NOAA Technical Report NMFS SSRF-705

Migration and Dispersion of Tagged American Lobsters, Homarus americanus, on the Southern New England Continental Shelf

Joseph R. Uzmann, Richard A. Cooper, and Kenneth J. Pecci

January 1977

[^0]
NOAA TECHNICAL REPORTS

National Marine Fisheries Service, Special Scientific Report-Fisheries

The major responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establiah levela for optimum wee of the resources. NMFS is alan chareed with the development and implementation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, surveillance of foreign fishing off United States constal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through marketing service and economic analysis programs, and mortgage insurance and vessel construction subaidies. It collects, analyzes, and publishes atatiatica on various phases of the industry.

The Special Scientific Report-Fisheries series was entablished in 1949 The sevies carries reports an wrientific inveatigations that doevment long-term continuing programs of NMFS, or intensive scientific reports on studies of restricted scope. The reports may deal with applied fiahery problems. The series is also used as a medium for the publication of bibligraphiss of a specialized acientific nature.

NOAA Technical Reports NMFS SSRF are available free in limited numbers to governmental agencies, both Federal and State. They are also available in exchange for other scientific and technical publications in the marine sciences. Individual copies may be obtained (unleas otherwise
 are:
649. Distribution of forage of skipjack tuna (Euthynnus pelamis) in the eastern tropical Pacific. By Maurice Blackburn and Michael Laurs. January 1972, iii + 16 n . 7 figs , 3 tahles For sale by the Sumerintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.
650. Effects of some antioxidants and EDTA on the development of rancidity in Spanish mackerel (Scomberomorus maculatus) during frozen storage. By Robert N. Farragut. Pebruary 1972, fv + 12 p. \&f fign, 12 tables. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

651 The effect of premortem stress, holding temperatures, and freezing on the biochemistry and quality of skipjack tuna. By Ladell Crawford. Anril 1970 iii +23 n 3 figo 4 tahles For sale hy the Sonverintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402
653. The use of electricity in conjunction with a 12.5 -meter (Headrope) Gulf-of-Mexico shrimp trawl in Lake Michigan. By James E. Ellis.
 of Documents, U.S. Govermment Printing Office, Washington, D.C. 20402.
654. An electric detector system for recovering internally tagzed menhaden, genus Breooortia. By R. O. Parker, Jr. February 1972, iii +7 p., 3 figs. 1 app. table. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.
655. Immobilization of fingerling salmon and trout by decompression. By Doyle F. Sutherland. March 1972, iii + 7 p., 3 figs., 2 tables. For sale by the Superintendent of Documents 118 Givernment Printing Rffiee Washington, D.C. 20402.
656. The calico scallop, Argopecten gibbus. By Donald M. Allen and T. J. Costello. May 1972, iii +19 p., 9 figs., 1 table. For sale by the Superintendent of Decomente, its Government Printing office Washington, D.C. 20402.
657. Making fish protein concentrates by enzymatic hydrolysis. A status report on research and some processes and products studied by NMFS By Malcolm R Hale November 1972 , +32 p, 15 figt, is tables, 1 app table. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.
658. List of fishes of Alaska and adjacent waters with a guide to some of their literature. By Jay C. Quast and Elizabeth L. Hall, July 1972, iv + 47 p . For sale by the Superintendent of Documents 118 Government Printing Office, Washington, D.C. 20402.
659. The Southeast Fisheries Center bionumeric code. Part I: Fishes. By Harvey R. Bullis, Jr., Richard B. Roe, and Judith C. Gatlin. July $1972, \mathrm{xl}+95 \mathrm{p} .2$ figs. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.
660. A freshwater fish electro-motivator (FFEM)-its characteristics and operation. By James E. Ellis and Charles C. Hoopes. November 1972, ii +11 p., 2 figs.
661. A review of the literature on the development of skipjack tunt fisheries in the central and western Pacific Ocean. By Frank J. Hesten and Tamion Otes January iona if +13 p . I Ke Fore eale by the Superintendent of Documents, U.S. Govemment Printing Office, Washington, D.C. 20402.
©62. Seasonal diatribution of tunas and bilifishes in the Atlantic. By John P. Wise and Charles W. Davis. January 1973, iv +24 p, 13 figa, 4 table- For sole hy the supprintendent of Dusument. it s Conemment Priating Office, Wauhington, D.C 20402
(6a). Fish larvar collected from the northrastern Pacific Ocean and Puget Sound during April and May 1907. By Kenneth D. Waldron. Dectmber 1970 tit +16 p .26 gm , 1 tahle 4 fpp twhlem Por tele by the Superiniendent of Dowuments. US. Goverament Printing Offict, Washington, D. C. 20402.
est. Tazzing and tar rewovery experiments with Atlantic menhaden, Brevortia tyrannus. By Richard L. Kroger and Robert L. Dryfoos. December 1972 iv +11 p. 4 firn, i2 tabler. For tele by the Superintm dent of Documents, U. 8 . Govemment Printing Office, Weshington, D.C 20402.
tes. Larval fish survey of Humbolt Bay, Califomia. By Maxwell B Eldrige and Charles F. Bryan. December 1972, iii +8 p. 8 figs., 1 table For sole by the Superint endent of Duscuments, 118 Gorttmment Printint Office, Washington, D.C. 20602
esf. Distribution and relative abundance of fishes in Newport River North Carolina. By William R. Turner and George N. Johnson Septemher 1979 it $+n_{p} p$ i 1 f , 13 tuble, Fer tele by the Superinter dent of Documents, U.S. Government Printing Office, Washington, D.C 20402.
667. An analyxis of the commercial lobster (Homarus americanus) fishery along the coast of Maine, August 1966 through December 1970. By James C. Thomas. June $1973, \mathrm{v}+57 \mathrm{p}$. 18 fies. 11 tahlec For sale by the Superintendent of Documents, U.S. Government Printing Office. Washington, D.C. 20402.
668. An annotated bibliography of the cunner, Tautogolabrus adspersus (Wilbaum). By Fredric M. Serchuk and David W. Frame. May 1973, ii + 19 p P. For mele by the Quperintendent of Documents, U'\& Goverment Printing Office, Washington, D.C. 20402.
609. Subpoint prediction for direct readout meterological satellites. By L. E. Eber. August 1973, iii +7 p., 2 figs., 1 table. For sale by the Superintendent of Documents if s Government Printing Office Washington, D.C. 20402.
670. Unharvested fishes in the U.S. commercial fishery of western Lake Erie in 1969. By Harry D. Van Meter. July 1973, iii + 11 p., 6 figs., 6 tables. For sale by the Superintendent of Documents it 8 Gevernment Printing Office, Washington, D.C. 20402.
671. Coastal upwelling indices, west coast of North America, 1946-71. By Andrew Bakun. June 1973, iv +103 p., 6 figs., 3 tables, 45 app. figs. For sale by the Superintendent of Documents, 118 Government Printing Office, Washington, D.C. 20402.

NOAA Technical Report NMFS SSRF-705

Migration and Dispersion of Tagged American Lobsters, Homarus americanus, on the Southern New England Continental Shelf

Joseph R. Uzmann, Richard A. Cooper, and Kenneth J. Pecci

January 1977

[^1]The National Marine Fisheries Service (NMFS) does not approve, recommend or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to NMFS, or to this publication furnished by NMFS, in any advertising or sales promotion which would indicate or imply that NMFS approves, recommends or endorses any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchased because of this NMFS publication.

CONTENTS

Page
Introduction 1
Materials and methods 1
Data reduction, plotting, and format 4
Original station locations 4
Composite station locations 4
Composite of recoveries 6
Definition of lobster maturity 6
Migration versus dispersion 6
Composite station résumés 9
Composite station 1 9
Composite station 2 9
Composite station 3 10
Composite station 4 10
Composite station 5 10
Composite station 6 10
Composite station 7 11
Composite station 8 11
Composite station 9 11
Composite station 10 11
Composite station 11 12
Composite station 12 12
Composite station 13 12
Composite station 14 12
Composite station 15 13
Composite station 16 13
Composite station 17 13
Composite station 18 14
Composite station 19 14
Composite station 20 15
Composite station 21 15
Composite station 22 16
Composite station 23 17
Composite station 24 17
Composite station 25 17
Composite station 26 18
Composite station 27 18
Composite station 28 18
Composite station 29 18
Summary of defined movements 60
Depth distribution at recapture 60
Average monthly bottom temperatures 62
Conclusions 62
Summary 62
Acknowledgments 63
Literature cited 63
Appendix tables 64
Figures

1. Original station locations and nearby canyons 3
2. Composite station locations and nearby canyons 5
3. Composite of tagged lobster recoveries, 1968-72 7
4. Composite of tagged lobster recoveries grouped by 6-minute squares, 1968-72 8
5. Recoveries from composite station 2 19
6. Recoveries from composite station 3 20
7. Recoveries from composite station 4
8. Recoveries from composite station 5
9. Recoveries from composite station 6
10. Recoveries from composite station 7
11. Recoveries from composite station 8
12. Recoveries from composite station 9
13. Recoveries from composite station 11
14. Recoveries from composite station 12
15. Recoveries from composite station 13
16. Recoveries from composite station 14
17. Recoveries from composite station 15
18. Recoveries from composite station 16
19. Recoveries from composite station 17
20. Recoveries from composite station 18 plotted by 6 -minute squares
21. Recoveries from composite station 19 plotted by 6 -minute squares
22. Recoveries from composite station 20
23. Recoveries from composite station 21
24. Recoveries from composite station 22 plotted by 6 -minute squares
25. Recoveries from composite station 23
26. Recoveries from composite station 24
27. Recoveries from composite station 25
28. Recoveries from composite station 27
29. Recoveries from composite station 29 plotted by 6 -minute squares
30. Shoalward migrations of 60 nautical miles (111 km) or greater and probable shoalward migrations of 50 nautical miles (92.7 km), Baltimore Canyon to Corsair Canyon
31. Shoalward migrations greater than 10 nautical miles (18.5 km) but less than 60 nautical miles (111 km), Block Canyon to Oceanographer Canyon
32. Shoalward migrations greater than 10 nautical miles $(18.5 \mathrm{~km})$ but less than 60 nautical miles (111 km) originating near Corsair Canyon
33. Mean depth of recapture of tagged lobsters by quarterly periods, 1968-71
34. Composite of recoveries by months by 6 -minute squares with mean monthly bottom temperature-January
35. Composite of recoveries by months by 6-minute squares with mean monthly bottom temperature-February
36. Composite of recoveries by months by 6 -minute squares with mean monthly bottom temperatureMarch
37. Composite of recoveries by months by 6 -minute squares with mean monthly bottom temperatureApril
38. Composite of recoveries by months by 6 -minute squares with mean monthly bottom temperatureMay
39. Composite of recoveries by months by 6 -minute squares with mean monthly bottom temperatureJune
40. Composite of recoveries by months by 6 -minute squares with mean monthly bottom temperatureJuly
41. Composite of recoveries by months by 6-minute squares with mean monthly bottom temperature-August
42. Composite of recoveries by months by 6-minute squares with mean monthly bottom temperature-September
43. Composite of recoveries by months by 6 -minute squares with mean monthly bottom temperature-October
44. Composite of recoveries by months by 6 -minute squares with mean monthly bottom temperature-November
45. Composite of recoveries by months by 6 -minute squares with mean monthly bottom temperature-December

Tables

1. Summary of offshore lobster tagging, 1968-71: station references, releases, recaptures

Recapture data for 74 shoalward migrating lobsters demonstrating shoaling of 10 fathoms (18.3 m) or more and 22 probable migrants whose recapture location was at least 50 nautical miles (92.7 km) from release and at least 50 miles from nearest margin of continental shelf

Migration and Dispersion of Tagged American Lobsters, Homarus americanus, on the Southern New England Continental Shelf

JOSEPH R. UZMANN, RICHARD A. COOPER, and KENNETH J. PECCI ${ }^{1}$

Abstract

An apparently contiguous stock of American lobsters, Homarus americanus, is concentrated along the outer continental shelf margin and slope from Corsair Canyon westward and southward to the region of Baltimore Canyon. Between April 1968 and May 1971 we captured, tagged, and released a total of 7,326 lobsters at 52 localities between Corsair Canyon and Baltimore Canyon. As of December 1972, 945 recaptures (12.9% recovery) had been reported, providing a basis for interpretation of seasonal and long-term movements, as well as measurements of growth rate and moult frequency. A classification scheme is developed and applied to distinguish between apparently directed seasonal movements (migrations), localized movements of less than 10 nautical miles (18.5 km), and longperiod (>120 days) dispersions of 10 miles or more. This last category includes point to point tracks that cannot be objectively resolved in terms of directionality and may represent random dispersal, a summation of seasonally directed tracks, or both.

We conclude from the track analyses that at least 20% of the offshore lobsters annually engage in directed shoalward migrations in spring and summer with return to the shelf margin and slope in fall and winter. This conclusion is reinforced by independent analysis of the time/depth/temperature associations of tagged lobsters at recapture which, of itself, suggests that an even larger proportion of the offshore lobsters annually effect directed migrations in response to seasonal temperature variations.

INTRODUCTION

Commercial concentrations of American lobsters, Homarus americanus, inhabit the outer continental shelf and slope off southern New England and the Middle Atlantic states southward to Virginia. The history, levelopment, and recent status of this resource have peen summarized in the collective studies of Firth 1940), Schroeder (1955, 1959), McRae (1960), Hughes 1963), Saila and Flowers (1968), Skud and Perkins 1969), Uzmann (1970), and Cooper and Uzmann (1971). Chis report is an extension of the last mentioned paper ind deals further with findings and implications of easonal and long-term movements derived from an exensive tagging program conducted over the period 1968 12.

Schroeder (1959) defined the offshore lobster populaion as "a population of lobsters, large enough to support ommercial fishing off the east coast of the United States tlong the outer shelf and upper slope between the eastern jart of Georges Bank and the offing of Delaware Bay. This area at depths of roughly $60-250 \mathrm{fm}(110-450 \mathrm{~m})$ is ibout 400 miles long and 5-10 miles wide. Lobsters are nore plentiful along the eastern half of this stretch than o the west and south."
The offshore lobster fishery, so-called, has rapidly issumed a role of prominence among the major offshore

[^2]fisheries of the northwest Atlantic. A brief review of its growth over the past two decades will place it in perspective relative to the long established coastal fishery and indicate its future trend.

Like the coastal stocks from Maine to New Jersey, the offshore stock has sustained a steadily increasing rate of exploitation since the mid-fifties prior to which time it ranked as a minor fishery with the majority of catches taken incidental to trawling for groundfish species. Following World War II, the coastal fishery expanded rapidly to a peak yield in 1960 of 29 million pounds (13.2 million kg) and has since declined measurably despite increased fishing effort; meanwhile, offshore lobster catches increased from nearly 2 million pounds (0.9 million kg) in 1960 to over 8 million pounds (3.6 million kg) in 1970. Ungrouped landings statistics indicate that U.S. lobster production is relatively stable at some 30 million pounds (13.6 million kg) annually, but the fact of the matter is that offshore production has annually offset the decline of coastal landings. From 1968 to 1970 offshore lobster landings averaged over 20% of the U.S. catch.

MATERIALS AND METHODS

The tagging program reported here was conducted as part of the work plan of 14 research cruises over the period 1968-71 during which time a total of 7,326 lobsters were tagged and released at 52 localities along the outer edge of the continental shelf from Corsair Canyon west
and south to Baltimore Canyon (Fig. 1, Table 1). The lobsters were taken with otter trawls or traps (five localities only) at depths of $35-300$ fathoms ($64-549 \mathrm{~m}$), then tagged and released within a day after capture and within 2.7 nautical miles (5 km) of the capture site. Tagging methodology has been described previously by Cooper (1970). Essentially, the tag consists of coded polyvinyl chloride tubing with a polyethylene monofilament leader and stainless steel anchor implanted in the right or left dorsal extensor muscle below the carapace. The anchor is inserted with the aid of a hypodermic needle through the connecting membrane between the carapace and the first abdominal segment. The membrane breaks down at ecdysis to permit withdrawal of the lobster from the old exoskeleton and the implanted tag is thus retained through successive molts.

The tagging program and its objectives were initially well advertised with letters and poster notices being sent to all New England and Middle Atlantic state fisheries commissioners, to all vessel captains known to engage in the offshore lobster fishery, and to all major buyers and wholesalers of lobsters. Port agents of the National Marine Fisheries Service were specially briefed and then
maintained continuing liaison with the lobster fisherme and dealers.

In a preliminary paper Cooper and Uzmann (1971 reported 400 returns from 5,710 releases through 196 (7.0% reported recapture); in 1970 and 1971 additiona releases raised the total number tagged and released t 7,326 , of which a cumulative total of 945 recoveries ha been reported to us as of 15 December 1972. Thus, the ac cumulated reported recaptures is currently 12.9% and in creasing at a decreasing rate annually by virtue o natural mortality of the tagged population, tag loss, non recognition of tags, possible emigration into areas witl little or no commercial fishery, removal and nonreportin by U.S. fishermen and various elements of the foreig fishing fleet, and possibly, increased incidence of non reporting because of fishermen apathy. We offer the las theoretical reason because renewed publicity and an in crease in the tag return reward from $\$ 1.00$ to $\$ 5.00$ in 0 c tober 1971 failed to elicit a significant increase in the ta return rate despite a significant input $(1,142)$ of newl tagged lobsters in that calendar year. This hypothesis i further supported by calculations of expected returns pe annum under the condition of exponential decline of th

Table 1.-Summary of offshore lobster tagging, 1968-71: station references, releases, and recaptures.'

	Composite station number	Original station number(s)		Plot position			Lat. N	Long. W

[^3]
tagged population at a theoretical summed rate of 23% per annum (12% tag loss, 6% natural mortality, 5% recapture). In calendar year 1972, for example, the theoretical number of tagged lobsters outstanding at the beginning of the year was 3,630 ; the expected number of returns for 1972 based on the average rate of returns (0.049) in years 1968-71 is 179 , in sharp contrast to 67 actual returns.
The distribution of recaptured tagged lobsters is considered representative of the distribution of the lobster population. Fishermen search for commercial quantities of lobsters throughout the year at depths of 10-350 fathoms ($18-640 \mathrm{~m}$), which is a considerably greater range than the $35-300$ fathoms ($64-549 \mathrm{~m}$) depth interval from which lobsters for tagging were initially captured.

DATA REDUCTION, PLOTTING, AND FORMAT

Data received on individual recaptures varied considerably. Data sought included date and position of recapture (latitude and longitude, or loran A coordinates), sex, carapace length, presence or absence of external eggs, cheliped configuration, and designation of any missing chelipeds and walking legs. The most critical data were location and date of recapture, and carapace length from which both migration trends and growth could be determined; this was received on 350 of the recaptured lobsters. Recapture location and date only were received on 576 individuals and provide the basis for analysis of movements.

Data was listed and keypunched in two different formats. The data format (see appendix tables) for this study includes growth increments for reader reference, but this element of the study is being treated separately; return data is listed chronologically by sex. The basic data deck provided input for computer calculation for individual recaptures of great circle distance traveled from point of release to point of recapture, days at large, and other standard computations such as mean distance traveled and mean time at large by various groupings of individuals. The same data deck served as input for a Cal-Comp Plotter, Model 663, from which release coordinates, recapture coordinates, or combinations of both were plotted in various combinations to reveal and display the overall features of dispersion within and between release groups and to show the overall monthly distribution of recaptures. The Cal-Comp Plotter was simultaneously programmed and fed a series of coastline coordinates, isobath coordinates, and titular information such that the finished plot was a Mercator chart drawing to the nominal scale of $1: 1,200,000$.

Among the 945 recaptured lobsters, 584 (61.8%) were reported by specific location, 183 (19.4%) by generalized location-usually by reference to a named submarine canyon, and 178 (18.8%) without location information of any kind. Those recaptures reported by approximate location are hand-plotted in distinctive fashion within the machine plots of the various subgroups of returns with specific location.

In order to facilitate interpretation of recovery data we have treated the 52 original releases as 29 according ti the constraints footnoted in Table 1. This action minimized the plotter executions and gave mor coherence to the individual plots. Test plots of recover coordinates showed a number of cases where overplottin or tight grouping of recovery points resulted in a confu sion of points and numbers. In these instances we used plotting subroutine which plotted all points within o upon the eastern and southern side of a given 6 -minut square (0.1° square) as a single point with collectiv number at the diagonal center of the square; the averag displacement of any single point plotted in this manne is well under 3 nautical miles (5.6 km) which we hav accepted as within the limits of navigational accuracy reporting, or both.

Because the tag releases were effected in greater o lesser increments over a long period of time, they con stitute a series of repetitive experiments and are treatec accordingly; the overall presentation which follows take the form of an atlas which provides a pictorial analysis o the results of the various releases. Additionally, we hav developed a generalized treatment of the monthly dis tribution of offshore lobsters in relation to botton temperature.

Original Station Locations

A total of 52 releases of tagged lobsters were made o the outer continental shelf and slope commencing is March 1968 and ending in May 1971 (Table 1). Cruis numbers and station numbers are not wholly in con secutive order because interim cruises involving coasta area tagging were also conducted in the same period Thus, station 66 occupied during Cruise 20 was actuall: the 52 nd and last release during a total of 14 cruises con cerned with offshore tagging.

The original release localities (Fig. 1) show their loca tion relative to major features of the continental shel and to each other. Most (86%) of the tagging was ac complished from the vicinity of Block Canyon eastwar because of more productive lobster fishing in these area and because other aspects of cruise objectives require cruise orientation to the east of Block Canyon to max imize time sharing of the research vessels Delaware 1 Delaware II, and Albatross IV.

Composite Station Locations

Thirteen (25%) of the 52 original releases are plotted a their original release locality (Fig. 2). The remainde were combined in groups of two or three and assignec location coordinates with averaged latitude anc longitude rounded to the nearest whole minute (Table 1) Maximum distance between any two original releas sites comprising a composite station was 4 nautical miles $(7.4 \mathrm{~km})$. The purpose of this treatment was to effect ε logical pooling of release and recapture information that would expedite both plotting and evaluation of the data. Computations of distance traveled and time at large are,

however, based on original release locations and dates. Details concerning individual recaptures are referenced to composite station number and listed in the appendix tables of this report.

Composite of Recoveries

Figure 3 is a precision plot of the reported recovery positions of all returns; in Figure 4 the same set of coordinates are grouped by 6 -minute squares to permit readable numerical signature and to obviate overplotting of identical recovery coordinates, some of which occurred by chance, with others the result of multiple recaptures by vessels fishing a given area for one or more days.

Comparison of Figure 3 with Figure 1 (original station locations) shows overall dispersion from the original release locations along the edge of the continental shelf. Replotting of these data by release groups (Figs. 5-29) illustrates the magnitude and direction of the individual dispersions.

Straight-line dispersion (point of release to point of recovery) of individual lobsters is shown in Figures 5-29; concentric circles having a radius of 10 and 50 nautical miles (18.5 and 92.7 km) are drawn about each release locality to indicate the magnitude and variability of lobster movements from a given locality. Track lines of 50 miles (92.7 km) or greater are labeled with the return number and sex (F or M). Where two or more recaptures were made at the same reported locality, the solid circle representing the recovery point is appropriately numbered. In several instances (Figs. 20, 21, 24, 29) it was necessary to group recovery data by 6 -minute squares for reasons described previously; in such cases, the nature of the plotting is included in the figure title.

Definition of Lobster Maturity

Subsequent references to maturity stage of individual lobsters assumes that the commonly prevailing minimum legal size (81 mm carapace length) is an acceptable beginning point at which both male and female lobsters attain functional sexual maturity. Skud and Perkins (1969) reported that demonstrable sexual maturity, as evidenced by external embryonated eggs or mature ovarian eggs, commenced at 80 mm carapace length in large samples of female lobsters from the same areas in which we conducted our tagging study. Stewart (1972) examined 1,018 female lobsters from western Long Island Sound and Block Island Sound for presence of spermatophores in the seminal receptacle; the median size of inseminated females in the sample (size range 53 to 106 mm carapace length) was 76 mm , and within the size class $81-82 \mathrm{~mm}$ (53 specimens), 81% were inseminated. Krouse (1973) found that male lobsters from the Boothbay region of Maine were virtually all sexually mature well below the legal recruit size of 81 mm ; these findings were based on dissection of the genital tracts and microscopic findings of mature sperm cells and spermatophores; Krouse (1973) reiterated the observations of

Templeman (1934) that significant size disparity between male and female lobsters precludes successful mating and that prerecruit size males seem unlikely to contribute materially to natural reproduction until they attain a size equality with sexually mature females.

MIGRATION VERSUS DISPERSION

Cooper and Uzmann (1971) earlier hypothesized, or the basis of a described time-temperature relationship that the nature of the migration phenomenon was a ver nal shoalward movement to warmer water with subse quent return to the edge and slope of the shelf with the onset of fall and winter. In subsequent sections of this report we will attempt to elicit qualitative and quan titative aspects of individual movements from grouping of individuals referenced to release locality, point o recapture, and time at large.

Hypothetical track lines have been drawn in all cases where dispersion or migration (definitions presented below) from point of release to point of recapture exceeded 10 nautical miles (18.5 km) (Figs. 5-29). We must concede at the outset of this discussion that the magnitude, direction, and time scale of a point-to-point track is seldom an accurate portrayal of the exact movements of any tagged animals; however, the assumption of a straight-line track, however simplistic, is tenable for the purposes of plotting, overview, analysis, and ultimately, for distinction between the short-term probable migrants and the longer-term dispersed individuals. The guiding factors in this distinction of kinds, i.e., migrant or dis persed, are distance traversed and time at large, the elements of the classical ground speed formula D / T.

Ranking of the total array of recovery data by various combinations shows that the maximum movement o any recapture was 186 nautical miles (345 km) in 71 day: (2.6 miles/day). Other sesonable tracks in excess of 100 miles (185 km) were $125(232 \mathrm{~km}) / 86$ days, $123(228 \mathrm{~km})$) 76 days, $118(219 \mathrm{~km}) / 107$ days, $111(206 \mathrm{~km}) / 108$ days and $102(189 \mathrm{~km}) / 29$ days. Twelve other lobsters made apparently directed tracks of $50-87$ miles ($93-161 \mathrm{~km}$) within $22-41$ days. The calculated ground speeds these 31 examples range from 1 to 5.5 miles ($1.8-10.2 \mathrm{~km}$) per day and indicate that directional movements in excess of 1 mile (1.8 km) per day are not uncommon if not, in fact, quite normal.

We have developed a classification scheme which attempts to distinguish between directed migrants and those whose net movements over time are inconsequential or not clearly directional; the 31 examples cited above provide a logical basis for fixing constraints on the numerical values of time and distance consistent with an acceptable definition of the term "migrant."

The frequency distribution of distance traveled shows that 163 individuals were recovered within $0-9$ miles ($0-$ 16.8 km) of point of release over the time range $0-950$ days. Clearly, there is no internal evidence that any of these have dispersed significantly. In the time frequency interval 0-9 days, 15 of 21 recoveries were common to the

Figure 3.-Composite of tagged lobster recoveries, 1968-72.

Figure 4.-Composite of tagged lobster recoveries grouped by 6-minute squares, 1968-72.
aforementioned 0.9 mile (0.16 .8 km) category. Accordngly, we have adopted the premise that time or distance values under 10 preclude realistic interpretation of directionality or speed of movement.

Commercial fishing effort, monthly distribution patterns of tagged recoveries (Figs. 34-45), and supporting details (appendix tables) all combine to show that offshore lobsters are essentially aggregated along the outer edge and slope of the continental shelf during January through April (120 days) and become widely dispersed by migration or random movement in shoaler/warmer water during May through December (245 days). We have set the upper limit of duration of a directed migration at 120 days, or the theoretical half-life of a migratory season during which the migrant can move to shoaler/warmer water and return to the continental shelf margin in approximate phase with the annual shoalward and seaward migration of the bottom temperature warm front (here defined as the $10^{\circ} \mathrm{C}$ isotherm). Within these constraints we regarded a total of 117 individuals as migrants; ranking of these individuals by calculated ground speed shows a range of $0.1-5.5$ miles ($0.18-10.2 \mathrm{~km}$) per day, a median speed of 0.9 miles (1.7 km) per day, and a median at 0.6 miles (1.1 km) per day. Ground speeds of defined migrants are positively correlated with distance traversed and negatively correlated with time at large.
The remainder of recaptures for which capture location and time at large are known fall into three categories of relative displacement from point of release. Our working definitions of migrant and alternative classifications are as follows:
a) Migrant by virtue of track ≥ 10 nautical miles (18.5 m) and time at large $10-120$ days ($N=117$).
b) Nonmigrant by corollary definition of track < 10 miles and time at large <10 days $(N=15)$.
c) Residual nonmigrant by virtue of track < 10 miles, time at large ≥ 10 days (range 15-950); this classification reflects stationary behavior, or the alternative possibility f undetectable excursion(s) with homing back to release locality (i.e., within 10 -mile radius of release point) (N $=147$).
d) Indeterminate by virtue of track ≥ 10 miles (range 10-181), time at large >120 days (range 125-1,549); movement is regarded as random dispersal, a summation of migration tracks, or a combination of both ($N=297$).

Eight recaptures were reported without dates of recapfure and hence could not be classified. These alternative lassifications make for interesting conjecture in many zases; among the indeterminates, for example, we find many probable examples of directed migration which annot be properly assessed because of the associated lement of excessive time at large; these cases will be dentified and discussed under the appropriate composite station résumés which follow this section.

Returning to the reliability of ground speed calculated from D / T, we have assumed that D is probably un-
derestimated in most cases because a lobster track of significant distance over the bottom is unlikely to be straight-line, and also because some of the recaptures were likely on a return course relative to their original shoalward vector. Conversely, T is probably overestimated (but never underestimated) in a majority of cases because the migrant under consideration had 1) earlier arrived at destination, 2) had accumulative rest periods, and/or 3) was on a return vector. The net effect of any or all of these possible biases on calculated ground speed is to underestimate the derivation in general and to give added credence to values on the order of $4-5$ miles (7.4-9.3 km) per day.

COMPOSITE STATION RESUMES

Composite Station 1 (See Appendix Table 1)

Three recaptures have been reported from a composite total of 42 releases in the vicinity of Oceanographer Canyon on 15 March 1968 (28), 16 March 1968 (5), and 30 March 1968 (9). Mean depth at first capture was 153 fathoms (280 m); mean depth at release was 175 fathoms $(320 \mathrm{~m})$. Only one of the recoveries was reported by location. The sex ratio of the three returns was one female to two males.

The most noteworthy feature of the recoveries from this composite release is the relatively high mean time at large (985 days $=2.7 \mathrm{yr}$) which exceeds that of all other subgroups of recoveries. The single located recovery, a mature male, was captured 13 miles (24.1 km) from its original release point and had been at large 1,342 days (3.7 yr).

Here, as in many other cases of lengthy time at large, the relatively small displacement from original release locality is indicative of either highly localized movements over time or, alternatively, a homing tendency following larger scale movements. We prefer the latter hypothesis and will attempt to sustain this view in the remainder of the text on the basis of other individual and collective returns.

Composite Station 2 (See Figure 5 and Appendix Table 2)

Three recaptures, all males, have been reported from a single point release of 13 lobsters near the head of Veatch Canyon on 4 April 1968. First capture depth and release depth were at 110 fathoms (201 m). Two of the recaptures were reported by location with neither having migrated very far nor having been at large very long. The third recapture, a mature male, had been at large 741 days (2.0 yr), and was reported taken in the vicinity of Veatch Canyon without specific coordinates.
This subgroup of recoveries represents the highest rate of recapture (23%) among the 29 subgroups of releases and indicates that numerically small releases of tagged lobsters can yield significant returns.

Composite Station 3 (See Figure 6 and Appendix Table 3)

Nine recaptures have been reported from a single point release of 146 lobsters on the east side of Hudson Canyon on 26 April 1968. First capture depth was 160 fathoms (293 m); release depth was 85 fathoms (155 m). Seven of the nine recaptures were reported by location and one other from the vicinity of Hudson Canyon. Sex ratio of the nine recaptures was seven females to two males. Mean time at large was 252 days (0.7 yr). Two of the recaptures (3 F , 29 F) from this release, both mature females, are classified as migrants and were captured 29 and 118 days later in coastal trap fisheries off Long Island, N.Y., after having migrated 102 miles (189 km) and 77 miles (143 km), respectively. The longest outstanding recapture (660 F), an immature female at release, was at large 1,024 days (2.8 yr) during which time it increased 32% in carapace length, which is indicative of at least two moult increments (Cooper and Uzmann 1971).

Three of the recoveries ($3 \mathrm{~F}, 29 \mathrm{~F}, 4 \mathrm{~F}$) were migrants within the terms prescribed in the preceding section. Return 3 F was recaptured 29 days after release following a 102 -mile ($189-\mathrm{km}$) migration to shoal water, at 3.5 miles $(6.5 \mathrm{~km})$ per day. Return 29 F , on the other hand, showed a net displacement of 77 miles (143 km) over the much longer period of 118 days; the calculated speed of 0.6 miles (1.1 km) per day is well below the mean speed of the collective 117 defined migrants and inconsistent with an idealized ongoing shoalward track. In the absence of any contradictory evidence, it seems logical to conclude that this individual and others, as will be seen, probably arrived in the vicinity of their recapture at considerably earlier dates. Return 11F was recaptured 13 miles (24.1 km) northwesterly in slightly deeper water than at release.

Composite Station 4 (See Figure 7 and Appendix Table 4)

Seven recaptures have been reported from a single point release of 52 lobsters several miles east of Block Canyon on 28 April 1968. First capture depth was 190 fathoms (347 m); release depth was 100 fathoms (183 m). Four of the seven recaptures were reported by location. Sex ratio of the seven recaptures was three females to four males. Mean time at large was 425 days (1.2 yr). One of the four located recaptures, a mature male, moved 71 miles (132 km) easterly over a period of 405 days at large. The longest outstanding recapture (location unreported) in this subgroup was at large 1,326 days (3.6 yr).

Composite Station 5 (See Figure 8 and Appendix Table 5)

Twenty-nine recaptures have been reported from a composite total of 264 releases west of Atlantis Canyon on 29 March 1968 (142) and 30 March 1968 (122). Mean depth at first capture was 190 fathoms (347 m); mean depth at release was 99 fathoms (181 m). Twenty of the
recaptures were reported by specific location and one by approximate location.

Sex ratio of the returns was 22 females to 7 males, not significantly different from the ratio at release ($212 \mathrm{fe}-$ males to 52 males).

Mean time at large for all recoveries was 284 days (0.8 yr); greatest time at large for a located individual was 774 days (2.1 yr) during which time apparent dispersion was only 10 miles (18.5 km).

Mean distance traveled by those lobsters with specific recapture locations (20) was 25.1 miles. Three individuals, all sexually mature females, made migrations in excess of 50 miles (92.7 km), the range being $56-76$ miles ($104-141 \mathrm{~km}$).

Four of the recoveries ($28 \mathrm{~F}, 26 \mathrm{~F}, 27 \mathrm{~F}, 4 \mathrm{~F}$), all mature females, are classified migrants; all were recaptured in June within 36-50 days after tagging. Return 28F, an eggbearing female at release and recapture, was taken 56 miles (104 km) northeasterly in significantly shoaler water (22 fathoms $=40.2 \mathrm{~m}$) after 50 days at large; apparent speed (1.1 miles $/$ day $=2.0 \mathrm{~km} /$ day) and direction are highly consistent with the vernal shoaling hypothesis.

Returns 26 F and 27 F (egg-bearing at release and recapture) were taken 38 miles (70.4 km) easterly near the head of Veatch Canyon at 80 fathoms (148 m) after being at large 36 and 37 days, respectively; apparent speed in each case was 1.1 miles/day ($2.0 \mathrm{~km} /$ day). It is obvious that these tracks are not consistent with a theoretical goal of shoaler location; we will reserve comment on these and others of similar nature for later discussion. Return 4 F was taken 11 miles northeasterly in significantly shoaler (64 fathoms $=117 \mathrm{~m}$) water; this recovery illustrates quite well that lobsters occupying the shelf edge or slope can achieve much shoaler (or deeper) locations with relatively small excursions.

Composite Station 6 (See Figure 9 and Appendix Table 6)

Twenty-two recaptures have been reported from a composite total of 149 releases midway between Atlantis and Veatch canyons on 1 May 1968 (78) and 2 May 1968 (71). Mean depth at first capture was 190 fathoms (347 $\mathrm{m})$; mean depth at release was 99 fathoms (181 m). Nineteen of the recoveries were reported by specific location and one by approximate location. Sex ratio at release was 103 females (69%) to 46 males; the ratio at recapture was 12 females (55%) to 10 males.

Mean time at large for all recoveries was 312 days (0.9 yr); greatest time at large for a located individual, an immature male at release, was 896 days (2.4 yr) during which time apparent dispersion was only 18 miles (33.4 km).

Mean distance traveled by those lobsters with specific capture locations (19) was 33.5 miles (62.1 km). Five individuals made migrations in excess of 50 miles (92.7 km), the range being $57-71$ miles ($106-132 \mathrm{~km}$). Three of these long distance migrants were mature females, one of which (91 F) was berried at recapture; the remaining two were mature males.

Six of these recaptures ($9 \mathrm{~F}, 10 \mathrm{~F}, 1 \mathrm{M}, 18 \mathrm{~F}, 19 \mathrm{~F}, 20 \mathrm{M}$) can be classified as migrants. Recoveries 9F and 10 F moved easterly, with the latter being taken significantly shoaler (56 fathoms $=102 \mathrm{~m}$) than at release. Return 1M migrated at near record speed of 5.1 miles (9.4 km) per day to a point 62 miles (115 km) westerly at a depth (120 fathoms $=219 \mathrm{~m}$) significantly deeper than at release. The release depth here, as at a number of other stations, was significantly shoaler than release depth for reasons explained earlier; it is conceivable, therefore, that bottom temperature at the release site was sufficiently divergent to cause abnormal behavior. Returns $18 \mathrm{~F}, 19 \mathrm{~F}$, and 20 M were recaptured at the same point in time and space after 49 days at large; their recovery position was 18 miles (33.4 km) easterly in shoaler (69 fathoms $=126$ m) water.

Composite Station 7 (See Figure 10 and Appendix Table 7)

Ten recaptures have been reported from a single point release of 99 lobsters on the west side of Veatch Canyon on 2 May 1968. Mean depth at first capture was 200 fathoms (366 m); mean depth at release was 100 fathoms $(183 \mathrm{~m})$. Eight of the recaptures were reported by specific location. Sex ratio at release was 77 females (77%) to 22 males; the ratio of the returns was 7 females (70%) to 3 males.
Mean time at large for all recoveries was 477 days (1.3 yr); greatest time at large for a located individual, a mature female, was 771 days (2.1 yr). This individual was recaptured 58 miles (107 km) north of the point of release in June 1970; its location in time and space is consistent with a working hypothesis of seasonal shoaling and return to home locality.
Mean distance traveled by those lobsters with specific zapture locations (8) was 29.3 miles (54.4 km). Two inlividuals qualified as long migrants; one of these was the nature female noted above while the other was a mature nale.
Among the eight located recaptures, only one (8 M) is a defined migrant and is consistent with the springtime shoaling hypothesis; this individual ranged shoalward rom 100 to 63 fathoms $(183-115 \mathrm{~m})$ at a net speed of 1.8 niles $(3.3 \mathrm{~km})$ per day.

Composite Station 8 (See Figure 11 and Appendix Table 8)

Four recaptures have been reported from a single point elease of 50 lobsters on the east side of Atlantis Canyon on 14 June 1968. Mean depth at first capture was 70 athoms (128 m); mean depth at release was 86 fathoms $.157 \mathrm{~m})$. Two of the recoveries were reported by specific ocation and one by approximate location. Sex ratio at -elease was 30 females (60%) to 20 males; the ratio at ecapture was 1 female to 3 males.
Mean time at large for all recoveries was 386 days (1.1 r); greatest time at large for a located individual, a
mature male, was 734 days (2.0 yr), during which time apparent dispersion was 26 miles (48.2 km).

Maximum dispersion was attained by 156 M , a mature male, which was recaptured 114 miles (211 km) easterly near the head of Lydonia Canyon. A third individual, a mature female, was reported from the vicinity of Hudson Canyon, some 100 miles (185 km) westerly of release.

Composite Station 9 (See Figure 12 and Appendix Table 9)

Nineteen recaptures have been reported from a single point release of 143 lobsters on the west side of Atlantis Canyon on 15 June 1968. Mean depth at first capture was 70 fathoms (128 m); mean depth at release was 100 fathoms (183 m). Thirteen of the recaptures were reported by specific location and two by approximate location. Sex ratio at release was 72 females (50%) to 71 males; the ratio at recapture was 11 females (58%) to 8 males.

Mean time at large for all recoveries was 623 days (1.7 yr); greatest time at large, and record high overall, for a located individual (946 M), a mature male at release, was 1,549 days (4.2 yr). This individual was recaptured 118 miles (219 km) easterly at Lydonia Canyon and had increased 63% in carapace length by virtue of at least three molts.

Mean distance traveled by those lobsters with specific capture locations (13) was 36.1 miles (66.9 km). Three individuals, a mature female, an initially immature male, and the mature male cited above, surpassed the 50 -mile $(92.7-\mathrm{km})$ range from point of release.

Composite Station 10 (See Appendix Table 10)

Three recaptures have been reported from a single point release of 39 lobsters some 15 miles (27.8 km) northeasterly of Atlantis Canyon on 16 June 1968. Mean depth at first capture was 90 fathoms (165 m); mean depth at release was 60 fathoms (110 m). All recaptures were reported by specific location. Sex ratio at release was 25 females (64%) to 14 males; the ratio at recapture was 2 females to 1 male, all being sexually immature.

Mean time at large (48 days) and mean distance traveled (14 miles $=25.9 \mathrm{~km}$) were lowest and second lowest, respectively, among all subgroups of returns. The low rate of return, and particularly the disappearance of the group after only 60 days at large, suggests that unusually high mortality occurred shortly after release.

Two of the three recoveries ($34 \mathrm{~F}, 41 \mathrm{~F}$) are migrants by definition; both were immature females and were taken only slightly shoaler than release depth. The directionality of these tracks, as with many others among the defined migrants, has not resulted in maximum shoaling for distance traversed; it seems plausible, however, that those individuals, especially immatures, captured and released well up on the shelf as late as June might, in the main, have already completed a migratory transition from colder slope water to the seasonably warmer shelf
water prior to recapture. An extension of this reasoning suggests further that others captured and tagged at these midshelf depths were still en route to shoaler grounds (e.g., recapture 25 F discussed under subsequent account of composite station 13).

Composite Station 11 (See Figure 13 and Appendix Table 11)

Six recaptures have been reported from a single point release of 84 lobsters 7 miles (12.9 km) north of Atlantis Canyon on 16 June 1968. Mean depth at first capture was 60 fathoms $(110 \mathrm{~m})$; mean depth at release was 55 fathoms (101 m). All of the recaptures were reported by specific location. Sex ratio at release was 47 females (56%) to 37 males; the ratio at recapture was 5 females (83\%) to 1 male.

Mean time at large for all recoveries was 361 days (1.0 $\mathrm{yr})$. Greatest time at large was 727 days (2.0 yr); the individual involved was an immature female at release and one of two females in the subgroup of returns which surpassed the $50-\mathrm{mile}(92.7-\mathrm{km})$ range of dispersion from release point. Mean distance traveled by the six recoveries was 32.2 miles (59.7 km).

Composite Station 12 (See Figure 14 and Appendix Table 12)

Three recoveries have been reported from a single point release of 57 lobsters 10 miles (18.5 km) northeast of Block Canyon on 16 June 1968. Mean depth at first capture and at release was 60 fathoms $(110 \mathrm{~m})$. All three recaptures were reported by specific location. Sex ratio at release was 25 females (44%) to 32 males; the ratio at recapture was 1 female to 2 males.
Mean time at large for all recoveries was 231 days (0.6 yr) ; greatest time at large was 358 days (1.0 yr) during which time the record individual, a mature male at release, traveled 52 miles (96.4 km) east to the east side of Veatch Canyon. Mean distance traveled by the three recoveries was 30.3 miles (56.2 km).

Composite Station 13 (See Figure 15 and Appendix Table 13)

Forty recaptures have been reported from a composite total of 482 releases west of Block Canyon on 18 and 19 June 1968. Mean depth at first capture was 60 fathoms $(110 \mathrm{~m})$; mean depth at release was 47 fathoms $(86 \mathrm{~m})$. Twenty-three of the recaptures were reported by specific location and three by approximate location. Sex ratio at release was 256 females (53%) to 226 males; the ratio at recapture was 25 females (62%) to 15 males.

Mean time at large for all accountable (37) recoveries was 484 days (1.3 yr); greatest time at large for a located individual, a mature female at release, was 1,360 days (3.7 yr). This individual was recaptured 72 miles (133 km) southwest from point of release.

Mean distance traveled by those lobsters with specific capture locations was 52.1 miles (96.6 km), the record high average for all subgroups of returns. Twelve individuals surpassed the $50-\mathrm{mile}(92.7-\mathrm{km})$ range; additionally, three others were reported from the vicinity of Veatch Canyon which is well beyond the 50 -mile (92.7 km) range from point of release. A disproportionate number $(12 / 15)$ of the long-distance migrants were females; most of the females were sexually mature at release and all were sexually mature at recapture.

Two females were recaptured in the coastal trap fishery off southern Long Island, N.Y. One of these (25F) was berried at release and at recapture after having migrated 75 miles (139 km) in 28 days (2.7 miles/day $=$ $5.0 \mathrm{~km} /$ day). The short term and long distance of this movement clearly supports an hypothesis of directed migration to warmer waters. The second female (335F) taken in the coastal zone was at large 465 days (1.3 yr) and, judging from its size at release, conceivably was engaged in a second or even third seasonal inshore migration.

Three recoveries $(25 \mathrm{~F}, 22 \mathrm{~F}, 42 \mathrm{M})$ are classified migrants. Return 25 F , noted above, was recaptured in a local trap fishery at Fire Island Inlet, N.Y., in 7 fathoms $(12.8 \mathrm{~m})$ of water; vector and ground speed well exemplify the vernal shoaling concept. Return 22 F was taken 14 days after release at a point 23 miles (42.6 km) southeasterly in slightly deeper water (60 fathoms $=110$ m) than depth at release (47 fathoms $=86.0 \mathrm{~m}$); it is significant, perhaps, that recapture depth and originat capture depth were identical. We do not imply that this individual sought to return to original depth, but given a depth/temperature constant relationship over short term, it is conceivable that this lobster sought to return to its original temperature stratum. Return 42 M , an immature male, was recaptured 58 days later and 47 miles (87.1 km) northeasterly in 50 fathoms (91.4 m) of water, considering immaturity and time of year, the net track would seem biologically unproductive.

Composite Station 14 (See Figure 16 and Appendix Table 14)

Twenty-five recaptures have been reported from a composite total of 266 releases 15 miles (27.8 km) northwest of Block Canyon on 20 June 1968. Mean depth at first capture was 60 fathoms (110 m); mean depth at release was 49 fathoms (89.6 m). Twenty-two of the recoveries were reported by specific location and one by approximate location. Sex ratio at release was 146 females (55%) to 120 males; ratio at recapture was 19 females (76%) to 6 males.

Mean time at large for all accountable (24) recoveries was 401 days (1.1 yr); greatest time at large for a located individual, a mature female at release, was 1,077 days (2.9 yr). This lobster (726 F) was recaptured 181 miles (335 km) easterly near the head of Oceanographer Canyon; the hypothetical straight-line track is the penultimate distance record and is exceeded slightly by that of
mature female (249F) recaptured just off the north hore of Long Island, N.Y. (see Fig. 20).
Mean distance traveled by those lobsters with specific apture locations was 46.9 miles (86.9 km). Eleven inividuals, fully half of the located returns, surpassed the 0 -mile ($92.7-\mathrm{km}$) range with a disproportionate number 9) being females. Four of the eleven, all females, were aken by a single fisherman in the seasonal trap fishery ff southern Long Island; unfortunately, only the tag tter code and sex were reported and we are unable to orrelate beyond date and original release station.
Among the 22 located recaptures, only one $(33 \mathrm{M})$ is a efined migrant; this individual moved southwesterly ome 12 miles (22.2 km) and was recaptured at the same epth as at release.
Return 269 M , and the four females mentioned above $347 \mathrm{~F}, 348 \mathrm{~F}, 349 \mathrm{~F}, 350 \mathrm{~F}$) were taken approximately 1 yr fter release in the southern Long Island trap fishery in 1-12 fathoms (20.1-21.9 m) of water; while not migrants the strictly defined sense, these recaptures are special ases which probably represent directed migrations of he year (1969) in which captured.

Composite Station 15 (See Figure 17 and Appendix Table 15)

Ten recaptures have been reported from a single point elease of 46 lobsters on the so-called Leg area of Georges Bank on 21 September 1968. Mean depth at first capture was 35 fathoms (64.0 m); release depth was 28 fathoms $(51.2 \mathrm{~m})$. Six of the recaptures were reported by specific ocation. Sex ratio at release was 23 females (50%) to 23 nales; the ratio at recapture was 6 females (60%) to 4 -ales.
Mean time at large for all recoveries was 434 days (1.2 r); greatest time at large for a located individual, a pature female at release, was 759 days (2.1 yr); this bster apparently traveled only 12 miles (22.2 km), but
is evident from monthly distribution patterns eveloped later in this report that lobsters would not renain localized in this general area; time at large closely pproximates an anniversary of the initial tagging event 1 this area and supports an hypothesis of seasonal jevisitation to shoaler, warmer water.
Mean distance traveled by those lobsters with specific ;apture locations was only 16 miles (29.7 km); reference Appendix Table 15 shows that five of the six accountble recoveries were taken 1 or 2 calendar years later luring the warmest half of the year either at the shelf dge (548 F), or relatively near the release area. The sixth $51 F)$, taken in November, 44 days after release, was conreivably engaged in retreat from oncoming winter conlitions to the warmer sanctuary of the shelf edge and lope. The high percentage (21.7) of recaptured lobsters rom this release is second only to the slightly higher rate if recapture from Composite Station 2.

Composite Station 16 (See Figure 18 and Appendix Table 16)

Fifty-nine recaptures have been reported from a
composite total of 479 releases near the southwest corner of Georges Bank on 24, 25, and 26 September 1968. Mean depth at first capture was 50 fathoms (91.4 m); mean depth at release was 40 fathoms (73.2 m). Thirty-nine of the recaptures were reported by specific location and eight by approximate location. Sex ratio at release was 196 females (41%) to 283 males; the ratio at return was 20 females (34%) to 39 males.
Mean time at large for all accountable (58) recoveries was 435 days (1.2 yr); greatest time at large for a located individual (932M), a mature male at release, was 1,407 days (3.8 yr).

Mean distance traveled by those lobsters with specific capture locations (39) was 34.8 miles (64.5 km). Nine individuals, the majority being mature, surpassed the $50-$ mile ($92.7-\mathrm{km}$) range. Additionally, four others, two males and two females, were reported from the Veatch Canyon area, some 50 miles (92.7 km) from point of release. Maximum dispersion (107 miles $=198 \mathrm{~km}$) from release point was achieved by an immature male (362M) while at large 411 days (1.1 yr).

Six of the 59 recaptures were migrants. Two of these ($45 \mathrm{~F}, 46 \mathrm{M}$) were recaptured in October in slightly shoaler water; three ($52 \mathrm{~F}, 55 \mathrm{~F}, 54 \mathrm{M}$) were taken in November in slightly deeper (50 fathoms $=91.4 \mathrm{~m}$) water, and one (75 M) was taken the following January at a depth of 155 fathoms (284 m). Considering the respective dates of recapture, the tracks show a net tendency toward return to deeper water with the onset of winter season.

Composite Station 17 (See Figure 19 and Appendix Table 17)

Twenty-seven recaptures have been reported from a composite total of 223 releases near the head of Lydonia Canyon on 15 and 16 October 1968. Mean depth at first capture was 45 fathoms (82.3 m); mean depth at release was 71 fathoms (130 m). Fourteen lobsters were reported by specific location and seven by approximate location. Sex ratio at release was 138 females (62%) to 85 males; the ratio at return was 14 females (52%) to 13 males.

Mean time at large for all accountable (20) recoveries was 652 days (1.8 yr); greatest time at large for a located individual, a mature male at release, was 1,372 days (3.8 yr).

Mean distance traveled by those individuals with specific capture locations (14) was 37.4 miles (69.3 km); four individuals, three mature females and one mature male, surpassed the $50-$ mile ($92.7-\mathrm{km}$) range as did six others which were reported from approximated canyon localities. Among this latter group, five of the six were larger, sexually mature individuals at release, thus confirming the apparent tendency of larger lobsters to migrate or disperse more so than smaller individuals. Maximum dispersion (132 miles $=245 \mathrm{~km}$) was achieved by a mature male (937 M) which had been at large 973 days (2.7 yr); this individual was recaptured in a coastal trap fishery on outer Cape Cod.
The single migrant of this group, a mature male (56 M), moved easterly some 29 miles (53.7 km) over a period of

39 days and was recaptured at a depth of 100 fathoms (183 m) ; track direction and timing is consistent with hypothesized overwintering at and below the continental shelf margin. Return 357 F , recaptured in October of the following year, is regarded as a migrant of the year 1969.

Composite Station 18 (See Figure 20 and Appendix Table 18)

Two hundred thirteen recaptures have been reported from a composite total of 1,350 releases some 7 miles $(13.0 \mathrm{~km})$ easterly of the head of Veatch Canyon on 30 April and 1 and 2 May 1969. Mean depth at first capture was 137 fathoms (251 m); mean depth at release was 71 fathoms (130 m). These subgroups, like several others, were released shoaler than capture depth to avoid the likelihood of immediate recapture by our own vessel or other commercial vessels trawling in the vicinity of initial capture. One hundred eleven of the recaptures were reported by specific location and 36 by approximate location. In Figure 20 the recoveries are grouped and plotted by 6 -minute squares for reasons given earlier. Sex ratio at release was 582 females (43%) to 768 males. The ratio at return was 97 females (46%) to 116 males.
Mean time at large for all accountable (208) recoveries was 275 days (0.7 yr). Maximum time at large for a located individual (863 F), a mature female at release, was 950 days (2.6 yr), during which time net displacement from release locality was only 7 miles (13.0 km).
Mean dispersion of the 111 recaptures with specific capture locations was 25.3 miles (46.9 km). Ten females and six males, the majority being mature at release, surpassed the 50 -mile ($92.7-\mathrm{km}$) range; among these 16 , four ($249 \mathrm{~F}, 477 \mathrm{~F}, 359 \mathrm{M}, 720 \mathrm{M}$) ranged well beyond 100 miles (204 km).

Fifteen of the recoveries are defined migrants. The foremost example among these was 249 F , a $90-\mathrm{mm}$ female at release; this individual traveled a record 186 miles (345 km) in 71 days ($2.6 \mathrm{miles} /$ day $=4.8 \mathrm{~km} /$ day) and was recaptured in July in a trap fishery at 7 fathoms $(12.8 \mathrm{~m})$ depth on the north shore of Long Island. This extensive penetration into Long Island Sound might be interpreted as an initially directed shoalward vector toward Block Island Sound with unintended overrun into eastern Long Island Sound; thereafter, a southwesterly track would conceivably lead to the vicinity of recapture on the north shore of Long Island. Alternatively, once having entered the constricted eastern end of Long Island Sound, any near-southerly track would result in shoaling on the extensive north shore of Long Island and present the dilemma of choosing correctly between an easterly or westerly course for ultimate return to the open ocean. A westerly track alongshore would also, in this conjectural situation, effectively lead 249 F to the point of recapture. This unforeseen situation raises the possibility that other lobsters of offshore origin may follow similar pathways and become entrapped in Long Island Sound by virtue of its confining geography.

The defined migrants within this group are listed below along with track bearing, ground speed, and depth
change, and the positive values of depth change signify shoalward movement:

Return no.	Bearing	Ground speed mi/day km/day		Depth change fathoms meter	
249F	$302 *$	2.6	4.8	+68	+12
263 F	348°	0.9	1.7	+50	+9
240 F	$036{ }^{*}$	2.1	3.9	+36	+6
254 F	069°	0.6	1.1	+42	+7
271 F	$278{ }^{\circ}$	0.3	0.6	-20	-3
283 F	073°	0.2	0.4	-20	-3
166F	060°	0.6	1.1	0	
158F	058*	0.5	0.9	-5	-
221 F	$081 *$	0.2	0.4	+10	+1
201M	$072 *$	0.8	1.5	0	
311 M	$006{ }^{\circ}$	0.4	0.7	+45	+8
199M	$067 *$	0.7	1.3	+5	+
266 M	$296{ }^{\circ}$	0.2	0.4	+15	+2
160 M	066^{*}	0.6	1.1	-12	-2
300 M	072°	0.2	0.4	-20	-3

The initial bearing of 249 F is measured to a point eas of Montauk Point consistent with assumed straight-lin penetration of eastern Long Island Sound; the subse quent track or tracks to point of recapture are highly con jectural as discussed above. Eight of the fifteen migrant moved shoalward, two remained at release depth, an five moved to deeper water. Among the five returning t deeper water, three were immature females.

Composite Station 19 (See Figure 21 and Appendix Table 19)

One hundred four recaptures have been reported fron a single point release of 751 lobsters some 12 miles (22. km) southwesterly of Hydrographer Canyon on 4 Ma 1969. Depth at first capture was 150 fathoms (274 m) depth at release was 65 fathoms (119 m). Sixty-on recaptures were reported by specific location and 24 b approximate location. Sex ratio at release was 36 females (48%) to 389 males; the ratio at return was 5 females (55%) to 47 males.

Mean time at large for all accountable (96) recoverie was 286 days (0.8 yr); greatest time at large for a locate individual (673F), a mature female at release, was 74 days (2.0 yr).
Mean distance traveled by individuals with specifi capture locations (61) was 26.7 miles (49.5 km); seven in dividuals ($294 \mathrm{~F}, 610 \mathrm{~F}, 246 \mathrm{M}, 317 \mathrm{M}, 480 \mathrm{M}, 570 \mathrm{M}, 577 \mathrm{M}$ exceeded the $50-$ mile $(92.7-\mathrm{km})$ range from release point Six of these seven long-ranging individuals were sexuall mature at release; the seventh (480 M) was mature a recapture some 10 mo from release.

Maximum dispersion (125 miles $=232 \mathrm{~km}$) wa achieved by a mature male (317 M) which movec northeasterly onto Georges Shoals at an apparent grounc speed of 1.4 miles (2.6 km) per day. Two others (294 F 570 M) also exceeded the 100 -mile ($185-\mathrm{km}$) range; thest three cases of wide dispersion from release point are gooo examples of the contrasting distinction between definec migrants (317 M and 294 F) and the defined indeter minate (570 M): the former show ground speeds in exces

1 mile (1.85 km) per day along hypothetical track lines nat are probably realistic approximations of actual acks made good; the latter (570 M) was recaptured 14 10 after release and shows a net displacement of 115 iles (213 km). In this situation, the track is simply a raight-line resolution of some unknown number of lovements over long term which have resulted in a mac westerly displacement; the timing and directionality the component steps cannot be deduced or inferred m the available information.
The defined migrants (13) within this group are listed tow with ground speed and depth change:

Return no.	Ground speed		Depth change	
	mi/day	km/day	fathoms	meters
255 F	0.6	1.1	+45	+82
294F	1.1	2.0	+47	+86
654 F	1.1	2.0	+32	+59
146 F	0.4	0.7	0	0
152 F	0.4	0.7	-7	-13
184F	0.4	0.7	+10	+18
191F	0.3	0.6	+15	+27
282 F	0.1	0.2	-25	-46
246M	0.8	1.5	+48	+88
290M	0.5	0.9	-25	-46
317M	1.4	2.6	+38	+70
190M	0.3	0.6	+15	+27
194M	0.4	0.7	+10	+18

omposite Station 20 (See Figure 22 and ppendix Table 20)

Forty-four recaptures have been reported from a mposite total of 387 releases made 25 miles (46.3 km) inthwest of Corsair Canyon over the 3 -day period, 7,8 , 19 May 1969. Mean depth at first capture was 173 thoms (316 m) with range $160-180$ fathoms (293-329 ; depth at release for all releases was 50 fathoms (91.4
Thirty-seven recaptures were reported by specific cation and one by approximate location. Sex ratio at [ease was $274(71 \%)$ females to 113 males; the ratio at turn was $29(66 \%)$ females to 15 males.
Mean time at large for accountable (44) recoveries was (4) days (0.5 yr); greatest time at large for a located invidual $(897 \mathrm{M})$, a mature male at release, was 1,075 wys (2.9 yr) with recapture 27 miles (50.0 km) from lease point.
Mean distance traveled by individuals with specific pture locations (37) was 30.4 miles (56.3 km); four inwiduals ($306 \mathrm{~F}, 315 \mathrm{~F}, 578 \mathrm{~F}, 697 \mathrm{~F}$), all sexually mature males, equalled or exceeded the $50-\mathrm{mile}(92.7-\mathrm{km})$ inge from point of release. Maximum dispersion (143 iles $=265 \mathrm{~km}$) was attained by 697 F which was recapred near Veatch Canyon 761 days (2.1 yr) following lease. This group of recoveries includes the second tgest number (21) and percentage (56) of definable ligrants, 21 of 37 . Collectively, the migrants are laracterized by relatively large size, a high proportion 6%) of females, and, among the females, a high proporin (44\%) with external eggs at release.

The defined migrants (21) within this group are listed below with track bearing, ground speed, and depth change:

Return no.	Bearing	Ground speed		Depth change	
148F	$056{ }^{\circ}$	1.0	1.9	-85	-155
161F	227°	0.8	1.5	-40	-73
244 F	$329{ }^{\circ}$	0.5	0.9	+16	+29
252F	329°	0.5	0.9	+16	+29
259 F	327°	0.7	1.3	+23	+42
276 F	$337{ }^{\circ}$	0.5	0.9	+18	+33
277F	$337{ }^{\circ}$	0.5	0.9	+18	+33
306F	$323{ }^{\circ}$	0.5	0.9	+22	+40
314 F	$314{ }^{\circ}$	0.6	1.1	+23	+42
315 F	$315{ }^{\circ}$	0.6	1.1	+23	+42
171F	$036{ }^{\circ}$	0.3	0.6	-45	-82
198F	$222{ }^{\circ}$	0.4	0.7	-35	-64
209F	$079{ }^{\circ}$	0.2	0.4	-42	-77
228 F	225°	0.2	0.4	-30	-55
239F	$079{ }^{\circ}$	0.2	0.4	-32	-59
247F	009°	0.3	0.6	+11	+20
149M	$056{ }^{\circ}$	1.0	1.9	-85	-155
150M	$043{ }^{\circ}$	1.0	1.9	-85	-155
200M	$334{ }^{\circ}$	0.8	1.5	+13	-24
285M	325°	0.5	0.9	+20	-37
210M	$079{ }^{\circ}$	0.2	0.4	-32	-59

It will be noted from the preceding table and Figure 22 that 10 of the 11 migrants showing shoalward displacement were recovered within a 33° arc relative to release point; the significance of this tight grouping is evident only when the recovery positions are plotted on a detailed bathymetric chart of the area encompassed from which it can be seen that the recapture locations are coincident with several areas that are heavily fished in summer months by trawlers fishing primarily for yellowtail flounders. The rugged topography of Georges Bank shoalward of 30 fathoms (54.9 m), coupled with strong tidal currents, greatly limits trawler activity and hence the incidental catch of shoaling lobsters to those areas that are topographically compatible with otter trawl fishing. The relatively large number of tagged lobsters recaptured on this shoaler part of Georges Bank (see also Fig. 24 and related discussion) indicates that this upper reach of the Bank as a whole supports a major summertime concentration of lobsters originating from the continental margin and slope from Veatch Canyon eastward.

Composite Station 21 (See Figure 23 and and Appendix Table 21)

Twenty-three recaptures have been reported from a single point release of 166 lobsters near the head of Lydonia Canyon on 6 June 1969. Depth at first capture was 70 fathoms (128 m); depth at release was 57 fathoms (104 m). Fifteen recaptures were reported by specific locations and six by approximate location. Sex ratio at release was 82 females (49%) to 84 males; the ratio at return was 7 females (30%) to 16 males.

Mean time at large for all accountable (19) recoveries was 264 days (0.7 yr); greatest time at large for a located individual (851 M), a mature male at release, was 885 days (2.4 yr).

Mean distance traveled by individuals with specific capture locations (15) was 30.1 miles (55.8 km); four individuals ($186 \mathrm{~F}, 262 \mathrm{~F}, 399 \mathrm{~F}, 352 \mathrm{M}$), all sexually mature at release, exceeded the 50 -mile $(92.7-\mathrm{km}$) range from release point.

Maximum dispersion was attained by 399F which moved a net distance of 82 miles (152 km) easterly over a period of 167 days (0.4 yr).

The defined migrants (4) within this group of recaptures are listed below with track bearing, ground speed, and depth change:

Return no.	Bearing	Ground speed		Depth change	
		mi/day	km/day	fathoms	meters
262F	$032{ }^{\circ}$	1.7	3.2	+24	+44
352M	$304{ }^{\circ}$	0.6	1.1	+2	+4
230M	117°	0.5	0.9	-23	-42
231M	117°	0.5	0.9	-23	-42

Return 262F (44 days at large) approaches the idealized view of seasonal shoalward migration, but 352M, 230 M , and 231 M do not. In view of their relatively short term at large (22 days) it is possible that these last three had simply reoriented toward the depth-temperature stratum prevailing at first capture.

Recoveries $185 \mathrm{~F}, 186 \mathrm{~F}$, and 399 F fall outside the migrant classification, but represent significant dispersions with respect to time at large or distance. Both 185 F and 186 F were at large less than 10 days, but made seemingly directed tracks (without depth change) of 40 miles (74.1 km) and 52 miles (96.4 km), respectively, at calculated ground speeds in excess of 5 miles (9.3 km) per day. Return 399F (167 days at large) was captured at a point 82 miles (152 km) westerly and 17 fathoms (31.1 m) shoaler than point of release; this dispersion is open to interpretation, but may represent the outbound limit of a shoalward migration or simply a point on an inbound return from an even shoaler location.

Composite Station 22 (See Figure 24 and Appendix Table 22)

Forty-six recaptures have been reported from a composite total of 422 releases some 20 miles (37.1 km) southwest of the head of Corsair Canyon on 10 and 11 June 1969. Mean depth at first capture was 87 fathoms (159 m); mean depth at release was 51 fathoms (93.3 m). Thirty-nine lobsters were reported by specific location and one by approximate location. Sex ratio at release was 280 females (66%) to 142 males; the ratio at return was 28 females (61%) to 18 males
Mean time at large for all accountable (43) recoveries was 157 days (0.4 yr); greatest time at large for a located individual (898 M), a mature male at release, was 1,034 days (2.8 yr) with recapture 11 miles (20.4 km) from release point. This individual showed a 39% increase in carapace length at recapture which suggests that at least two molts occurred during its time at large.

Mean distance traveled by individuals with speci capture locations (39) was 44 miles (81.5 km); five dividuals ($237 \mathrm{~F}, 575 \mathrm{~F}, 770 \mathrm{~F}, 303 \mathrm{M}, 747 \mathrm{M}$) surpassed $50-\mathrm{mile}(92.7-\mathrm{km})$ range from point of release by a co siderable margin (range $87-164$ miles $=161-304 \mathrm{kn}$ Maximum movement was attained by 747M (see Fig. which was recaptured 865 days (2.4 yr) following relea runner-up in this category was 575 F , a large egg-beari female at release, which was taken in a coastal tr fishery at Truro Beach, Mass., 431 days (1.2 yr) followi release.

This group of recoveries includes the largest numb (28) and percentage (71) of definable migrants with 28 39 located recoveries meeting the "migrant" crite defined previously. The migrants here, as at station are characterized by large mean size, a high proporti (61%) of females, and, among the females, a high prop tion (59%) with external eggs at release.

Bearing, ground speed, and depth change are giv below:

Return no.	Bearing	Ground speed		Depth change	
		$\underline{\mathrm{mi} / \text { day }}$	km/day	fathoms	mete
236 F	316°	1.7	3.2	+17	+
237F	240°	4.4	8.2	-8	
238 F	337°	1.5	2.8	+18	+
251 F	338°	1.0	1.9	+18	+
260 F	$331{ }^{\circ}$	1.0	1.9	+25	+
284F	322°	0.5	0.9	+17	+
287 F	328°	0.6	1.1	+21	+
288 F	$332{ }^{\circ}$	0.6	1.1	+22	
293F	329°	0.6	1.1	+14	+2
307F	$302{ }^{\circ}$	0.7	1.3	+22	+
308F	$302{ }^{\circ}$	0.7	1.3	+22	+
309 F	$302{ }^{\circ}$	0.7	1.3	+22	+
316 F	307°	0.9	1.7	+25	+4
336 F	300°	0.5	0.9	+25	+4
337F	300°	0.5	0.9	+25	+4
339F	310°	0.5	0.9	+20	+
208 F	117°	0.8	1.5	-40	-i
222M	322°	1.0	1.9	+14	+2
242M	333°	1.4	2.6	+12	+
243M	330°	1.4	2.6	+20	+
248M	325°	1.3	2.4	+24	+4
258M	317°	0.9	1.7	+23	+4
261M	$331{ }^{\circ}$	0.9	1.7	+19	+
278M	317°	0.7	1.3	+18	+
303M	243°	1.6	3.0	-23	-4
310M	341°	0.6	1.1	+20	+
341M	317°	0.4	0.7	+18	+
342 M	317°	0.4	0.7	+18	+

All but three ($208 \mathrm{~F}, 237 \mathrm{~F}, 303 \mathrm{M}$) of the migrants rar ed significantly shoalward from point of release and we recaptured within 89 days from date of release. Migra 208 F moved quickly toward deeper water approximati depth at first capture; migrant 237 F , a large egg-beari female, moved rapidly some 87 miles (161 km) in 20 da to be recaptured near the head of Oceanographer Cany in only slightly deeper water; migrant 303 M , a lar male, moved 123 miles (228 km) in 76 days to be reca tured on the east flank of Hydrographer Canyon significantly deeper water. These movements do not co form to a working hypothesis of springtime shoalwa
nigration but they illustrate the kind of exceptions that nevitably arise in attempted classification of the novements of tagged animals over a short term; the long distance traveled by 237 F and 303 M , both at high rates f speed, tend to infer directionality on their movements hat are inconsistent with our hypothesis; the close greement of the track bearings might well be coinidence, but a rational conclusion, nevertheless, is that he tracks are similar results of disoriented attempts to eturn to original release depth.
The exceptions noted above notwithstanding, the , alance (25) of these migrants effected movements that vere highly consistent in directionality, time at large, and distance. Inspection of Appendix Table 22 shows hat all were recaptured within the range $20-89$ days at ret distances from point of release ranging from 22 to 48 niles ($40.8-89.0 \mathrm{~km}$); bearings of the net tracks are conined to the narrow range $300^{\circ}-341^{\circ}$ with effective shoalng ranging from 17 to 25 fathoms ($31.1-45.7 \mathrm{~m}$). This particular group of defined migrants amply supports our orevailing hypothesis and serves to illustrate better than ny other the concept of the outbound (shoalward) phase f seasonal migration.

Composite Station 23 (See Figure 25 and Appendix Table 23)

Thirty-four recaptures have been reported from a omposite total of 301 releases near the east flank of Nelker Canyon on 19 and 20 June 1969. Mean depth at irst capture was 61 fathoms (112 m); mean depth at elease was 82 fathoms (150 m). Twenty-eight lobsters vere reported by specific location and two by aproximate location. Sex ratio at release was 139 females 46%) to 162 males; the ratio at return was 20 females 59%) to 14 males.
Mean time at large for all accountable (32) recoveries vas 249 days (0.7 yr); greatest time at large for a located ndividual (848 F), an egg-bearing female at release, was 06 days (1.4 yr) with recapture 16 miles $(29.7 \mathrm{~km}$) from riginal release point.
Mean distance traveled by individuals with specific apture locations (28) was 35 miles (64.9 km); eight inlividuals ($576 \mathrm{~F}, 728 \mathrm{~F}, 771 \mathrm{~F}, 562 \mathrm{M}, 564 \mathrm{M}, 767 \mathrm{M}, 769 \mathrm{M}$, 97 M) surpassed the 50 -mile ($92.7-\mathrm{km}$) range from point If release with two of these ($728 \mathrm{~F}, 797 \mathrm{M}$) exceeding 100 niles (185 km). Maximum dispersion of 126 miles (234 m) westerly was accomplished by 728 F while at large ; 48 days (0.95 yr); this individual bore ripe external eggs it recapture which, coupled with zero growth over the period at large, implies that egg deposition occurred hortly after release.
Only four of the recaptures qualify as migrants; all vere recaptured in significantly shoaler water with at east three of the four effecting large-scale movements iver relatively short term. Calculated bearing, ground peed, and depth change of these migrants are given relow:

Return no.	Bearing	Ground speed		Depth change	
576 F	313°	1.1	2.0	+59	+108
584F	$344{ }^{\circ}$	0.5	0.9	+51	+93
562M	$285{ }^{\circ}$	5.0	9.3	+52	+95
564M	282°	5.5	10.2	+50	+91

The net tracks exhibited by 576 F and 548 F approach the idealized view of directed shoalward movements; the tracks of 562 M and 564 M are good, in the comparative sense, but less than ideal in terms of the best vector toward shoaler water. These two migrants rank first and third for calculated ground speed among the 117 defined migrants.
Probable migrations are evident in the respective locations of at least four other individuals ($767 \mathrm{~F}, 769 \mathrm{M}$, $797 \mathrm{M}, 771 \mathrm{~F}$); each of these lobsters was recaptured approximately 1 yr after release at depths (20-35 fathoms = $36.6-64.0 \mathrm{~m}$) consistent with hypothesized summertime distribution. It should be noted that here, as elsewhere, perambulations beyond one season cannot be approximated by a straight-line track; this simple convention is probably a valid estimator in cases of defined migrants, but where movements are summed over two or more migration cycles, the track-line can be nothing more than a measure of temporal displacement from point of release.

Composite Station 24 (See Figure 26 and

 Appendix Table 24)Twenty-two recaptures have been reported from a composite release of 173 lobsters 10 miles (18.5 km) west of Oceanographer Canyon on 19 and 22 June 1970. Mean depth at first capture was 59 fathoms (108 m); mean depth at release was 57 fathoms (104 m). Fifteen lobsters were reported by specific location and four by approximate location. Three recaptures were reported without location information of any kind. Sex ratio at release was 72 females (42%) to 101 males; the ratio at return was 14 females (64%) to 9 males.
Mean time at large for all accountable (22) recoveries was 290 days (0.8 yr); greatest time at large for a located individual (883 F), a mature female at release, was 512 days (1.4 yr) with recapture 18 miles (33.4 km) from release point.
Mean distance traveled by individuals with specific capture locations (15) was 24 miles (44.5 km); two individuals ($569 \mathrm{~F}, 648 \mathrm{M}$) surpassed the $50-\mathrm{mile}(92.7-\mathrm{km}$) radius of dispersion. Recapture 569 F , the only qualified migrant among the returns, moved 74 miles (137 km) southwesterly in 16 days (4.6 miles $/$ day $=8.5 \mathrm{~km} /$ day) to equivalent depth near Veatch Canyon; recapture 648M was taken 136 miles (252 km) westerly near Block Canyon following 207 days at large.

Composite Station 25 (See Figure 27 and Appendix Table 25)

Ten recaptures have been reported from a composite release of 60 trap-caught lobsters near Block Canyon on 6
and 7 January 1971. Twenty-four were captured, tagged, and released at 115 fathoms (210 m); 36 others were taken, tagged, and released at 212 fathoms (388 m). All recaptures were reported by specific location. Sex ratio at release was 30 females (50%) to 30 males; the ratio at recapture was 6 females (60%) to 4 males.

Mean time at large for the 10 recoveries was 285 days $(0.8 \mathrm{yr})$; greatest time at large for a given individual (920 M), a mature male at release, was 530 days (1.5 yr) with subsequent recapture 4 miles (7.4 km) from release point.
Mean distance ranged by the 10 recaptures was 15 miles (27.8 km); maximum dispersion of 54 miles (100 km) was attained by 798 F while at large 163 days (0.4 yr); all other dispersions were 29 miles (53.7 km) or less with two ($735 \mathrm{~F}, 734 \mathrm{M}$) recaptured at original release locations following some 6 mo at large.

None of the recaptures meet the migrant criteria as defined.

Composite Station 26 (See Appendix Table 26)

Only a single recapture has been reported from a composite total of 54 releases (trap-caught) southwest of Hudson Canyon on 25 January and 21 February 1971. The initial group of 50 lobsters was caught and released at 225 fathoms (412 m); the second group of four was caught and released at 300 fathoms (549 m). Sex ratio at release was 17 females (31%) to 37 males.

The single recovery (647 M), a mature male at release, was at large 112 days (0.3 yr) prior to recapture at an unspecified location.

Composite Station 27 (See Figure 28 and

 Appendix Table 27)Eleven recaptures have been reported from a composite release of 194 trap-caught lobsters 15 miles (27.8 km) south of Baltimore Canyon on 7, 8, 10, and 11 February 1971. Forty-seven were captured and released at 185 fathoms (338 m); 24 were captured and released at 292 fathoms (534 m); 123 were captured and released at 150 fathoms (274 m). All of the recaptures were reported by specific location. The sex ratio at release was 99 females (51%) to 95 males; the ratio at return was 6 females (54%) to 5 males.

Mean time at large for all recoveries was 452 days (1.3 yr); greatest time at large was 620 days (1.7 yr) with net displacement of only 4 miles (7.4 km).

Mean distance traveled by the 11 recaptures was 24 miles (44.5 km); two individuals ($740 \mathrm{~F}, 917 \mathrm{~F}$) exceeded the $50-\mathrm{mile}(92.7-\mathrm{km}$) range. Maximum dispersion was attained by 917 F which was taken in a coastal trap fishery near Cape May, N.J., some 71 miles (132 km) from release location.

None of the recaptures meet migrant criteria.

Composite Station 28 (See Appendix Table 28)

Three recaptures have been reported from a single point release of 29 trap-caught lobsters 25 miles (46.3
km) southwest of Hudson Canyon on 22 February 197 Capture and release depth was 250 fathoms (457 m); s ratio at release was 14 females (48%) to 15 males.

Mean time at large for the three recoveries was 1 days (0.5 yr); greatest time at large was 479 days (1.3 y with only 9 miles (16.7 km) displacement from relea locality.

Mean distance ranged by the three recoveries was on 7.6 miles (14.1 km), the range being $7-9$ miles ($13.0-16$ km).

None of these recaptures meet the migrant criteria defined.

Composite Station 29 (See Figure 29 and Appendix Table 29)

One hundred fifty-five recaptures have been report from a composite release of 805 trap-caught lobsters Veatch Canyon on 9 and 10 May 1971.

This series of releases was made by one of us (Richa A. Cooper) while participating as scientific observer d ing commercial trap-fishing operations of the FV W Fox owned and operated by the Prelude Lobster Corpor tion of Westport, Mass. The lobsters that were tagg were, for the most part, either sublegal by size, or eq bearing females, and would normally have been discar ed as the traps were hauled and emptied. This taggi strategy was not used on any other cruise. All oth lobsters were trawl-caught or trapped (composi stations $25,26,27,28$) by research vessels previous named; among these trap-caught lobsters all that we viable at capture were tagged and released with the ϵ ception of those which were dead or moribund $(<1$ after the posttagging holding period.

One hundred fifty of the tagged lobsters were captur and released at 60 fathoms (110 m); the second group 655 was captured and released at 55 fathoms (101 n Sixty-three of the recaptures were reported by speci location, 83 by approximate location, and 9 without loc tion information of any kind. Sex ratio at release was 6 females (77%) to 184 males; the ratio of recaptures w 105 females (68%) to 50 males.

Mean time at large for all accountable (154) recover was 183 days (0.5 yr); greatest time at large for a locat individual (953F), an immature female at release, w 492 days (1.3 yr) with recapture 18 miles (33.4 km) fro release point.

Mean distance traveled by individuals with speci capture locations (63) was 15 miles (27.8 km); fi lobsters ($721 \mathrm{~F}, 738 \mathrm{~F}, 926 \mathrm{~F}, 758 \mathrm{M}, 895 \mathrm{M}$) surpassed t $50-$ mile ($92.7-\mathrm{km}$) range with each of the two males e ceeding 100 miles (185 km). Maximum dispersion of 1 miles (206 km) northerly to Cuttyhunk Island was 8 tained by 758 M while at large 108 days; this migrati (by prior definition) into the coastal trap fishery is further example of the evident, but unmeasured, annu recruitment to coastal stocks by lobsters of offsho origin. The net dispersion of 895 M over 221 days to point 102 miles (189 km) westerly could conceivably ha been the summation of a shoalward migration such

Figure 5.-Recoveries from composite station 2.

Figure 6.-Recoveries from composite station 3.

Figure 7.-Recoveries from composite station 4.

Figure 8.-Recoveries from composite station 5.

Figure 9.-Recoveries from composite station 6.

Figure 10.-Recoveries from composite station 7.

Figure 11.-Recoveries from composite station 8.

Figure 12.-Recoveries from composite station 9.
71°
69°

Figure 13.-Recoveries from composite station 11.

Figure 14.-Recoveries from composite station 12.

Figure 15.-Recoveries from composite station 13.

Figure 16.-Recoveries from composite station 14.

Figure 17.-Recoveries from composite station 15.

Figure 16.-Recoveries from composite station 14.

Figure 17.-Recoveries from composite station 15.

Figure 18.-Recoveries from composite station 16.

Figure 19.-Recoveries from composite station 17.

Figure 20.-Recoveries from composite station 18 plotted by 6 -minute squares.

Figure 21.-Recoveries from composite station 19 plotted by 6 -minute squares.

Figure 22.-Recoveries from composite station 20.
67°

Figure 23.-Recoveries from composite station 21.

Figure 24.-Recoveries from composite station 22 plotted by 6 -minute squares.

Figure 25.-Recoveries from composite station 23.

Figure 26.-Recoveries from composite station 24.

Figure 27.-Recoveries from composite station 25.

Figure 28.-Recoveries from composite station 27.
69°

Figure 29.-Recoveries from composite station 29 plotted by 6-minute squares.

Figure 30.-Shoalward migrations of 60 nautical miles (111 km) or greater and probable shoalward migrations of 50 nautical miles (92.7 km), Baltimore Canyon to Corsair Canyon.

Figure 31.-Shoalward migrations greater than 10 nautical miles (18.5 km) but less than 60 nautical miles (111 km), Block Canyon to Oceanographer Canyon.

Figure 33.-Mean depth of recapture of tagged lobsters by quarterly periods, 1968-71.

Figure 34.-Composite of recoveries by months by 6 -minute squares with mean monthly bottom temperature-January.

Figure 35.-Composite of recoveries by months by 6-minute squares with mean monthly bottom temperature-February.

Figure 37.-Composite of recoveries by months by 6-minute squares with mean monthly bottom temperature-April.

Figure 38.-Composite of recoveries by months by 6 -minute squares with mean monthly bottom temperature-May.

Figure 39.-Composite of recoveries by months by 6 -minute squares with mean monthly bottom temperature-June.

Figure 40.-Composite of recoveries by months by 6 -minute squares with mean monthly bottom temperature-July.

Figure 41.-Composite of recoveries by months by 6 -minute squares with mean monthly bottom temperature-August.

Figure 42.-Composite of recoveries by months by 6 -minute squares with mean monthly bottom temperature-September.

Figure 43.-Composite of recoveries by months by 6 -minute squares with mean monthly bottom temperature-October.

Figure 44.-Composite of recoveries by months by 6 -minute squares with mean monthly bottom temperature-November.

Figure 45.-Composite of recoveries by months by 6 -minute squares with mean monthly bottom temperature-December.
that of 758 M followed by an equal, but nonreciprocal return leg leading back to the point of capture west of Block Canyon; we believe that this hypothetical kind of two-stage movement could account for many of the apparently directed easterly or westerly movements.
Only four of the recaptures qualify as migrants; all were recaptured in significantly shoaler water with three of the four effecting large-scale movements approximating 1 mile (1.85 km) per day while at large. Each of the tracks show optimal or near optimal directionality relative to the shoaling objective. Calculated bearing, ground speed, and depth change of these migrants are as follows:

Return no.	Bearing	Ground speed		Depth change	
721 F	$004{ }^{\circ}$	1.0	1.9	+38	+70
738 F	$004{ }^{\circ}$	0.9	1.7	+30	+55
779 F	$018{ }^{\circ}$	0.5	0.9	+35	+64
758M	322°	1.0	1.9	+55	+101

SUMMARY OF DEFINED MOVEMENTS

It should be recalled that this report deals with 945 recaptured lobsters among which $584(62 \%)$ of the total were reported by specific location and hence classifiable according to the scheme outlined in the section on migration versus dispersion. According to the criteria laid down, 117 recaptures have been defined as migrants, 15 as nonmigrants, 147 as residual nonmigrants, and 297 as indeterminates, thus yielding a total of 576 defined movements. The discrepancy between the total of 584 located recaptures and 576 defined movements is due to the fact that eight of the located recaptures were reported without a date of recapture and hence could not be classified.

Among the 117 defined migrants, $74(63 \%)$ effected net shoalward movements of 10 fathoms (18.3 m) or more beyond the release point (Table 2). Although these tracks have been depicted in preceding figures as elements of the overall recovery patterns of their respective release group, it is instructive to isolate them from their original cohorts and examine them collectively. The intent of Figures $30-32$ is to show more clearly the variability of performance of the migrants which conform with our hypothesis of vernal shoalward migration while eliminating the confounding effects of other kinds of movements.

The ratio of these conforming (shoaling) migrants to the sum total of defined movements is $74: 576$. This grouping permits the inference from these tag returns that some 13% of the population at large annually engages in seasonal shoalward migration to a greater or lesser degree.

It is important to note that 297 of the 576 classified movements fall in the indeterminate category. This group constitutes 51% of the classified movements and includes a significant number of dispersions which, while failing to meet the migrant criteria because of the 120 day time constraint, may be subjectively interpreted as
migrants on the basis of relative dislocation from the continental margin and month of recapture.
In order to give fuller consideration to these movements, and to assess their additive effect on the previously derived estimate of 13% participation in an nual shoalward migration, we have selected and redefin ed as probable migrants those indeterminates whosi recapture locations were at least 50 miles $(92.7 \mathrm{~km})$ fron original release locality and at least 50 miles (92.7 km from the nearest margin of the continental shelf. Thesi highly restrictive criteria admit only 22 additional en tries (Table 2) to the asserted list of conforming (shoal ing) migrants and raises the theoretical ratio o shoalward migrations to 17%. We have assumed that the shoalward excursions of these probable migrants com menced in springtime from the shelf margin in the vicini ty of first capture or, alternatively, from some other point on the shelf margin no less than 50 miles (92.7 km) from point of recapture. These restrictions effectively exclude a considerable number of other indeterminates of only slightly lesser performance. If we assume that 13% of the indeterminates, or 39 lobsters, demonstrated vernal shoaling, as was the estimate from the defined migrants, the revised estimate of shoalward migration would be $20 \%(74+39=113$, or 20% of 576$)$. We can conclude from this review and reassessment of movements that at least $17-20 \%$ of the tagged population engaged in seasonally directed shoalward migration, that some 25% remained more or less localized (nonmigrants), and that the balance of classified movements (indeterminates) might, by more definitive criteria, be assignable to one or the other of the first two categories. We believe that the $17-20 \%$ estimate of shoalward migration is highly conser vative. The major impediment to correct allocation o the movements observed is our unsatisfactory knowledg of 1) homing tendencies and 2) the realistic limits on the radius of dispersion of localized movements in any givet year. Until these issues are resolved by further ex perimentation (sonic tagging with periodic tracking), wi have no basis for classification other than the partly ar bitrary system we have used. We believe, nevertheless that the deductive process used is substantially valid anc provides an acceptable interpretation of the seasona movements of lobsters comprising the offshore stock. Thi following sections on the monthly distribution of recap tures in relation to depth and temperature further substantiates the arguments advanced heretofore.

DEPTH DISTRIBUTION AT RECAPTURE

Analysis of the depth distribution of recaptured lobsters by month of capture shows a pronounced cyclical pattern of shoaling during the shelf warming period followed by retreat to the shelf margin and slope in winter months. These trends are summarized in Figure 33 which shows mean depth at recapture by quarterly periods over the $4-\mathrm{yr}$ period 1968-72.

Inspection of third quarter (July, August, September) averages shows relatively little deviation from the $4-\mathrm{yr}$ mean of 50 fathoms (91.4 m); similarly, fourth quarter
le 2.-Recapture data for 74 shoalward migrating lobsters demonstrating shoaling of 10 fathoms (18.3 m) or more and 22 probable migrants ose recapture location was at least 50 nautical miles $(92.7 \mathrm{~km})$ from release and at least 50 miles from nearest margin of continental shelf.

$\begin{aligned} & \text { gures } \\ & 0-32 \\ & \text { tor no. } \end{aligned}$	Return no. and composite station no.	Nautical miles	$\begin{gathered} \text { Days } \\ \text { at } \\ \text { large } \\ \hline \end{gathered}$	$\begin{gathered} \text { Average } \\ \text { speed } \\ \text { (mi/day) } \end{gathered}$	Depth change (fathoms)	$\begin{gathered} \text { Figures } \\ 30-32 \\ \text { vector no. } \\ \hline \end{gathered}$	Return no. and composite station no.	Nautical miles	Days at large	Average speed (mi/day)	Depth change (fathoms)
1	3F-3	102	29	3.5	60	49	293F-22	38	60	0.6	14
2	29F-3	77	118	0.6	75	50	307F-22	48	72	0.7	22
3	4F-5	11	36	0.3	34	51	308F-22	48	72	0.7	22
4	$26 \mathrm{~F}-5$	38	37	1.0	18	52	309F-22	48	72	0.7	22
5	$27 \mathrm{~F}-5$	38	37	1.0	20	53	316F-22	41	48	0.9	25
6	28F-5	56	50	1.1	78	54	336F-22	42	89	0.5	25
7	10F-6	24	33	0.7	42	55	337F-22	42	89	0.5	25
8	18F-6	18	49	0.4	29	56	339F-22	44	86	0.5	20
9	19F-6	18	49	0.4	29	57	222M-22	22	23	0.9	14
10	20M-6	18	49	0.4	29	58	242M-22	35	25	1.4	12
11	8M-7	72	39	1.8	37	59	243M-22	40	28	1.4	20
12	41F-10	20	60	0.3	10	60	248M-22	41	31	1.3	24
13	25F-13	75	28	2.7	38	61	258M-22	32	37	0.9	23
14	221F-18	12	54	0.2	10	62	261M-22	35	41	0.8	19
15	$240 \mathrm{~F}-18$	66	32	2.1	36	63	$278 \mathrm{M}-22$	30	45	0.7	18
16	249F-18	186	71	2.6	68	64	310M-22	38	67	0.6	20
17	254F-18	41	71	0.6	42	65	$341 \mathrm{M}-22$	32	89	0.3	18
18	263F-18	76	80	0.9	50	66	$342 \mathrm{M}-22$	32	89	0.3	18
19	266M-18	21	85	0.2	15	67	576-23	52	48	1.1	59
20	$311 \mathrm{M}-18$	39	106	0.4	45	68	584F-23	39	84	0.5	51
21	184F-19	15	40	0.4	10	69	562M-23	80	16	5.0	52
22	191F-19	14	43	0.3	15	70	$564 \mathrm{M}-23$	83	15	5.5	50
23	255F-19	45	70	0.6	45	71	721F-29	50	49	1.0	38
24	294F-19	118	107	1.1	47	72	$738 \mathrm{~F}-29$	50	53	0.9	30
25	654F-19	47	41	1.1	32	73	779F-29	39	79	0.5	35
26	190M-19	14	43	0.3	15	74	758M-29	111	108	1.0	55
27	194M-19	17	42	0.4	10	75	544F-7	58	771		
28	246M-19	51	67	0.8	48	76	$335 \mathrm{~F}-13$	56	465		
29	$317 \mathrm{M}-19$	125	86	1.4	38	77	347F-14	65	365		
30	$244 \mathrm{~F}-20$	27	60	0.4	16	78	$348 \mathrm{~F}-14$	62	365		
31	$247 \mathrm{~F}-20$	18	62	0.3	11	79	349F-14	59	365		
32	$252 \mathrm{~F}-20$	32	66	0.5	16	80	350F-14	59	365		
33	259F-20	47	70	0.7	23	81	269M-14	65	392		
34	$276 \mathrm{~F}-20$	41	79	0.5	18	82	357--17	58	353		
35	$277 \mathrm{~F}-20$	41	79	0.5	18	83	$768 \mathrm{~F}-17$	76	1,010		
36	306F-20	54	100	0.5	22	84	937M-17	132	973		
37	$314 \mathrm{~F}-20$	45	81	0.5	23	85	355F-18	70	166		
38	$315 \mathrm{~F}-20$	50	82	0.6	23	86	$720 \mathrm{M}-18$	110	761		
39	$200 \mathrm{M}-20$	35	43	0.8	13	87	610F-19	66	443		
40	$285 \mathrm{M}-20$	48	94	0.5	20	88	577M-19	78	522		
41	262F-21	76	44	1.7	24	89	578F-20	87	519		
42	236F-22	33	20	1.6	17	90	575F-22	155	431		
43	238F-22	32	21	1.5	18	91	$770 \mathrm{~F}-22$	103	750		
14	251F-22	32	32	1.0	18	92	$767 \mathrm{M}-23$	62	389		
45	260F-22	37	38	1.0	25	93	$769 \mathrm{M}-23$	60	377		
46	284F-22	32	60	0.5	17	94	$771 \mathrm{~F}-23$	54	361		
17	$287 \mathrm{~F}-22$	38	59	0.6	21	95	$740 \mathrm{~F}-27$	52	227		
18	288F-22	38	59	0.6	22	96	$917 \mathrm{~F}-27$	71	230		

ages are in good agreement with the 4 -yr mean of 66 oms (121 m). In contrast, the first quarter averages N an almost straight-line cline ranging from 197 oms (360 m) in 1969 to 127 fathoms (232 m) in 1972; implication of this trend is not clear because of the tively small numbers and large range of observations 1 which these means were derived. If, however, the d is real, it suggests that slope waters became rressively warmer over the 4 -yr period to the degree optimal overwintering conditions (discussed below er Average Monthly Bottom Temperatures) were met rogressively shoaler levels. The sum of deviations of and quarter means from the $4-\mathrm{yr}$ averages are almost
as great as those of the first quarter; here, however, the major source of deviation stems from a disproportionate number of deep-running recaptures taken in April 1970.
Despite the shortcomings of the data, the clearly cyclical nature of seasonal depth change seems, independent of net track analyses, adequate evidence of the tendency of offshore lobsters to optimize their year-round temperature regime. The consequences of this behavior are manifold in that metabolic rates and related life processes are doubtless accelerated relative to the coastal zone populations which tend to remain highly localized and hence subject to wider seasonal extremes and significantly lower mean annual temperature.

AVERAGE MONTHLY BOTTOM TEMPERATURES

The distribution of recaptured tagged lobsters by month and grouped by 6 -minute squares against average bottom water temperatures (${ }^{\circ} \mathrm{C}$) from Colton and Stoddard (1973) are presented in Figures 34-45. Bottom isotherms are plotted from data collected during the period 1940-66. Only recaptures whose month and location of recapture are known ($N=584$) are plotted.

Relating lobster distribution to average bottom water temperatures, it is apparent that the offshore lobster population generally maintains itself within a temperature regime of $8^{\circ}-14^{\circ} \mathrm{C}$. The two apparent exceptions to this generalization, evident in Figures 36 (March) and 37 (April), are predictable. Bottom isotherms represent average temperature conditions for a $26-\mathrm{yr}$ period, and the temperature conditions for a given month vary considerably from year to year and within a given month (Colton and Stoddard 1973; and Chamberlin ${ }^{2}$).

During the first quarterly period, January through March, offshore lobsters are distributed along the outer continental shelf and upper slope (Figs. 34-36). Bottom water temperatures during this period ranged from 8° to $12^{\circ} \mathrm{C}$ (Colton and Stoddard 1973; Chamberlin ${ }^{2}$). In contrast, the inshore, shallow-water lobster populations are in a state of reduced activity in coastal waters of $0^{\circ}-4^{\circ} \mathrm{C}$ (Cooper et al. 1975).

During the second quarterly period, April through June, the onset of shoalward migration has begun, occurring first (April and May) in the western half of the shelf (Figs. 37, 38) and next (June) in the eastern half of the shelf (Fig. 39). Bottom water temperatures in the latter half of May along southern Long Island, Block Island Sound, and Buzzards Bay are $8^{\circ} \mathrm{C}$ and warmer (Colton and Stoddard 1973). An intensive fishery for lobsters occurs along southern Long Island from late May through mid-July, directed primarily toward the onshore migrants emanating from Hudson to Veatch Canyon (Cooper and Uzmann, unpubl. studies). Lobster migrations into the southern Long Island coastal waters are evident from Figures 6, 15, and 16.

Figures 40-43 (July-October) demonstrate that the offshore lobster population is widely distributed over the southern New England continental shelf, including the shoal waters of Georges Bank and the coastal waters of Long Island, Rhode Island, southern Massachusetts, and Cape Cod. Bottom water temperatures in areas of apparent lobster abundance during July-September are 8°. $14^{\circ} \mathrm{C}$.
The return migration to the outer shelf-upper slope waters probably begins in August (Fig. 41) and continues through September, October, and November (Figs. 42 -

[^4]44). Migration to deep water first occurs in the wester half of the shelf and then in the eastern half.

During the first month (October) of the last quarter (October-December) there are still some lobsters dis tributed over the shoals of Georges Bank and immediate ly south of Nantucket Island (Fig. 43) with bottom wate temperatures of $10^{\circ}-14^{\circ} \mathrm{C}$. By December the offshon lobster population is again distributed along the oute continental shelf and upper slope waters (Fig. 45) when bottom temperatures are $8^{\circ} \cdot 12^{\circ} \mathrm{C}$.

CONCLUSIONS

The distribution of tag returns from a $4-\mathrm{yr}$ tagging ane recapture study has demonstrated that at least 20% o the offshore lobster population moves into shoal water in the spring and summer and returns to the outer shelf anc upper slope by early winter. This migratory behavio appears to be motivated by temperature, as the seasona distribution of tagged lobsters according to depth is wel correlated with bottom temperature. The extensive seasonal migrations undertaken by offshore lobsters con trast sharply with the localized movements of coasta stocks. This apparent difference may be partially ex plained by the very high exploitation rate inshore such that most lobsters of recruit size are quickly harvested within the bounds of locally intensive fisheries.

Whether the offshore stocks are genetically distinct from the coastal stocks has not been established, but it in evident that the shelf edge and upper slope is a permanent habitat from which small- and large-scale excur sions are made with seasonal regularity. We believe that the continental slope habitat lacks sufficiently higl temperatures during the summer to promote extrusion o eggs, molting, and subsequent mating, and that th deficiency is compensated by seasonal shoalward migra tion to warmer water. In situ observations of offshor lobsters from the research submersible Nekton Gamma at Corsair, Lydonia, Oceanographer, Hydrographer, an Veatch canyons during June-July of 1973 and 1974 sub stantiate this belief. Evidence of lobster molting (she exoskeleton) was observed only at depths shoaler tha 100-110 fathoms ($183-201 \mathrm{~m}$), whereas lobsters were dis tributed to depths of at least 170 fathoms (311 m).
The magnitude of variation in depth at recapture b, month suggests that the migration toward shoal water is not a total population response, nor is it likely a well. coordinated one. We hypothesize that some lobsters migrate early, some late, and some not at all. Superimposed upon these variations in migratory behavior is an apparent tendency of some lobsters to move laterally east or west along the outer shelf and upper slope. Hence, the concept of discrete canyon populations is unlikely.

SUMMARY

1. This report has presented the results of an offshor lobster tag and recapture study to define the seasons

[^5]nigratory behavior and population distribution of the ffshore lobster population ranging from Corsair Canon and the southeastern extremes of Georges Bank o Baltimore Canyon off the coast of Virginia. A total f 7,326 offshore lobsters were tagged and released at 2 localities, grouped into 29 composite release tations to effect a logical pooling of release and recapure information and expedite the plotting and valuation of the data.
Cooper and Uzmann (1971) hypothesized, on the basis f a described time-temperature relationship, that the nature of the offshore lobster migration phenomenon vas a vernal shoalward movement to warmer water with subsequent return to the outer edge of the shelf and upper slope with the onset of fall and winter. In his report we attempt to elicit qualitative and quanitative aspects of individual movements from roupings of individuals referenced to release locality, point of recapture, and time at large.
Among the 945 recaptured lobsters, $584(62 \%)$ were eported by specific location, $183(19 \%)$ by generalized ocation, and $178(19 \%)$ without location information f any kind. A classification scheme is presented which distinguishes between directed migrants and hose whose net movements over time are inconsequential or not clearly directional. We have lefined a migrant as an individual that has moved a distance of 10 miles or more in 10-120 days from time of release to time of recapture. A total of 117 (20% of 584) lobsters meet our requirements of defined migrants.
Between 17 and 20% of the 576 recaptured lobsters whose net movements were definable (classified novements) demonstrated seasonal shoalward migraion. The highly restrictive criteria used herein for lefining shoalward migrants have probably excluded a considerable number of other recaptures that had, n fact, migrated into shoaler water. Therefore, the esimate of $17-20 \%$ annual shoalward migration is robably an underestimate. Approximately 25% of he tagged population remained localized (nonnigrants) and some portion of the remaining $55-58 \%$ If the classified movements (indeterminates) might, hrough more definitive criteria of classification, be issignable as shoalward migrants or nonmigrants. iorty-three (37%) of the defined migrants (117) movd laterally along the outer edge of the continental helf. There is no apparent reason for this lateral novement easterly or westerly during spring and ummer. Discrete submarine canyon populations eem unlikely in view of these lateral movements. In ontrast, 63% of the defined migrants moved into hoal water.
inalysis of the depth distribution of recaptured obsters by month of capture shows a pronounced yclical pattern of shoaling during March-August ollowed by a return to the shelf margin and upper lope during October-December. These cyclical hanges in depth by season, independent of net track nalyses, provides additional support for the
hypothesis of Cooper and Uzmann (1971) of inshoreoffshore movements of the offshore lobster population.
7. The distribution of recaptured lobsters by month of capture and mean bottom water temperature demonstrates that the offshore lobster population, through random and/or directed movements, maintains itself within a temperature regime of $8^{\circ}-14^{\circ} \mathrm{C}$.

ACKNOWLEDGMENTS

We thank National Marine Fisheries Service port agents John V. Mahoney, Churchill T. Smith, Fred C. Blossom, Paul P. Swain, and Dennis E. Main for invaluable assistance in locating, collecting, and reporting tagged lobsters taken by the commercial fishing fleet. Special thanks are due to John P. Laird, National Marine Fisheries Service, Woods Hole, for assistance with programming and execution of computer and plotter runs. The laboratory draftsmen, John R. Lamont and James A. Rollins, have our deep appreciation for their patient craftsmanship with our many requirements. Likewise, we sincerely thank Gwendolyn L. Kelley, staff typist, and Gareth W. Coffin, staff photographer, for their essential services in the final production of this report.

LITERATURE CITED

COLTON, J. B., and R. R. STODDARD.
1973. Bottom-water temperatures on the continental shelf, Nova Scotia to New Jersey. U.S. Dep. Commer., NOAA Tech. Rep. NMFS CIRC-376, 55 p.
COOPER, R. A
1970. Retention of marks and their effects on growth, behavior, and migrations of the American lobster, Homarus americanus. Trans. Am. Fish. Soc. 99:409-417.
COOPER, R. A., R. A. CLIFFORD, and C. O. NEWELL.
1975. Seasonal abundance of the American lobster, Homarus americanus, in the Boothbay Region of Maine. Trans. Am. Fish. Soc. 104:669-674.
COOPER, R. A., and J. R. UZMANN
1971. Migrations and growth of deep sea lobsters, Homarus americanus. Science (Wash., D.C.) 171:288-290.
FIRTH, F. E.
1940. Giant lobsters. New Engl. Nat. 9:11-14.

HUGHES, J. T.
1963. Report of the investigation and study of the deep sea lobster fishery. Commonw. Mass., House Doc. 3190:1-13.
KROUSE, J. S.
1973. Maturity, sex ratio, and size composition of the natural population of American lobster, Homarus americanus, along the Maine coast. Fish. Bull., U.S. 71:165-173.
McRAE, E. D., JR.
1960. Lobster explorations on the continental shelf and slope off northeast coast of the United States. Commer. Fish. Rev. 22(9):1-7.
SAILA, S. B., and J. M. FLOWERS.
1968. Movements and behaviour of berried female lobsters displaced from offshore areas to Narragansett Bay, Rhode Island. J. Cons. 31:342-351.

SCHROEDER, W. C.
1955. Report on the results of exploratory otter-trawling along the continental shelf and slope between Nova Scotia and Virginia during the summers of 1952 and 1953. Pap. Mar. Biol. Oceanogr., Deep Sea Res., Suppl. Vol. 3:358-372.
1959. The lobster, Homarus americanus, and the red crab, Geryon quinquedens, in the offshore waters of the western North Atlantic. Deep Sea Res. 5:266-282.

SKUD, B. E., and H. C. PERKINS.

1969. Size composition, sex ratio, and size at maturity of offshore northern lobsters. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 598, 10 p.
STEWART, L. L.
1970. The seasonal movements, population dynamics and ecology
of the lobster, Homarus americanus (Milne-Edwards), off Ra: Island, Conn. Ph.D. Thesis, Univ. Connecticut, Storrs, 152 p TEMPLEMAN, W.
1971. Mating in the American lobster. Contrib. Can. Biol. Fist New Ser. 8:421-432.

UZMANN, J. R.
1970. Use of parasites in identifying lobster stocks. (Abstr.) Parasitol. 56, Suppl. Sec. II, p. 349.

APPENDIX TABLES

Key to Column Headings

RET - Return number plus F (female) or M (male) suffix on column entries
CS - Composite station number
OS - Original station number
MO - Month of recapture
RLAT - Release latitude
RLON - Release longitude
CLAT - Recapture latitude
CLON - Recapture longitude
DATL - Days at large
MIL - Miles (nautical)
CL1- Carapace length at release
CL2. Carapace length at recapture
EC - External egg code; first digit is egg code at release, second digit is egg code at recapture:
1 - no eggs
2 - new eggs
3 - mature eggs
4 - unreported
5 - eggs, stage unreported

Appendix Table 1

ET CS OS MO RLAT RLON CLAT CLON DATL MIL CLI CLZ EC

$28 F$	1	1	5	4017	6803		421	118	118	11	
$23 M$	1	2	6	4017	6803			1191		185	212

Appendix Table 2

ET CS OS MO RLAT RLON CLAT CLON DATL MIL CLI CLZ EC

$13 M$	2	4	6	3959	6936	4009	6951	67	16	80	80
$17 M$	2	4	6	3959	6936	4002	6936	76	3	102	102
$66 M$	2	4	4	3959	6936	VEAT		741		97	135

Appendix Table 3

ET CS OS MO RLAT RLON CLAT CLON DATL MIL CLI CLZ EC

$3 F$	3	5	5	3931	7213	4105	7121	29	102	96	
$11 F$	3	5	5	3931	7213	3938	7225	26	13	78	78
$23 F$	3	5	5	3931	7213	3955	7145	6	33	90	90
11											
$29 F$	3	5	8	3931	7213	4047	7235	118	77	94	94
$45 F$	3	5	8	3931	7213	3907	7243	470	34	70	
$46 F$	3	5	7	3931	7213	3907	7243	460	34	72	14
$60 F$	3	5	2	3951	7213			1024		79	104
								11			
$2 M$	3	5	5	3951	7213	3935	7215	15	5	74	74
$38 M$	3	5	8	3931	7213	HUNS		125		73	

Appendix Table 4

RET CS OS MO RLAT RLON CLAT CLON DATL MIL CLI CLZ EG

$87 F$	4	6	1	4005	7109	4000	7106	254	6	85	99
$462 F$	4	6	4	4005	7109			344		92	
875 F	4	6	12	4005	7109			1326		69	88
$7 M$	4	6	6	4005	7109	4009	7112	43	5	103	
$12 M$	4	6	5	4005	7109	4005	7122	7	10	79	79
$173 M$	4	6	6	4005	7109	4003	6958	405	71	100	
$409 M$	4	6	12	4005	7109			597		73	108

Appendix Table 5

RET CS OS MO RLAT RLON CLAT CLON DATL MIL CL1 CLZ EC

CET OS MO RLAT RLON CLAT CLON DATL MIL CLI CLZ EC

9F	6	11	6	3957	6953	3958	6918	36	27	79	79
$10 F$	6	9	6	3958	6959	4003	6929	33	24	88	
$18 F$	6	9	6	3958	6959	4003	6936	49	18	84	84
$19 F$	6	9	6	3958	6959	4003	6936	49	18	99	99
$57 F$	6	9	11	3958	6959	4018	6849	197	57	123	
$67 F$	6	9	12	3958	6959	4003	7017	234	15	119	119
$71 F$	6	11	1	3957	6953	4000	7008	259	10	92	92
$73 F$	6	9	1	3958	6959	4002	6906	259	41	113	127
$86 F$	6	9	1	3958	6959	3957	7054	252	42	102	102
$91 F$	6	11	1	3957	6953	4013	6832	266	63	83	83
$324 F$	6	9	9	3958	6959	4006	7130	496	71	84	
$436 F$	6	9	11	3958	6959	$V E A T$		563		114	
$1 M$	6	9	5	3958	6959	$400 \cup$	7118	12	62	101	101
$20 M$	6	9	6	3958	6959	4003	6936	49	18	86	86
$50 M$	6	9	11	3958	6959	4016	7002	187	19	83	99
$70 M$	6	9	1	3958	6959	4001	6937	262	17	89	
$85 M$	6	9	1	3958	6959	4001	7012	274	11	104	104
$253 M$	6	11	7	3957	6953	4040	6926	435	47	96	115
$279 M$	6	11	7	3957	6953			425		74	
$133 M$	6	11	1	3957	6953	4006	6840	616	58	87	102
$33 M$	6	9	10	3958	6959	4015	6955	896	18	67	
$36 M$	6	9	2	3958	6959			1020		99	

Appendix Table 7

ET CS OS MO RLAT RLON CLAT CLON DATL MIL CL1 CLZ EC

74 F	7	10	1	3956	6942	3955	6940	256	1	100	114	31
84 F	7	10	1	3956	6942	4001	7012	272	23	83	98	11
-04 F	7	10	4	3956	6942	4000	6912	336	23	100	100	11
-12 F	7	10	4	3956	6942	3958	6914	354	21	132	132	11
38 F	7	10	1	3956	6942			624		109	127	11
95 F	7	10	5	3956	6942	4009	6903	739	31	96	109	11
$\mathbf{4 4 \mathrm { F }}$	7	10	6	3956	6942	4054	6941	771	58	90	103	11
8 M	7	10	6	3956	6942	4009	7115	39	72	111	111	
$137 M$	7	10	1	3956	6942	4000	6937	626	5	71	101	
$338 M$	7	10	5	3956	6942			753		86		

RET CS OS MO RLAT RLON CLAT CLON DATL MIL CLI CLZ EC

$39 F$	8	12	8	3959	7003	HUDS		74		84	
$156 M$	8	12	5	3959	7003	4031	6740	350	114	91	
$245 M$	8	12		3959	7003				100	120	
$546 M$	8	12	6	3959	7003	3957	6929	734	26	111	130

Appendix Table 9

RET CS OS MO RLAT RLON CLAT CLON DATL MIL CL1 CLZ EC

Appendix Table 10

RET CS OS MO RLAT RLON CLAT CLON DATL MIL CLI CLZ EC

34 F	10	14	7	4013	7031	4013	7010	39	16	76	76	11
41 F	10	14	8	4013	7031	4022	7052	60	20	76		14
$30 M$	10	14	8	4013	7031	4013	7024	46	6	69		

CS OS MO RLAT RLON CLAT CLON DATL MIL CLI CLZ EC

31 F	11	15	7	4013	7015	4017	7007	30	7	71		14
83 F	11	15	1	4013	7015	4001	7012	227	12	87	99	12
90 F	11	15	2	4013	7015	3959	7012	231	14	72	83	11
y9F	11	15	5	4013	7015	4006	6839	695	74	93	107	11
$53 F$	11	15	6	4013	7015	4011	6849	727	65	98		14

$\begin{array}{lllllllllllll}94 M & 11 & 15 & 2 & 4013 & 7015 & 3455 & 6933 & 253 & 37 & 117 & 117\end{array}$

Appendix Table 12

CLT CS OS MO RLAT RLON CLAT CLON DATL MIL CLI CLZ EC

Y6F	12	16	6	4 ULZ	7114	3955	7154	358	35	97	97	11
		16	10	4012	7114	4012	7119	120	4	113	113	
$48 M$	12	16	16	1	4012	7114	$4 U 0 U$	7008	214	52	102	120

Appendix Table 13

RET CS OS MO RLAT RLON CLAT CLON DATL MIL CL1 CL2 EC

22 F	13	17	7	4004	7150	4000	7122	14	23	91		14
24 F	13	17		4004	7150					91	91	55
25 F	13	17	7	4004	7150	4057	7318	28	75	97	97	55
32 F	13	19	8	4005	7143	4000	7153	56	9	78	90	11
$61 F$	13	19	12	4005	7143	4009	7022	174	63	88	103	14
63 F	13	18	12	4006	7148	3908	7241	178	70	79	103	11
64 F	13	18	12	4006	7148	3848	7502	183	96	99	99	11
65 F	13	18	12	4006	7148	4001	7439	182	52	79	93	11
78 F	13	19		4005	7143					83		14
81F	13	19	1	4005	7143	3957	7013	224	71	88	88	11
99F	13	17	3	4004	7150			259		95	109	31
11.5 F	13	19		4005	7143					68		14
164 F	13	19	5	4005	7143			345		92	107	11
267 F	13	18	7	4006	7148			347		98		51
27 UF	13	19	6	4005	7143	3956	7145	375	9	85	85	11
297F	13	17	6	4 CU 4	7150			350		87		14
335 F	13	18	9	4006	7148	4045	72411	465	56	92	105	11
353 F	13	19	10	4005	7143	4044	7116	484	45	65	83	11
407 F	13	17	12	4004	7150	VEAT		544		87	101	31
486 F	13	19	5	4005	7143	4007	6936	681	98	90	102	11
615 F	13	19	8	4005	7143			792		85	98	11
618 F	13	18	9	4 UU 6	7148			824		89	102	11
772 F	13	17	7	4004	7150	VEAT		1121		79	109	44
879 F	13	17	11	4004	7150	4005	6935	1228	104	97		54
905 F	13	18	3	4006	7148	3908	7243	1360	72	88		44

$42 M$	13	17	8	4004	7150	4022	7054	58	47	72	
$59 M$	13	17	11	4004	7150	4017	7012	158	76	86	103
$92 M$	13	17	1	$40 U 4$	7150	VEAT		227		89	
$95 M$	13	17	2	4004	7150	4012	7119	235	25	87	
$106 M$	13	17	4	4004	7150	$395 U$	7149	302	14	97	
$108 M$	13	17	2	4004	7150	4007	7123	238	21	94	
$175 M$	13	18	6	4006	7148	3957	7157	353	11	85	97
$250 M$	13	18	7	4006	7148			381		86	
$268 M$	13	18	7	4006	7148			378		107	
$325 M$	13	17	8	4004	7150			434		103	
$472 M$	13	17	4	4004	7150			655		94	132
$585 M$	13	18	9	4006	7148	4007	7058	816	39	98	137
$649 M$	13	17	1	4004	7150	4008	7132	941	15	98	137
$742 M$	13	18	10	$40 U 6$	7148			1215		75	
$870 M$	13	18	12	4006	7148	4005	6925	1267	108	89	

RET CS OS MO RLAT RLON CLAT CLON DATL MIL CL1 CL2 EC

35 F	14	21	9	4005	7138	4003	7134	79	6	82		14
49 F	14	21	10	4005	7138	4023	6944	129	89	94	108	11
80 F	14	20	1	4007	7138	3952	7147	224	16	89	102	11
93F	14	21	2	4005	7138	BLOC		235		77		14
96 F	14	20	3	$40 \cup 7$	7138	391 u	7229	262	69	87	87	12
147 F	14	20	5	4007	7138	3958	7127	341	12	79	93	11
174 F	14	20	6	4007	7138					80		14
235 F	14	20	7	4007	7138	4008	7 006	376	71	91		15
322F	14	21	9	4005	7138	4012	7107	441	26	74		14
323 F	14	20	9	4 UU 7	7138	4012	7107	441	25	95		12
330 F	14	20	7	4007	7138	4010	6939	378	91	87		14
347 F	14	21	5	4005	7138	4045	7243	365	65			
348 F	14	21	5	4005	7138	4046	7238	365	62			
349 F	14	21	5	4005	7138	4048	7230	365	59			
350F	14	21	5	4005	7138	4449	7228	365	58			
430 F	14	21	1	$4 \cup \cup 5$	7138			556		88	101	11
446 F	14	21	12	4005	7138	4004	7135	546	4	81	93	12
504 F	14	21	5	4 Uu 5	7138	4005	7135	689	2	82	96	13
726 F	14	20	6	4 L0 7	7138	4029	6743	1477	181	91	121	14
33 M	14	21	8	4005	7138	4 LO	7153	55	12	98	98	
79 M	14	21	1	4005	7138	3941	7152	222	26	92	107	
151M	14	20	5	4007	7138	3956	7103	328	73	95		
269 M	14	20	7	4007	7138	4044	7246	392	65	100	117	
422M	14	20	12	4007	7138	4109	7130	556	7	104	126	
634 M	14	21	10	4005	7138	3958	7124	836	13	123		

Appendix Table 15

RET CS OS MO RLAT RLON CLAT CLON DATL MIL CLI CLZ EC

$51 F$	15	22	11	4142	6652	4136	6648	44	7	117	
$107 F$	15	22	5	4142	6652	4137	6627	227	19	136	
$289 F$	15	22	8	4142	6652	4139	6700	321	7	86	86
$548 F$	15	22	6	4142	6652	4109	6620	640	41	157	
$607 F$	15	22	7	4142	6652			666		151	163
$620 F$	15	22	10	4142	6652	4130	6654	759	12	107	121
$77 M$	15	22	1	4142	6652			132		141	141
$13 G M$	15	22	5	4142	6652			231		142	142
$286 M$	15	22	8	4142	6652	4140	6705	321	10	156	156

RET CS OS MO RLAT RLON CLAT CLON DATL MIL CLI CLZ EC

45 F	16	23	10	4 US 1	6837	4034	6927	20	38	98	98
52 F	16	25	11	4029	6837	4018	6907	38	25	86	
55 F	16	26	11	4435	6842	4032	6906	55	18	85	
98F	16	25	3	4029	6837	4004	6852	173	27	96	96
100F	16	26	3	4435	6842	4014	6817	171	28	105	105
114 F	16	24	4	4030	6836			215		90	100
165 F	16	24	6	4030	6836	4002	6933	250	52	104	104
176 F	16	26	6	4035	6842	4008	7027	257	84	92	92
241 F	16	24	6	4050	6836	$40<4$	6816	250	15	103	103
367 F	16	26	11	4145	6842			415		83	100
434 F	16	26	12	4035	6842	HYOR		447		94	
449 F	16	23	2	4431	6837	VEAT		514		102	
539 F	16	26	5	4035	6842			231		115	
559 F	16	25	6	4029	6837	$40 \angle \mathrm{U}$	6818	640	17	120	
616 F	16	26	9	4035	6842	VEAT		719		108	
629 F	16	26	10	4035	6842	HYOR		735		105	117
731F	16	23	6	$4 U 31$	6837			981		84	110
732F	16	26	6	4035	6842			980		85	120
749 F	16	26	8	4035	6842	4015	6855	1062	21	86	100
762 F	16	25	7	4029	6837	OCEA		1034		98	
46 M	16	24	10	4030	6836	4034	6927	20	39	123	123
54 M	16	25	11	4029	6837	4032	6906	56	22	96	
75 M	16	25	1	4029	6837	3959	6937	113	54	92	92
88 M	16	26	10	4035	6842	4022	685 U	7	14	98	
89 M	16	25	10	4029	6837	4022	6850	8	12	85	
97M	16	26	3	4035	6842	4004	6852	172	31	90	90
101M	16	24	3	4030	6836	4005	6850	177	27	107	107
102M	16	26	4	4035	6842	4019	6809	189	29	128	128
103 M	16	24	4	4030	6836	4019	6809	191	23	92	92
109M	16	25	4	4029	6837	4015	7016	194	77	101	
110 M	16	25	4	4029	6837	4014	6810	203	26	120	120
113 M	16	24	4	4030	6836			215		100	100
116 M	16	25	5	4129	6837	VEAT		237		137	
139M	16	24	5	4030	6836	4007	6905	237	32	79	89
145 M	16	23		4031	6837					99	99
157 M	16	26	6	4035	6842	4007	6908	248	34	109	109
159 M	16	26	6	4035	6842	4008	6845	252	26	83	83
170 M	16	25	6	4029	6837			249		116	
195M	16	26	6	4035	6842	4012	6840	269	23	131	131
197M	16	25	6	4029	6837	4012	6840	269	17	122	122
220M	16	25	6	$402 y$	6837	4010	6841	272	19	93	93
223 M	16	23	6	4031	6837	4016	6829	275	15	104	104
224 M	16	24	6	4030	6836	4008	6907	275	32	109	109
257M	16	25	7	4029	6837			290		107	107
296 M	16	25	6	4029	6837			251		86	
362 M	16	25	11	4029	6837	4206	6734	411	107	76	

Appendix Table 16 Cont.

QET CS OS MO RLAT RLON CLAT CLON DATL MIL CL1 CLZ EC

199	16	23	10	$4 \omega^{W} 1$	6837	4109	6707	384	79	90	
01M	16	25	12	4029	6837	4010	6402	439	27	74	86
73M	16	25	4	4029	6837	VEAT		557		84	99
129M	16	24	6	4050	6836			620		80	95
M	16	25	5	4029	6837	4005	6915	612	38	156	
52 M	16	25	6	4029	6837	4015	6845	641	16	94	
6	16	25	7	4029	6837	4035	7009	648	70	76	96
28M	16	25	10	4 UZ	6837	HYDR		736		106	125
741 M	16	26	9	4 US 5	6842	4032	5735	1077	51	126	
59 M	16	25	10	4 4 C	6837	4016	6812	1103	23	83	147
18 M	16	23	7	4US 1	6837	4025	6810	1380	21	117	165
332 r	16	25	8	4129	6837	4028	6725	1407	55	96	143
333 M	16	25	7	4029	6837			1381		105	

RET CS OS MO RLAT RLON CLAT CLON DATL MIL CLI CLZ EC

131 F	17	28
132 F	17	27
140 F	17	27
232 F	17	27
234 F	17	28
357 F	17	28
481 F	17	27
508 F	17	28
590 F	17	27
591 F	17	27
768 F	17	27
784 F	17	28
786 F	17	27
$94 . \mathrm{F}$	17	27

$\begin{array}{lll}56 M & 17 & 27\end{array}$
$117 M \quad 17 \quad 28$ 144 M 1727
$167 \mathrm{M} \quad 17 \quad 28$
233 M 1728
$587 M \quad 17 \quad 28$
588 M 1727
$589 M \quad 17 \quad 28$
744 M 1727
934 M 1727
$937 M \quad 17 \quad 27$
$938 \mathrm{M} 17 \quad 27$
943 M $17 \quad 28$

540336745
$\begin{array}{llllll}5 & 402 y & 6739 & 3 y 56 & 6 y 31 & 201\end{array}$
$54029 \quad 6739 \quad 4018 \quad 6810 \quad 208$
$\begin{array}{llllll}6 & 4029 & 6739 & 4026 & 6733 & 256\end{array}$
$7 \quad 4033 \quad 6745 \quad 4033 \quad 6740 \quad 259$
$10 \quad 4033 \quad 6745 \quad 4129 \quad 6728 \quad 353$
$\begin{array}{llllll}4 & 4029 & 6739 & 4026 & 6725 & 560\end{array}$
$\begin{array}{llllll}5 & 4 & 433 & 6745 & 4013 & 6831 \\ 4 & 577\end{array}$ 40296739 HYDR WELK $402 y 6739$ HYDR WELK
$74 U 2 y 673941426714$
10

40336745 LYDU
40296739
740296739

11	$4 U 29$	6739	4O3Y	6704	39	29	199	
5	$4 U 3 S$	6745	VEAT		216		121	
	$4 U 29$	6739					109	109
6	4033	6745			229		98	98
7	$4 U 3 S$	6745	4033	$674 U$	259	4	116	116
	4033	6745	HYUR	WELK			118	
	$4 U 29$	6739	HYUR	WELK			74	
	$4 U 33$	6745	HYUR	WELK			107	
10	$4 U 29$	6739	4033	6755	1091	12	132	
7	$4 U 29$	6739	4030	6810	1372	24	119	
6	$4 U 29$	6739	4150	6957	973	132	109	
6	4029	6739	4020	6733	1338	11	114	
8	4033	6745			1413		108	120

$\begin{array}{lll}156 & 156 & 11\end{array}$
132132
130
11 11
11
31
31
11
11
11
14

ET	cs	os	MO	RLAT	RLON	CLAT	CLON	DATL	MIL	CL1	CL2
25 F	18	29	5	3958	6928			15		71	
26 F	18	29	5	3958	6928			15		79	
33 F	18	29	5	3958	6928	3956	6931	4	4	103	103
55 F	18	29	5	3458	6928			19		75	
58 F	18	30	6	3959	6925	4 UU 7	6908	31	16	72	72
63 F	18	29		3958	6928					84	84
66 F	18	29	6	3958	6928	$40 \cup 7$	6948	32	18	91	91
80 F	18	32	6	4400	6934	4007	6928	41	9	80	80
82 F	18	29	6	3958	6928	4007	6928	43	9	77	77
83 F	18	32	6	4000	6934	4007	6928	41	9	80	80
11 F	18	29	6	3958	6928			56		80	80
21F	18	32	6	4000	6934	4002	6918	54	12	109	109
40F	18	32	6	4000	6934	4054	6843	32	66	101	101
4.9F	18	29	7	3458	6928	4059	7305	71	186	90	
54 F	18	30	7	3459	6925	4040	6926	71	41	121	121
56 F	18	30	7	3959	6925			72		86	86
63 F	18	30	7	345 y	6925	4113	6946	80	76	116	116
71F	18	32	7	4 U0	6934	4004	7009	85	27	68	68
83 F	18	32	8	4 LU 0	6934	4007	6405	102	25	71	
91 F	18	32	8	4000	6934	VEAT		91		82	82
95F	18	29	6	3958	6928			34		86	
18 F	18	29	8	3958	6928	4000	6937	122	7	80	93
19 F	18	32	8	4 UU0	6934			118		83	83
29F	18	29	7	3458	6928			64		92	
40 F	18	29	9	3458	6928	3957	6932	129	3	68	82
43 F	18	32	10	$40 \cup 0$	6934			156		87	
55 F	18	30	10	3959	6925	4058	7015	166	70	97	113
58 F	18	29	10	3958	6928	4008	6904	181	21	74	
$61 F$	18	29	10	3958	6928	4003	6936	175	8	86	115
69 F	18	29	11	3458	6928			199		76	91
71 F	18	30	11	3959	6925			198		72	86
75 F	18	29	11	3458	6928	4022	6941	207	24	73	89
76 F	18	32	11	4000	6934	4022	6941	205	21	76	89
80 F	18	32	11	4 บU0	6934	HYUR		199		68	82
92F	18	32	11	4040	6934	4020	6934	212	20	75	90
95 F	18	29	12	3958	6928	4013	6934	221	16	79	93
05 F	18	29	12	3958	6928	VEAT		233		72	
10 F	18	29	12	3958	6928			226		97	112
17 F	18	29	12	3958	6928			229		70	
21 F	18	32	12	4 UU0	6934			227		69	
27 F	18	29	1	3458	6928			259		69	82
28 F	18	32	1	4040	6934			257		83	98
31 F	18	30	1	3959	6925			258		81	96
40 F	18	29	1	3958	6928	4401	6908	275	15	73	86
45 F	18	32	1	4000	6934	4003	7010	258	28	88	
48 F	18	32	2	4040	6934	VEAT		295		88	102
50 F	18	30	1	395 y	6925			274		75	88
54 F	18	32	2	4000	6934	4001	6908	284	20	92	
55 F	18	30	2	3959	6925			290		71	85
$61 F$	18	29	6	3958	6928	4000	6925	41	2	87	

RET CS OS MO RLAT RLON CLAT CLON DATL MIL CLI CLZ EC

468 F	18	29	4	3958	6928			336		89	
469 F	18	32	4	4 UU0	6934			334		107	
470 F	18	32	4	4 UU0	6934			334		77	
471 F	18	32	4	4040	6934			334		72	
47.6 F	18	32	4	4000	6934	VEAT		340		82	82
477 F	18	29	4	3458	6928	$40 \angle 8$	6710	344	110	140	154
478 F	18	32	4	4000	6934	4014	6815	352	60	74	86
483 F	18	30	5	345 y	6925	3953	6926	367	5	85	102
485 F	18	29	5	3958	6928	4007	6936	366	11	88	100
494 F	18	29	5	3458	6928	$400 y$	6903	376	21	86	93
500F	18	29	5	3958	6928	4006	6839	377	38	88	112
509 F	18	29	5	3458	6928	4013	6831	381	46	101	
513 F	18	32	5	400	6934	3456	6935	583	4	60	71
516 F	18	32	6	400	6934	4005	6945	395	9	91	91
518 F	18	30	6	3459	6925	3957	6925	396	2	83	
520F	18	32	6	4000	6934	3957	6925	395	8	71	
525 F	18	32	6	4040	6934	HYDR		402		77	91
533 F	18	32	6	4 UU0	6934			400		61	75
537 F	18	32	5	4 uno	6934			388		97	97
547 F	18	29	6	3958	6928	4043	6938	416	45	75	90
56 DF	18	29	7	3958	6928	4004	6935	430	9	68	
57.2 F	18	29	6	3958	6928	VEAT		411		73	
573 F	18	30	7	3459	6925	VEAT		428		75	90
596 F	18	29		3958	6928	HYOR	WELK			86	
$599 F$	18	32	8	4000	6934	4010	6908	474	22	90	104
603 F	18	30	8	3959	6925	4004	7049	462	64	73	
604 F	18	29	8	3958	6928	4004	7049	463	62	85	
608 F	18	32	7	4000	6934			433		73	82
609F	18	32	6	4000	6934	3957	6934	409	3	88	
612 F	18	29	3	3958	6928	$4 \mathrm{CO}_{4}$	6928	319	6	75	
622 F	18	29	10	3958	6928	HYDR		519		86	99
623 F	18	30	10	3459	6925	HYDR		518		88	103
632 F	18	32	11	4000	6934	4033	6931	548	32	59	85
667 F	18	32	4	4000	6934	3956	6919	701	12	80	94
669 F	18	29	3	3958	6928			688		75	92
$676 F$	18	32	5	4000	6934	4012	6906	750	25	103	116
678 F	18	32	6	4040	6934	HYDR		409		75	105
67.9F	18	32	6	400	6934	HYDR		409		81	
730F	18	32	6	4000	6934	4015	6845	773	41	65	91
800F	18	29	6	3958	6928	VEAT		42		77	
801F	18	29	6	3958	6928	VEAT		42		82	
803F	18	32	6	4 U0	6934	VEAT		40		90	
804 F	18	32	9	4 UU0	6934	VEAT	HYDR	866		61	97
849 F	18	30	11	3959	6925	4035	6825	921	59	85	116
857 F	18	29	11	3958	6928	4031	6758	931	78	102	
863 F	18	30	12	3959	6925	4005	6925	950	7	81	
894 F	18	32	12	4000	6934			957		77	
9448	18	29	9	3959	6925			1238		75	100

Appendix Table 18 Cont.

ET	CS	os	MO	RLAT	RLON	CLAT	CLON	DATL	MIL	CL 1	CL2
22 M	18	30	5	3959	5925	VEAT		19		81	
23 M	18	29	5	3958	6928	VEAT		20		71	
24 M	18	29	5	3458	6928	VEAT		20		83	
27M	18	29	5	3958	6928			10		94	94
29M	18	30	5	3959	6925			9		90	90
34 M	18	29	5	3458	6928	3956	6931	4	4	87	87
35 M	18	29	5	3958	6928	3956	6931	4	4	100	100
36 M	18	29	5	3958	6928	3456	6931	4	4	70	88
$43 M$	18	29		3958	6928					91	91
53 M	18	30	5	3959	6925			18		81	
54 M	18	29	5	3458	6928			19		73	
60 M	18	29	6	3958	6928	4006	6905	36	20	102	102
79 M	18	30	6	395 y	6925	4007	6928	42	9	99	99
$81 M$	18	29	6	3958	6928	4007	6928	43	9	75	75
92M	18	32	6	4000	6934	4009	6933	45	9	92	
Y3M	18	32		4 UU0	6934					90	90
Y9M	18	29	6	3458	6928	4013	6843	52	37	153	153
O1M	18	32	6	4 UU0	6934	4013	6843	50	41	174	174
13M	18	30	6	395 y	6925			55		82	82
14 M	18	32	6	4 U0	6934			54		90	90
16 M	18	32	6	4000	6934	3958	6939	54	5	161	
17 M	18	29	6	3958	6928	3958	6939	56	9	130	
18 M	18	29	6	3958	6928	4000	6 922	58	6	88	88
$26 M$	18	29	6	3958	6928			60		71	82
54 M	18	29	7	3458	6928	4004	6937	81	7	101	101
65 M	18	29	7	3458	6928	400 u	6937	81	7	65	88
156 M	18	29	7	3958	6928	4007	6952	85	21	89	89
12 M	18	29	7	3958	6928	3958	6923	62	3	94	94
15M	18	30	7	3459	6925	3958	6923	62	1	85	
12 M	18	29	8	3958	6928	VEAT		93		94	107
10 M	18	29	7	3958	6928	4003	6908	82	16	86	
.1M	18	29	8	3958	6928	4036	6923	106	39	96	96
2M	18	30	9	3959	6925	4 UU 8	6931	125	10	74	90
. 3 M	18	32	9	4000	6934	4008	6931	124	8	96	96
8 M	18	30	6	3459	6925			55		96	
:7M	18	30	7	3459	6925			63		97	
:8M	18	29	7	3458	6928			64		90	
53 M	18	29	9	3958	6928	4014	6913	143	20	87	
59 M	18	32	11	4000	6934	4113	6703	190	137	66	
30 M	18	32	10	4000	6934	$40 \cup 3$	6936	173	3	81	110
34 M	18	32	11	$40 \cup$	6934	4013	6916	191	20	71	87
5 8M	18	32	11	4000	6934			197		78	91
PM	18	32	11	4040	6934			197		68	83
\% M	18	29	11	3458	6928			199		78	
32 M	18	32	11	4000	6934	4020	6934	212	20	85	102
33 M	18	32	11	4000	6934	4020	6934	212	20	103	124
17M	18	32	11	4000	6934	4020	6934	212	20	100	100
18 M	18	32	11	4000	6934	4020	6934	212	20	98	98
30 M	18	32	11	4000	6934	4020	6934	212	20	91	107
11 M	18	29	11	3958	6928	4020	6934	214	22	75	84

Appendix Table 18 Cont.
RET CS OS MO RLAT RLON CLAT CLON DATL MIL CLI CLZ

393 M	18	29	11	3458	6928	402 U	6934	214	22	87	107
394 M	18	29	12	3458	6928			219		103	
396 M	18	32	12	4 UU 0	6934	4015	6934	219	13	66	78
397 M	18	29	11	3458	6928	4020	6 ¢54	204	22	76	89
4OUM	18	32	12	4 00 0	6934	$40 \cup 6$	6901	222	25	64	75
402M	18	32	12	4ω	6934	4 uny	6904	220	24	110	110
404 M	18	30	12	3459	6925	$400 y$	6904	223	19	81	99
408M	18	30	12	3459	6925			225		81	101
411M	18	32	12	4000	6954			224		79	79
412 M	18	29	12	3958	6928			226		82	100
414 M	18	30	12	$345 y$	6925			225		71	87
415 M	18	32	12	4 um	6934			224		86	102
416 M	18	29	12	3958	6928			229		77	
418 M	18	30	12	3459	6925			228		91	
419 M	18	32	12	4 UK0	6934			227		126	
425 M	18	32	1	4000	6934			257		79	92
426 M	18	32	1	4000	6934			257		63	76
435 M	18	29	12	3458	6928	HYUR		231		117	
442 M	18	29	1	3458	6928			260		71	
443 M	18	32	12	4 W0	6934	4001	6947	236	19	92	
447 M	18	29	11	3458	6928			199		95	112
451 M	18	30	2	3959	6925	401	6908	285	13	74	
452 M	18	30	2	3959	6925	4 U 1	6908	285	13	81	
458 M	18	29	6	3458	6928	400 u	6925	41	2	100	
459 M	18	32	6	440	6934	4000	b 925	39	6	112	
460 M	18	30	6	3959	6925	4000	6925	40		81	
464 M	18	30	4	3459	6925	VEAT		548		72	90
474 M	18	32	4	4 und	6934	VEAT		339		61	90
475 M	18	30	4	3459	6925	VEAT		340		67	81
484 M	18	32	5	40 u	6934	4 ¢ 7	6936	364	7	92	106
488 M	18	32	5	4 LuT	6934	4002	6907	365	22	80	97
492 M	18	29	5	3458	6928	VEAT		568		81	97
503 M	18	29	5	3458	6928	4 USO	6757	374	42	120	120
514 M	18	32	5	4 LU0	6934	3456	6435	383	4	67	90
517 M	18	29	6	3958	6928	4 UU 5	6945	397	14	68	92
519 M	18	29	6	3458	6928	3957	6925	597	2	90	
523 M	18	29	5	3958	6928			394		80	95
526 M	18	32	6	4 UU0	6934	HYOR		402		94	94
531 M	18	32	6	4 LUO	6934			400		80	95
536 M	18	29	5	3958	6928			390		191	191
541 M	18	29	5	3958	6928	4006	6926	371	8	85	100
542 M	18	30	5	3959	6925	4006	6926	370	7	84	98
555 M	18	32	6	4000	6934	400 y	6905	422	23	92	110
571 M	18	32	6	4 LO	6934	VEAT		409		91	112
582 M	18	30	y	3459	6925	4 UOY	6906	512	17	67	
583 M	18	32	9	$40 \cup 0$	6934			487		70	
605 M	18	29	8	3958	6928	4004	7049	463	62	86	
613 M	18	29	3	3958	6928	4004	6928	319	6	106	
617 M	18	30	9	3959	6925			507		108	118
619M	18	32	10	4000	6934	4021	6415	528	25	76	112

Appendix Table 18 Cont.
T CS OS MO RLAT RLON CLAT CLON DATL MIL CLI CLZ EC

1 M	18	29	10	3958	6928	HYOR		519		65	85
5 M	18	30	10	3459	6925	HYOR		518		92	110
7M	18	32	10	4 UU0	6934	HYDR		517		83	115
9 M	18	32	11	4 UU0	6934			572		83	121
7 M	18	29	1	3458	6928	4110	6823	620	50	66	96
8 M	18	29	2	3958	6928			656		86	
4 M	18	29	1	3458	6928	4005	6935	620	8	97	
OM	18	29	5	3458	6928	4125	7056	761	110	82	
8 M	18	32	8	4 UU 10	6934	HYDR		840		73	102
5 M	18	32	11	4 CUO	6934	HYOR		920		68	131
9 M	18	29	6	3458	6928			48		95	
2 M	18	32	6	4 U 0	6934	VEAT		40		146	
5 M	18	30	4	3459	6925	HYUR		703		73	104
2 M	18	32	11	4 ¢	6934	404 U	6810	927	75	69	118
$3 M$	18	30		3959	6925	HYUR				105	

ret cs os mo rlat rlon clat clon dail mil cli clz e

137F	19	31	5	4004	6917	3457	6919	15	6	96	96
146 F	19	31	5	4 UU 4	6917	4012	6907	24	11	77	77
152 F	19	31	6	4004	6917	3958	6930	29	11	94	
162F	19	31	6	4004	6917	VEAT		30		85	85
184 F	19	31	6	4004	6917	4006	6935	40	15	87	87
191F	19	31	6	4004	6917	4009	6933	43	14	90	
212 F	19	31	6	4004	6917			52		78	78
219 F	19	31	6	4004	6917	4000	6922	55	5	76	76
225 F	19	31	6	4004	6917			56		80	80
255 F	19	31	7	4004	6917	4046	6750	70	45	115	115
273 F	19	31	7	$4 \mathrm{WH}^{4}$	6917	3958	6923	58	7	82	82
27.4 F	19	31	7	4004	6917	3958	6923	59	7	88	
$282 F$	19	31	8	4004	6917	4007	6945	100	10	87	
294 F	19	31	8	4004	6917	4117	7119	107	118	92	92
298 F	19	31	7	4004	6917	$40 \cup 3$	6908	78	7	67	
$299 F$	19	31	7	4004	6917	4003	6908	78	7	73	
$301 F$	19	31	7	4 U0 4	6917	4003	6908	78	7	75	
302 F	19	31	7	4004	6917	4003	6908	78		87	
32 FF	19	31	9	4004	6917	4020	6945	136	11	79	
$321 F$	19	31	9	4004	6917	4020	6945	136	11	95	
332 F	19	31	9	4004	6917	4014	6913	139	11	68	
334 F	19	31	9	4004	6917	4049	6937	13.7	48	95	95
372 F	19	31	11	4004	6917			195		68	83
386 F	19	31	11	4004	6917	4020	6934	210	22	68	82
423 F	19	31	1	4004	6917					88	99
$424 F$	19	31	1	4004	6917					85	98
467 F	19	31	4	4004	6917	VEAT		347		94	94
4905	19	31	5	4004	6917	4002	6907	363	9	70	93
505F	19	31	5	4004	6917	4009	6904	376	12	86	101
507 F	19	31	5	4004	6917	4010	6845	379	25	60	80
510 F	19	31	5	4004	6917	4015	6831	377	36	94	
524 F	19	31	5	4004	6917	HYDR		390		80	
527 F	19	31	6	4004	6917	HYDR		400		72	98
528 F	19	31		4004	6917	HYDR		400		69	83
534 F	19	31		4004	6917			398		68	82
543 F	19	31	6	4004	6917	4013	7003	401	37	104	104
545 F	19	31	6	4004	6917	3957	6429	410	12	85	100
554 F	19	31	6	$4 \mathrm{LOU}_{4}$	6917	4009	6905	420	10	84	93
586 F	19	31	9	4004	6917	4040	6939	504	41	86	97
$602 F$	19	31	6	4004	6917	4008	6906	393	8	68	
61uF	19	31	7	4004	6917	4043	6812	443	66	97	111
614 F	19	31	3	4004	6917	4004	6928	315	9	71	
$626 F$	19	31	10	4004	6917	HYDR		515		71	96
638 F	19	31	11	4004	6917	4034	6933	563	33	70	86
$640 F$	19	31	12	4004	6917	4007	6939	576	18	63	91
$641 F$	19	31	12	4004	6917	4007	6939	576	18	87	98
643 F	19	31	1	4004	6917			607		76	
654 F	19	31	6	4004	6917	4034	7003	41	47	77	
655 F	19	31	2	4004	6917			658		84	97
668 F	19	31	4	4004	6917	3954	6932	699	14	98	112

Appendix Table 19 Cont.
RET CS OS MO RLAT RLON CLAT CLON DATL MIL CLI CL2 EC

71 F	19	31	5	4 U0 4	6917	4016	6832	736	35	60	90
73 F	19	31	5	$40 \cup 4$	6917	3956	6921	744	8	96	111
117 F	19	31	1	4004	6917	HYUR		251		72	93
1295	19	31	6	4004	6917	HYOR		767		60	
157 F	19	31	8	4004	6917	HYDR		842		90	102
91 F	19	31		4004	6917	HYUR				57	
92 F	19	31		4 W 4	6917	HYDR				86	
118 M	19	31	5	4004	6917	VEAT		16		85	
119 M	19	31	5	4 UU4	6917	VEAT		17		86	
120 M	19	31	5	4004	6917	VEAT		16		72	
121M	19	31	5	4 OU 4	6917	VEAT		16		76	
141M	19	31		4 UU 4	6917					96	96
142 M	19	31		4004	6917					109	109
168 M	19	31	6	4004	6917	VEAT		29		80	
188 M	19	31	5	4004	6917			16		95	
190M	19	31	6	4004	6917	4009	6933	43	14	76	
194 M	19	31	6	4004	6917	4007	6939	42	17	88	88
215 M	19	31	6	4004	6917	4000	6918	51	3	76	
246 M	19	31	7	4004	6917	4049	6946	67	51	99	99
290 M	19	31	7	4004	6917	4004	7009	83	40	78	
317 M	19	31	7	4004	6917	4133	6722	86	125	147	
531 M	19	31	9	4004	6917	4014	6913	159	11	81	
344 M	19	31	10	4004	6917			154		78	
356 M	19	31	10	4004	6917			164		85	
363 M	19	31	11	4004	6917	HYDR		195		90	
65 M	19	31	11	$40 \cup 4$	6917	402 O	6 941	199	26	115	133
366 M	19	31	11	4004	6917			195		103	125
370 M	19	31	11	4 UU4	6917			195		73	89
384 M	19	31	11	4004	6917	4020	6934	210	22	107	125
385M	19	31	11	4004	6917	4020	6934	210	22	78	96
+03M	19	31	12	4404	6917	4009	6904	220	10	69	84
441 M	19	31	1	4004	6917	4005	6908	270	7	78	91
444 M	19	31	1	4004	6917	4000	6937	255	16	115	
48 Mm	19	31	4	4 UO 4	6917	4029	6711	335	98	74	89
482 M	19	31	5	4 UU4	6917	3954	6926	364	11	75	
489 M	19	31	5	4004	6917	4 UUZ	6907	363	9	81	97
491M	19	31	5	4004	6917	VEAT		364		87	106
496 M	19	31	5	4004	6917	$40 \cup 9$	6943	372	11	113	128
501 M	19	31	5	4004	6917	4006	6839	373	28	109	
512 M	19	31	5	4004	6917	3456	6935	381	16	75	113
530 m	19	31	6	4004	6917			398		119	127
532 m	19	31	6	4004	6917			398		80	96
561 M	19	31	7	4004	6917	4049	6929	426	47	89	106
570 M	19	31	7	4004	6917	3954	7147	425	115	98	118
574 M	19	31	6	4004	6917	3957	7002	394	35	83	
57.7 M	19	31	10	4004	6917	4117	6849	522	78	86	125

Appendix Table 19 Cont.

RET CS OS MO RLAT RLON CLAT CLON DATL MIL CLI CL2

598 M	19	31		4004	6917	HYDR	WELK	76	
601 M	19	31	8	4004	6917	VEAT	461	73	88
624 M	19	31	10	4004	6917	HYUR	515	95	111
642 M	19	31	1	4 CO 4	6917		607	56	
677 M	19	31	6	4 UU 4	6917	HYUR	407	73	
715 M	19	31	4	4 UU4	6917	HYDR	710	67	101
756 M	19	31	8	4 Uu 4	6417	HYDR	842	63	49
884 M	19	30		$345 y$	6925			81	

RET CS OS MO RLAT RLON CLAT CLON DATL MIL CLI CL2 EC

18 F	20	34	5	4101	6639	4113	6615	22	22	159	159
1F	20	33	6	4057	6635	4042	6656	27	22	121	121
159	20	34	6	4101	6639			25		123	
11 F	20	33	6	4057	6635	4107	6626	34	11	146	146
12F	20	34	6	4101	6639	4059	6629	32	8	119	119
18 F	20	33	6	4057	6635	4045	6649	42	16	115	115
137 F	20	35	6	4101	6629	4103	6625	46	3	128	128
13 F	20	34	6	4101	6639	4103	6625	46	10	129	
28 F	20	35	6	4101	$662 y$	4053	$665 y$	50	11	153	153
39F	20	34	b	4101	6639	4103	6625	48	10	133	
44 F	20	33	7	4 US 7	6635	4124	b6bs	60	27	111	111
47 F	20	34	7	4101	6639	411 y	6658	62	18	130	130
.52F	20	34	7	4101	6634	4129	6701	66	32	129	129
69F	20	35	7	4101	6629	414 U	6702	70	47	145	
176 F	20	34	7	4101	6639	4139	6700	79	41	139	139
177	20	34	7	4101	6639	4139	6700	79	41	157	157
81F	20	35	7	4101	$662 y$			79		123	123
106 F	20	33	8	4057	6635	4140	6718	100	54	161	161
14 F	20	34	7	4101	6639	4153	6722	81	45	117	
12 F	20	33	7	4057	6635	4133	6722	82	50	182	
38 F	20	33	9	4057	6635	4134	6749	138	42	112	
125 F	20	34	4	4101	6639	CORS		350		147	147
47 F	20	33	5	4057	6635			S6 8		112	112
116 F	20	33	4	4057	6635			348		162	
18 F	20	33	10	4057	6635	4058	683 U	519	87	128	
19F	20	34	10	4101	6634	4127	6748	517	34	188	
LIF	20	34	7	4101	6639	4131	6701	436	34	158	
17 F	20	33	6	4057	6635	3458	6926	761	143	136	
35F	20	33	1	4057	6635	4435	6655	995	27	135	147

38 M	20	33	5	4057	6635			12		163	163
14 M	20	34	5	4101	6639	4113	6615	23	22	134	134
LUM	20	33	5	4057	6635	4113	6615	23	22	139	139
l.0UM	20	35	6	4101	6629	4132	6649	43	35	177	177
O2M	20	33	6	4057	6635	4100	6628	44	6	195	195
106 M	20	33	6	4 US 7	6635	4103	6625	48	9	171	
14 m	20	34	6	4111	6639	4163	6625	48	10	141	
27 M	20	34	6	4101	6639	4053	$663 y$	51	8	125	125
129 M	20	33	6	4457	6635	4053	6639	52	6	136	136
85M	20	35	8	4101	6629	4140	6705	94	48	176	176
151m	20	34	10	4101	6639	$410 y$	6707	157	23	156	
179 M	20	33	4	4457	6635	$4 \cup 2 y$	6711	329	40	148	148
168 M	20	34	7	4111	6639	4135	6652	429	35	146	170
125 M	20	34	6	4101	6639			773		109	
197 m	20	33	4	4057	6635	4119	6616	1075	27	159	

RET CS OS MO RLAT RLON CLAT CLON DATL MIL CL1 CLZ

185 F	21	36	6	4133	6748	4042	6657	7	40	132	132
186 F	21	36	6	$40 \leq 2$	6748	4010	6850	9	53	103	103
262 F	21	36	7	4 US 2	6748	4137	6654	44	76	120	120
399 F	21	36	11	4 US 2	6748	4020	6934	167	82	122	122
463 F	21	36	4	4 US 2	6748	4028	6710	308	29	170	170
502F	21	36	5	4032	6748	4035	6737	357	9	92	106
592 F	21	36		4032	6748	HYDR	WELK			106	
187 M	21	36	6	4032	6748			9		103	103
203 M	21	36	6	4 US 2	6748	4031	6744	16	2	157	
204 M	21	36	6	4032	6748	4031	6744	16	2	101	
205 M	21	36	6	$4 u^{4} 2$	6748	$4 \cup 31$	6744	16	2	98	
23UM	21	36	6	4 U	6748	4 U26	6733	22	12	112	112
231 M	21	36	6	4 US 2	6748	$4 \cup 26$	6733	22	12	114	114
352M	21	36	10	4 US 2	6748	411 U	6901	117	67	117	
493 M	21	36	3	4032	6748	4052	6705	295	32	126	
581 M	21	36	9	4032	6748			478		171	183
593 M	21	36		4032	6748	HYUR	WELK			117	
594 M	21	36		4 W 2	6748	HYDR	WELK			93	
595 M	21	36		4 U3 2	6748	HYDR	WELK			122	
630 M	21	36	10	$4 U 32$	6748	HYDR		482		122	143
745 M	21	36	10	4032	6748	4033	6742	859	5	189	
851 M	21	36	11	4 us 2	6748	4055	6810	885	28	133	160
861 M	21	36	12	4032	6748	OCEA		917		105	125

Appendix Table 22
RET CS OS MO RLAT RLON CLAT CLON DATL MIL CLI CL2 EC

177 F	22	38	6	4117	6633	4117	6639		4	177	177	11
178 F	22	37	6	4108	6638	4117	6639	2	9	136	136	55
189 F	22	37	6	4108	6638	4107	6636	4	2	164		11
208 F	22	37	6	4108	6638	4103	6625	13	10	102		11
$236 F$	22	38	7	4117	6633	4141	6704	20	33	141	141	11
237 F	22	37	6	4108	6638	4024	6817	20	87	149	149	55
238 F	22	37	7	4108	6638	4131	6654	21	32	157	157	11
$251 F$	22	37	7	4108	6638	4136	6653	32	32	138	138	55
26 LF	22	37	7	4108	6638	4140	6702	38	37	117		54
280 F	22	37	7	4108	6638			22		132		14
284 F	22	38	8	4117	6633	4142	6659	60	32	134	134	31
2875	22	37	8	4110	6638	4140	6705	59	38	144	144	31
288 F	22	37	8	4108	6638	4159	6700	59	38	122	122	11
293 F	22	37	8	41108	6638	414 U	b7U4	60	38	157	157	31
307 F	22	37	8	4108	6638	4133	6732	72	48	114	114	31
308 F	22	37	8	4108	6638	4133	6732	72	48	127	127	31
309 F	22	37	8	4108	6638	4133	6732	72	48	101	101	11
316 F	22	37	7	4108	6638	4133	6722	48	41	126		31
336 F	22	37	9	41108	6638	$412 y$	6727	89	42	124	137	32
337 F	22	37	9	4108	6638	$412 y$	6727	89	42	142	142	11
33 yF	22	37	9	4108	6638	4136	6723	86	44	133	133	11
432 F	22	38	1	4117	6633			218		164	164	31
575 F	22	37	8	4108	6638	4152	6956	431	155	122		51
$597 F$	22	37		4108	6638	HYDR	WELK			139		14
600F	22	38	8	4117	6633	4138	6651	427	25	151	162	51
606F	22	38	9	4117	6633			451		150		54
77 UF	22	38	7	4117	6633	4115	6850	750	103	127	140	14
787 F	22	37		4108	6638					172		14.

$222 M$	22	38	7	4117	6633	4134	6651	23	22	170	170
$242 M$	22	37	7	4118	6638	4139	6659	25	35	128	159
$243 M$	22	37	7	4108	6638	4142	6704	28	40	139	139
$248 M$	22	37	7	4108	6638	4141	6709	31	41	130	130
$258 M$	22	38	7	4117	6633	4140	6702	37	32	143	143
$261 M$	22	37	7	4108	6638	4138	$670 U$	41	35	157	157
$278 M$	22	38	7	4117	6633	$413 y$	6700	45	30	166	166
$303 M$	22	37	8	4108	6638	4011	6902	76	123	154	154
$305 M$	22	38	8	4117	6633			62		148	148
$31 U M$	22	37	8	4108	6638	4144	6654	67	38	170	170
$341 M$	22	38	9	4117	6633	4140	6702	89	32	132	
$342 M$	22	38	9	4117	6633	$414 U$	6702	89	32	156	
$354 M$	22	37	10	4108	6638	4112	6716	126	29	95	95
$378 M$	22	37	11	4108	6638	$411 U$	6722	167	33	162	186
$652 M$	22	37	1	4108	6638					195	
$722 M$	22	38	6	4117	6633	4048	6644	737	29	148	163
$747 M$	22	38	10	4117	6633	4025	6958	865	164	154	
$898 M$	22	37	4	4108	6638	4105	6625	1034	11	121	168

RLT CS OS MO RLAT RLON CLAT CLUN DATL MIL CLI CLZ

565 F	23	50	6	4418	6823	4022	6821	8	5	97	97
567 F	23	48	6	4015	6827	4022	6821	9	8	118	218
b7bF	23	48	8	4015	6827	405 u	6917	48	52	122	122
584 F	23	48	9	$4 U 15$	6827	4 Cb 3	6841	84	39	85	97
$646 F$	23	48	1	$4 U 15$	6827	4 CLU	6823	205	7	116	127
b buf	23	48	1	4015	6827	4001	6904	198	29	111	
6517	23	48	1	4415	6827	4007	6904	198	29	110	
6617	23	48	5	4115	6827	4415	6809	266	15	88	101
6 b 2 F	23	50	3	4018	6825	4015	b 8 ¢ 4	266	12	102	112
67 LF	23	48	5	4015	6827	$40<9$	6742	557	37	90	103
672 F	23	50	5	4018	6823	4111	6818	526	8	96	96
675 F	23	48	4	4015	6827			311		90	104
728 F	23	48	6	4 LL	6827	4011	7113	348	126	116	116
737 F	23	48	7	402 b	6827	404 U	6810	377	28	110	
739 F	23	48	y	4125	6827	4026	6810	408	17	115	
771 F	23	48	6	4015	6827	4146	6847	S61	54	88	102
775 F	23	50	7	$4 \mathrm{U18}$	6823	4040	6810	376	24	101	
788 F	23	50		4 U18	6823					103	
842 F	23	48	11	4015	6827	VLAT	HYUK	311		124	140
848 F	23	50	11	4018	6823	4455	6825	506	16	103	
S5UM	23	48	6	4015	6827	$40 \angle U$	6825	6	6	132	132
556 M	23	48	6	$4 U 15$	6827	4020	6818	8	8	115	
557 M	23	48	6	4015	6827	$40<0$	6818	8	8	95	
562 M	23	48		4015	6827	4035	7 ¢uy	16	80	86	86
564 M	23	50	7	4 U1 8	6823	4035	$70 \cup$	15	83	117	117
659 M	23	48	2	4 LI 5	6827			241		143	
665 M	23	48	4	4015	6827	4046	6849	286	18	114	134
666 M	23	48	4	4015	6827	4006	6849	291	18	110	128
736 M	23	48	7	$4 U 15$	6827	4440	6810	377	28	104	
767 M	23	48	7	4015	6827	4100	$642<$	389	62	135	158
769 M	23	48	7	4015	6827	4115	6854	577	60	88	$\therefore 02$
774 M	23	48	7	4015	6827	HYDR		404		90	
789M	23	48		4025	6827					90	
797M	23	48	7	4015	6827	4135	6646	404	112	104	

FET CS OS MO RLAT RLON CLAT CLON DATL MIL CLI CLZ EC

$5.49 F$	24	49	6	$40<4$	6823	4020	6825	6	6	103	103
SbF	24	51	6	$40<7$	6815	4020	6818	5	7	102	
569 F	24	51	7	$4 U<7$	6815	395 y	6946	16	74	116	
¢, ¢0F	24	49	9	4024	6825			100		116	116
6,317	24	49	10	$40<4$	6825	HYUR		104		81	93
6.36 F	24	51	11	$40<7$	6815	4 UCY	6820	149	3	110	123
119 F	24	51	6	$4 U<7$	6815	$4 \cup 1$ y	6824	361	11	110	110
'27F	24	51	5	$40<7$	6815	4 L 2 b	$680 y$	343	6	90	103
$765 F$	24	51	11	$4 U \angle 7$	6815	HYUR		498		73	73
$776 F$	24	51	7	$40<1$	6815	$4 \mathrm{U4U}$	6810	383	14	Y7	
778 F	24	51	7	$4 U 27$	6815	HYUR		579		85	
883 F	24	51	11	$4 U<7$	6815	$4 U^{17}$	6833	512	18	98	
936 F	24	51	7	$4 \cup 1$	6815			766		157	163
947 F	24	51	8	$40<7$	6815			781		145	
566 M	24	51	6	$40<7$	6815	4022	682 u	6	7	98	98
635 M	24	49	11	$40<4$	6825	4 L 2 y	682 U	152	8	111	129
637 M	24	49	11	$40<4$	6825	$4 U 29$	6820	152	8	107	107
648 M	24	51	1	$4 \mathrm{~L}<1$	6815	4017	7113	207	136	136	136
653 M	24	49	1	4 U<4	6825	4016	6849	220	16	99	115
746 M	24	49	10	4 U< 4	6825	$4 \mathrm{LS3}$	6742	481	34	95	
17 SM	24	51	7	$40<7$	6815	HYDR		383		107	
177 M	24	51	7	4 U27	6815	4 U 4 U	6814	383	14	123	

Appendix Table 25

RET CS OS MO RLAT RLON CLAT CLON DATL MIL CLI CL2 EC

118 F	25	57	2	4002	7115	3954	7119	38	5	82		14
135 F	25	58	6	3458	7110	3958	7110	169		109		11
191F	25	58	8	3458	7110	4410	7147	209	12	108	108	44
798F	25	58	6	3458	7110	4007	7000	163	54	113		31
127 F	25	57	6	4002	7115	4012	7040	412	29	76	90	14
328 F	25	57	6	4002	7115	4012	7040	412	29	75	92	14
134 M	25	58	7	3458	7110	395 ४	7110	184		90		
792M	25	58	8	3958	7110	$40 \cup 8$	7056	210	15	107		
12 Mm	25	57	6	4002	7115	$40 \cup 2$	7119	530	4	104	125	
121 m	25	57	6	4002	7115	4 บU5	7118	524	5	83		

Appendix Table 26

RET CS OS MO RLAT RLON CLAT CLON DATL MIL CL1 CLZ E
$674 M \quad 26 \quad 59$
$5 \quad 3914 \quad 7220$
112
103103

Appendix Table 27

RET CS OS MO RLAT RLON CLAT CLON DATL MIL CLI CLZ

740 F	27	62	9	3756	7356	3835	7440	227	52	125
914 F	27	60	6	3754	7402	3744	7409	494	12	124
915 F	27	60	7	3754	7402	3813	7548	526	22	141
916 F	27	60	7	3754	7402	3813	7348	526	22	129
917 F	27	61	9	3755	7358	3900	7434	230	71	98
935 F	27	60	4	3754	7402	3800	7355	448	9	150

$880 M$	27	60	1	3754	7402	3813	7357	329	20	121
$911 M$	27	60	7	3754	7402	3813	7348	526	22	72
$912 M$	27	62	7	3756	7356	3752	7407	516	8	97
$913 M$	27	60	7	3754	7402	3813	7348	536	22	130
$954 M$	27	62	10	3756	7356	3800	7355	620	4	101

Appendix Table 28

RET CS OS MO RLAT RLON CLAT CLON DATL MIL CLI CLZ

$906 F$	28	64	6	3910	7239	3902	7242	479	9	123	
$663 M$	28	64	3	3910	7239	3906	7243	36	7	161	161
$664 M$	28	64	3	3910	7239	3906	7243	36	7	146	146

RLT	CS	05	MO	RLA T	RLON	CLAT	CLON	DATL	MIL	CL1	CL2
, 82F	29	66	6	4002	6932	4002	6932	28		76	
, 84 F	29	66	6	4002	6932	4002	6932	28		95	95
35F	29	65	6	3458	6926	3958	6926	30		100	100
367	29	66	6	4002	6932	$40 \cup 2$	6932	28		87	87
37 F	29	65	6	3958	6926	3958	6926	30		81	
, 9\%	29	66	6	4002	6932	4002	6952	28		76	
guF	29	65	6	3458	6926	3458	6926	30		73	
$91 F$	29	65	6	3958	6926	3958	6426	30		78	
95 F	29	65	6	3458	6926	3958	6926	30		66	
98F	29	66	6	4002	6932	4002	6952	28		77	
g9F	29	66	6	4 W 2	6932	4002	b 932	31		76	
101F	29	65	6	345 \&	6926	4004	6923	44	3	80	95
102 F	29	66	6	402	6932	4000	6923	42	7	103	
103 F	29	65	6	3458	6926	4004	6923	44	3	76	
145 F	29	65	6	3458	6926	4000	6923	44	3	71	
11 uF	29	65	6	3958	6926	4000	6923	44	3	74	
112 F	29	66	6	4002	6932	4000	6932	42	7	76	
121 F	29	65	6	3458	6926	4048	6924	49	50	108	108
138 F	29	65	7	3458	6926	4048	6924	53	38	102	
143 F	29	65	7	3458	6926			80		92	
15 DF	29	65	8	3958	6926	HYDR		108		117	117
151 F	29	65	8	3958	6926	HYOR		108		72	72
152 F	29	65	8	3458	6926	HYOR		108		72	86
153 F	29	65	8	3458	6926	HYDR		108		84	105
155 F	29	65	8	3458	6926	HYOR		108		68	82
GUF	29	66	10	$4 \mathrm{UH}^{2}$	6932	HYOR		152		78	78
101 F	29	65	10	3458	6926	HYOR		154		76	92
$03 F$	29	65	11	3458	6926	HYOR		178		104	115
24 F	29	65	11	3458	6926	HYOR		178		77	90
7 gF	29	65	7	3458	6926	4035	6910	79	39	81	91
SUF	29	65	11	3958	6926			185		75	90
31 F	29	65	11	3958	6926			186		74	87
32 F	29	65	11	3958	6926	HYOR		184		101	116
33 F	29	65	11	3958	6926	HYOR		184		116	130
90F	29	65	8	3958	6926			96		93	93
$93 F$	29	65	8	3958	6926	VEAT		87		105	105
94 F	29	66	8	4 LU 2	6932	VEAT		85		70	85
145 F	29	65	8	3458	6926	VEAT		87		114	114
$196 F$	29	65	8	3458	6926	VEAT		87		117	117
3.05 F	29	65	9	3458	6926			130		75	88
307 F	29	65	9	3958	6926	VEAT	HYUR	130		99	114
308 F	29	65	9	3458	6926	VEAT	HYOR	130		72	85
1.09 F	29	66	9	$4 \mathrm{UH}^{2}$	6932	VEAT	HYDR	128		85	100
10 F	29	66	9	4 UU2	6932	VEAT	HYOR	128		75	90
311 F	29	65	9	3958	6926	VEAT	HYOR	130		104	116
13 F	29	65	9	3958	6926	VEAT	HYOR	130		72	88
314 F	29	65	9	3958	6926	VEAT	HYOR	130		102	115
115 F	29	65	9	3958	6926	VEAT	HYUR	130		105	122
$116 F$	29	65	9	3958	6926	VEAT	HYUR	13 D		76	93
17 F	29	65	9	3958	692b	VEAT	HYDR	130		72	87

Appendix Table 29 Cont.

RLT	cS	os	MO	RLA T	RLON	CLAT	CLON	DATL	MIL	CL1	CL2
818 F	29	65	9	3958	6926	VEAT	HYOK	130		77	95
82 UF	29	65	9	3958	6926	VEAT	HYOK	130		71	86
8215	29	65	9	3458	6926	VEAT	HYOK	130		70	85
822 F	29	65	9	3458	6926	VEAT	HYUK	130		73	87
826 F	29	65	11	3458	6926	HYDR		196		81	95
827 F	29	65	11	3458	6926	HYUR		196		106	115
829 F	29	65	11	3458	6926	VEAT		181		96	
83 FF	29	65	11	3458	6926	VLAT		181		75	
852 F	29	65	11	3458	6926	VLAT	HYDK	188		72	88
833 F	29	65	11	3458	6926	VLAT	HYOK	188		73	90
835 F	29	65	11	3458	6926	VLAT	HYOK	188		77	91
837 F	29	66	11	4 Lu 2	6932	VEAT	HYDK	186		87	98
838F	29	66	11	4 U 2	6952	VLAT	HYOR	186		103	116
859 F	29	65	11	3458	6926	VEAT	HYUK	188		74	87
840 F	29	65	11	3958	6926	VEAT	HYUR	188		99	109
841 F	29	65	11	3458	6926	VEAT	HYOK	188		113	125
844 F	29	65	11	3yb 8	6926	VLAT	HYUR	188		71	86
845 F	29	66	11	4 Cu 2	6932	VEAT	HYOR	186		94	107
846 F	29	65	11	3458	6926	VEAT	HYUR	188		99	112
847 F	29	65	11	3458	6926	VEAT	HYUR	188		95	108
850 F	29	65	11	3458	6926	4025	6855	178	35	87	104
853 F	29	65	10	З 468	6926	OCEA		173		93	104
855 F	29	65	11	3458	6926	HYOR		204		87	100
858 F	29	65	11	3458	6926	OCEA		200		78	90
859 F	29	65	12	3458	6926	HYDR		211		102	115
862 F	29	65	12	$3 ¢ 58$	6926	OLEA		211		91	105
867 F	29	65	12	3958	6926	4 LO	b 925	213	7	92	
871 F	29	65	12	3958	6926	4005	6925	213	7	71	
872 F	29	65	12	3458	6926	4005	6925	213	7	113	
874 F	29	65	12	3458	6926			221		77	93
876 F	29	65	12	3958	6926	VEAT	HYUR	210		100	115
878 F	29	65	12	3958	6926	VEAT	HYOR	210		103	116
881 F	29	66	11	4002	6932	$4 \cup 17$	6833	190	47	67	
882 F	29	65	11	345	6926	4017	6833	192	45	72	
886 F	29	65	1	3958	6926	HYDR	WELK	242		70	83
888 F	29	65	1	3458	6926	HYDR	WELK	242		76	91
889 F	29	65	1	3958	6926	HYDR	WELK	242		74	86
8YUF	29	65	1	395	6926	3955	6935	250	8	114	130
Y02F	29	66	2	4 ULZ	6932	HYOR		267		98	
9075	29	65	6	3458	6926	3955	6935	346	8	104	118
Y1 OF	29	65	7	3458	6926	VEAT		428		80	93
919 F	29	65	6	3958	5926			407		77	
922 F	29	65	6	3958	6926	4005	6900	416	21	92	
923 F	29	66	6	4602	6932	4 UU5	6900	414	25	94	
924 F	29	65	6	3458	6926	4005	6900	416	21	95	
926 F	29	65	6	3958	6926	4012	7144	414	58	81	97
929F	29	65	7	3458	6926	4005	7020	428	42	78	90
930F	29	65	7	3958	6926	4005	6945	438	16	75	89
931F	29	65	7	3958	6926	4005	6945	432	16	78	108
941 F	29	65	10	3958	6926	HYOR		532		72	100

RET CS OS MO RLAT RLON CLAT CLUN DATL MIL CLI CL2 EC

$148 F$	29	65	7	$4 U U 1$	$693 U$	HYOR	420	110	34
$149 F$	29	65	7	$4 U 1$	$693 U$	HYUR	429	69	14
$150 F$	29	66	7	$4 U U 2$	6932	HYOR	421	101	34
$151 F$	29	65	6	$4 U 1$	$693 U$	HYDR	419	117	34
$153 F$	29	65	9	$4 U 1$	6930	$4 U O D$	6908	492	18

BUM	29	66	6	4102	6932	4002	6452	28		74	
, 81M	29	65	6	3458	6926	3458	6926	30		72	
,83M	29	65	6	3958	6926	3458	6926	30		77	
588 M	29	66	6	4002	6932	4002	6952	28		77	
,92M	29	65	6	3458	6926	3958	6926	30		80	
, $94 M$	29	65	6	3458	6926	3958	6426	30		79	
,96M	29	65	6	3458	6926	3458	6926	30		79	
100M	29	65	6	3458	6926	4000	6923	44	3	80	
104 M	29	65	6	3458	6926	4000	6423	44	3	72	
106M	29	65	6	3458	6926	4000	6923	44	3	78	
107 M	29	65	6	3458	6926	4004	6423	44	3	78	
108M	29	65	6	3458	6926	4000	6423	44	3	69	
T09M	29	65	6	3458	6926	4000	6423	44	3	74	
111M	29	66	6	4 LU 2	6932	4000	6923	42	7	79	
54 M	29	65	8	3458	6926	HYOR		108		74	90
58M	29	65	8	3958	6926	412 b	7456	108	111	76	91
126 M	29	65	7	3458	6926	HYUR		81		72	
13 M	29	65	9	3458	6926	VEAT	HYOR	130		80	98
2M	29	65	9	345 ¢	6926	VLAT	HYOR	130		77	95
- 9M	29	65	9	3458	6926	VEAT	HYOK	130		80	95
13 M	29	65	9	3958	6926	VLAT	HYUR	130		75	94
$\bigcirc 4 \mathrm{M}$	29	65	9	3458	6926	VEAT	HYOR	130		77	94
:8M	29	65	11	3458	6926	VEAT		181		78	
S1M	29	65	11	3958	6926			188		70	85
. 54 M	29	65	11	3458	6926	VEAT	HYOR	188		78	95
S6M	29	65	11	3458	6926	VEAT	HYOR	188		81	98
143 M	29	65	11	3458	6926	VEAT	HYOR	188		80	96
54 M	29	66	11	4 Lu'	6932	HYUR		202		73	89
160 M	29	65	11	345	6926	HYOR		186		74	
164 M	29	65	12	3458	692b	4005	6425	213		66	
165 M	29	65	12	3458	6926	4405	6425	213	7	81	
66 M	29	65	12	3458	6926	4005	6925	213	7	68	
68 M	29	65	12	3958	6926	4005	6425	213	7	70	
6 9M	29	65	12	3458	6926	4005	6925	213	7	74	
73 M	29	65	12	3458	6926	4005	6425	213	7	72	
77 M	29	66	12	4042	6932	VEAT	HYOR	208		70	86
87 M	29	65	1	3458	6926	HYOR	WELK	242		78	91
45 M	29	65	12	3458	6926	395	7135	221	102	81	
96 M	29	65		3458	6926	HYUR				72	
9 ym	29	65	4	3458	6926	3958	6950	354	18	83	101
OUM	29	65	3	3458	692b	4 U 25	6955	308	35	77	94

[^0]: U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service

[^1]: U.S. DEPARTMENT OF COMMERCE

 Elliot L. Richardson, Secretary
 National Oceanic and Atmospheric Administration
 Robert M. White, Administrator
 National Marine Fisheries Service
 Robert W. Schoning, Director

[^2]: ${ }^{1}$ Northeast Fisheries Center, National Marine Fisheries Service, IOAA, Woods Hole, MA 02543.

[^3]: 'The original releases are treated as 29; composites of two or more stations have within-group variation of less than 10 days, 10^{\prime} latitude, and 10^{\prime} longitude. Original station numbers are shown in parentheses.

[^4]: ${ }^{2}$ Chamberlin, J. L. Bottom temperatures on the continental shelf and slope south of New England during 1974. In J. Goulet (editor), Environment of the United States living marine resources-1974, p. 18-1 to 18-7, figs. 18.1-18.6 (NMFS unpubl. manuscr.)

[^5]: Research submersible operations provided by NOAA's Manned Unde sea Science and Technology Office.

