W	SPO AIR SEA VPA VPS CLO	10.05 6.79 8.46 8.46 11.12 82.99	9.23 7.16 7.83 8.58 10.65 80.74	9.22 7.07 7.74 8.23 10.57 76.22	7.87 8.07 8.22 8.79 10.94 73.06	7.02 9.62 9.73 10.00 12.11 70.52	6.62 11.71 11.56 11.88 13.68 81.48	6.67 13.90 13.74 13.70 15.77 79.87	7.16 15.58 15.18 14.98 17.34 77.15	7.86 14.77 14.80 14.62 16.90 68.04	8.45 12.34 13.25 12.14 15.28 73.25	9.53 10.08 11.05 10.38 13.22 77.02	8.59 7.93 9.36 9.23 11.79 83.56
50 N 131 W	SPD AIR SEA VPA VPS CLD	9.59 6.77 8.44 8.20 11.10 74.26	10.17 7.12 8.04 8.45 10.79 75.33	9.31 6.76 7.49 8.11 10.48 74.55	7.84 7.61 8.13 8.76 10.85 71.59	6.89 9.62 9.51 9.81 11.93 73.12	6.11 11.82 11.54 11.52 13.65 82.74	6.36 13.86 13.58 13.52 15.62 81.40	6.69 15.44 15.36 15.11 17.52	7.85 14.70 14.83 14.27 16.92 73.60	8.94 12.58 13.19 12.21 15.21 75.68	9.53 9.95 10.99 10.08 13.18 76.62	9.90 8.00 9.12 9.23 11.63 72.33
50 N 132 W	SPD AIR SEA VPA VPS CLO	9.27 6.04 7.58 7.82 10.45 81.06	8.86 6.60 7.31 8.54 10.28 80.57	8.88 6.05 7.20 7.77 10.18 76.19	7.61 7.46 7.45 8.48 10.38 71.42	6.57 8.94 9.17 9.62 11.65 75.32	6.59 11.16 11.03 11.53 13.22 84.88	6.22 13.26 13.36 13.08 15.38 84.28	6.27 15.31 15.31 14.79 17.47 77.48	7.85 14.48 14.70 13.97 16.80 68.93	9.78 12.11 12.83 11.90 14.86 76.93	10.31 9.40 10.56 9.85 12.82 78.21	9.96 6.99 8.67 8.66 11.26 68.75
50 N 133 H	SPD AIR SEA VPA VPS CLO	9.29 6.û1 7.64 7.89 10.50 82.61	10.38 6.21 7.17 8.17 10.17	9.45 6.32 6.98 7.96 10.03 75.97	7.97 6.96 7.42 8.29 10.36 70.79	7.10 8.93 8.90 9.47 11.44 77.18	6.90 11.33 10.97 11.50 13.15 85.99	6.14 13.27 13.23 13.38 15.27 85.52	6.62 15.00 14.88 14.54 16.98 79.16	8.17 14.27 14.39 13.75 16.46 70.99	9.13 12.02 12.81 11.43 14.85 70.56	10.48 9.36 10.19 9.79 12.50 79.00	11.43 7.31 8.40 8.60 11.07 79.72
50 N 134 W	SPO AIR SEA VPA VPS GLO	10.96 6.29 8.60 8.33 11.23	9.16 7.11 7.45 8.52 10.37 79.69	8.11 6.54 7.13 7.94 10.12 73.59	8.42 7.01 7.05 8.19 10.08 74.85	7.13 8.88 8.70 9.42 11.30 81.25	6.72 11.14 10.33 11.51 12.59 89.00	4.92 13.43 13.12 13.04 15.16 82.25	6.87 14.91 15.24 14.56 17.39 82.23	7.95 14.12 14.13 13.10 16.18 72.14	9.83 12.04 12.65 11.63 14.69 76.00	10.42 6.56 10.57 9.34 12.81 76.02	10.72 7.10 9.18 8.64 11.66 77.78
50 N 135 W	SPD AIR SEA VPS CLD	10.58 5.77 7.05 7.65 10.09 77.28	10.29 6.29 6.92 8.06 9.99 81.82	9.32 6.13 6.77 7.81 9.90 68.91	8.68 6.73 6.94 8.16 10.01 70.42	7.45 8.31 8.36 9.15 11.07 78.69	6.76 10.48 10.38 11.06 12.66 89.74	5.63 12.87 12.67 12.96 14.72 89.98	6.61 14.81 14.71 14.52 16.81 85.00	8.97 15.00 14.99 14.42 17.11 74.66	9.90 11.86 12.56 11.34 14.62 73.02	10.39 9.18 10.39 9.69 12.66 76.98	10.09 6.76 8.25 8.11 10.95 78.44
50 N 136 W	SPD AIR SEA VPS CLO	9.84 6.18 7.47 7.78 10.39 77.36	10.33 6.30 7.64 8.30 19.51 80.64	8.37 6.22 7.21 8.01 10.18 79.72	9.17 6.56 6.51 7.83 9.71 79.05	7.97 8.02 8.32 8.72 11.03 82.05	7.59 11.22 10.89 11.34 13.08 90.02	5.41 12.67 12.39 12.56 14.43 92.14	6.69 14.60 14.28 14.14 16.35 86.73	8.47 13.78 14.66 13.30 16.10 76.57	10.01 11.70 12.60 11.42 14.69 77.25	10.98 8.56 9.76 8.86 12.12 78.50	11.08 7.27 8.10 6.73 10.82 83.00