Water Quality of Streams Tributary to Lakes Superior and Michigan

559

Marine Biological Laboratory LIBRARY FEB231968 WOODS HOLE MASS.

SPECIAL SCIENTIFIC REPORT-FISHERIES No. 559

UNITED STATES DEPARTMENT OF THE INTERIOR

FISH AND WILDLIFE SERVICE

BUREAU OF COMMERCIAL FISHERIES

UNITED STATES DEPARTMENT OF THE INTERIOR Stewart L. Udall, Secretary David S. Black, Under Secretary

Stanley A. Cain, Assistant Secretary for Fish and Wildlife and Parks FISH AND WILDLIFE SERVICE, Clarence F. Pautzke, Commissioner BUREAU OF COMMERCIAL FISHERIES, H. E. Crowther, Director

Water Quality of Streams Tributary to Lakes Superior and Michigan

By

JEROME W. ZIMMERMAN

United States Fish and Wildlife Service Special Scientific Report--Fisheries No. 559

> Washington, D.C. January 1968

CONTENTS

Abstract	1
Introduction	1
Materials and methods	2
Chocolay River and major tributaries, Marquette County, Mich.	2
Little Garlic River, Marguette County, Mich.	6
Big Garlic River, Marquette County, Mich	10
Ford River Delta County, Mich.	10
Pensaukee River Oconto County, Wis.	16
Abrance River, Kewaunee County, Wis.	16
There streams tributary to Lakes Superior and Michigan.	16
Chuses of changes in water quality	35
Causes of changes in water quarty	35
According Streams and campling locations	37
Appendix, Streams and sampling locations	37
Lake Superior County Mich	37
Chippewa County, Mich	37
Luce County, Mich.	37
Alger County, Mich.	27
Marquette County, Mich.	20
Baraga County, Mich.	20
Houghton County, Mich	20
Keweenaw County, Mich	20
Ontonagon County, Mich	38
Gogebic County, Mich	38
Ashland County, Wis	39
Bayfield County, Wis	39
Douglas County, Wis	39
St. Louis County, Minn	39
Lake County, Minn	39
Cook County, Minn.	39
Lake Michigan	39
Mackinac County, Mich.	39
Schoolcraft County, Mich.	39
Delta County, Mich.	40
Menominee County, Mich.	40
Marinette County, Wis.	40
Oconto County Wis	40
Door County, Wis	40
Kewaunee County, Wis	41
Manitowoo County Wis	41
Manistee County, Mich	41

.

Water Quality of Streams Tributary to Lakes Superior and Michigan

Bу

JEROME W. ZIMMERMAN, Chemist

Bureau of Commercial Fisheries Biological Station Marquette, Michigan 49855

ABSTRACT

Water quality of streams tributary to Lakes Superior and Michigan was analyzed for 142 stations on 99 streams tributary to Lake Superior and 83 stations on 56 streams tributary to Lake Michigan during 1962-65.

Concentrations of aluminum, copper, and iron were not affected greatly by flow or season. Magnesium, calcium, chlorides, total alkalinity, total hardness, and conductivity varied with the flow, temperature, and season; the lowest values were during the spring runoff and heavy rains, and the highest were during low water in late summer and the colder periods of winter. Concentrations of nitrate, silica, and sulfates were lowest in the spring and summer. Concentrations of tanninlike and ligninlike compounds were highest during the spring runoff and other high-water periods, and were lowest during freezeup when surface runoff was minimal. The pH values were highest from June to September and lowest during the spring runoff. Phenolphthalein alkalinity was detected primarily in the summer and coincided occasionally with low flows just before the spring thaw. Total hardness usually was lower in streams tributary to Lake Superior than in streams tributary to Lake Michigan. The total hardness was higher in the streams in Wisconsin than in the streams in Michigan along the west shore of Lake Michigan. It was lowest in the northernmost streams.

The water quality of the streams in anarea was related to the geological characteristics of the land.

INTRODUCTION

A study of the water quality of streams tributary to Lakes Superior and Michigan was made in conjunction with control of the sea lamprey, <u>Petromyzon marinus</u>, in the Great Lakes. The primary purpose was to observe the natural levels and seasonal fluctuations in concentrations of aluminum, copper, iron, magnesium, calcium, chloride, nitrate, nitrite, silica, sulfate, tanninlike and ligninlike compounds, phenolphthalein alkalinity, total alkalinity, and total hardness, and in values of pH and conductivity. A secondary purpose was to determine the variation in water quality of streams from different geological regions in the drainages of Lakes Superior and Michigan.

The Bureau of Commercial Fisheries and the Fisheries Research Board of Canada have used the selective larvicide, TFM (3-trifluoromethyl-4-nitrophenol), in the control of the sea lamprey (Applegate, Howell, Moffett, Johnson, and Smith, 1961). The toxicity of TFM is influenced by physical and chemical properties of water. The amount of TFM required to kill larval lampreys increases as alkalinity, conductivity, and pH increase. The degree of selectivity of TFM between ammocetes and other fishes and the amount of toxicant required vary with seasons, and from stream to stream and location within the stream (Howell and Marquette, 1962). A method for the estimation of the biological activity of TFM by its relation to properties of water has been determined (Kanayama, 1963).

In late 1962 three streams tributary to Lake Superior and three tributary to Lake Michigan were selected for collection of surface water at 2- to 4-week intervals for information on seasonal variation. The Chocolay, Big Garlic, and Little Garlic Rivers were chosen for Lake Superior and the Ford, Pensaukee, and Ahnapee Rivers for Lake Michigan. In addition, water was collected for analyses of the chemical characteristics before treatment with TFM of streams tributary to the two lakes. Other streams were sampled when time permitted.

This report includes information from samples taken at various times from August 1962 through December 1965 for 142 stations on 99 streams tributary to Lake Superior and 83 stations on 56 Lake Michigan tributaries.

MATERIALS AND METHODS

Water samples were taken from midstream in 1-liter polyethylene bottles and held in these containers until analyses were completed. The polyethylene bottles were rinsed with river water before they were filled.

Analyses of water usually were completed within 8 hours after collection but not later than 30 hours. If the analyses could not be completed on the day of collection, the samples were stored in a refrigerator and studied the following day. Water samples were warmed to 21° C. (70° F.), and turbid samples were passed through Whatman No. 12 filter paper prior to analyses.

Determinations for aluminum, copper, and iron were made as soon as possible after samples were collected.

Determinations were limited to analytical procedures adaptable to field use. A Hach DR photoelectric colorimeter 1 was used for colorimetric measurements.

The following analytical procedures were used:

Temperature (° C.) -- Water temperatures were taken to the nearest ^O F, with a hand or pocket thermometer at the time of sampling and converted to ° C.

Aluminum (Al) -- Determinations were made by the aluminon method (Hach Chemical Company, 1963).

Copper (Cu)--Copper was determined by the cuprethol method (Hach Chemical Company, 1963).

Iron (Fe) -- The 1, 10-phenanthroline method was used for iron determinations (Hach Chemical Company, 1963).

Magnesium (Mg++)--Magnesium was calculated as the difference between total hardness and calcium.

Calcium (Ca++)--The EDTA titrimetric method was used (American Public Health Association, 1960).

Chloride (C1-) -- Chloride was determined by the mercuric nitrate method (American Public Health Association, 1960).

Nitrate (NO3⁻)--Determinations were made by the brucine method (American Public Health Association, 1960).

Nitrite (NO2⁻)--The sulfanilic acid - 1, naphthylamine method was used (Hach Chemical Company, 1963).

Silica (SiO₂)--Determinations were made by the silicomolybdate method (Hach Chemical Company, 1963).

Sulfate (SO1=)--The turbidimetric method was used to determine sulfate (Hach Chemical Company, 1963).

Tannin and lignin--Determinations were made by the tyrosine method (Hach Chemical Company, 1963). pH--A Beckman Zeromatic pH meter was

used to measure pH.

Alkalinity -- Phenolphthalein and total alkalinities were determined by titration (American Public Health Association, 1960).

Hardness -- Total hardness was determined by EDTA titration method (American Public Health Association, 1960).

Conductivity -- Conductivity was measured at 20° C. (68° F.) and corrected to 18° C. (64° F.) by correction factors given by Smith (1962). Measurements were made with an Industrial Instruments, Model RC-16B2, conductivity bridge.

The streams where water samples were collected were numbered in geographical sequence from east to west along the south shore of Lake Superior (fig. 1) and counterclockwise starting from the northeast shore at the outlet of Lake Michigan (fig. 2). The number of each stream is used to identify the stream in the tables. The locations where water samples were taken on each stream are given in the Appendix. The asterisks designate the streams where more than one location was sampled.

CHOCOLAY RIVER AND MAJOR TRIBUTARIES. MARQUETTE COUNTY, MICH.

The Chocolay River, a tributary to Lake Superior, was sampled at four locations in Marquette County, Mich. The main stem of the Chocolay River and its three major tributaries, Big Creek, Cedar Creek, and Cherry Creek, accounted for 85 to 90 percent of the volume at the mouth. The flow varied from 3.5 to 7.1 m. 3 /sec. (125 to 250 c.f.s.), but flows were higher during the spring runoff or heavy rains. The main stream is 26 km. (16 miles) long and has 208 km. (129 miles) of tributary streams, and drains about 412 km.² (159 sq. miles) (Brown, 1944).

The flow of the main stem of the Chocolay River usually ranged from 0.8 to 2.0 m. 3 /sec. (30 to 70 c.f.s.), but discharges were higher during the spring runoff and heavy rains. The water was usually clear, light to moderate color, and slightly alkaline. Turbidity and color increased during rapid runoff.

Water quality data were collected on the main stem of the Chocolay River at the U.S. Highway 41 bridge from December 1962 through December 1965) (table 1). Concentrations of calcium, total alkalinity, and total hardness, and conductivity readings were lowest during the spring runoff and other periods of increased

¹Trade names referred to in this publication do not imply endorsement of the commercial products.

Figure 1.--Location of Lake Superior streams where water samples were collected.

Table 1.--Water Quality of the Chocolay River, Marquette County, Mich., 1962-65

-	-
	•
2	р Ч
7	3
1	2
4	2
2	1
ł	1
	2
1	×
1.1	2
C	ņ
1	5
4	
	1
1	116
1	5
-	1
	'n
	H
	ž
	n
1	9
	ġ
1	33
1	
1	ĥ
-	× ×
-	

ductivity romhoa/cm. ³ 18° C.)		106	119	136	138	149	136	144	66	97	115	134	143	133	149	14.2	126	119	144	135	136	128	100	001	139 139	117	132	129	127	127	139	141	135	87	80	124	139	146	153	129	119	124	120
- Concentration																																											
Tota hard	co ₃	60	68	72	76	80	74	78	34	58	66	76	74	74	80	81	68	64	36	10	100		2 9	0 0 7 (7.1.	99	72	20	68	70	74	77	16	48	50	68	76	78	78	72	74	66	62
Total alka- linity	a. as Ca	45	53	63	66	20	99	99	22	42	56	99	64	99	74	7.1	50	44	20	0 0	20		00	30	66	54	64	56	58	58	64		64	50	30	58	99	99	68	50	52	50	48
Phenol- phthalein alkalinity	P.P.I	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c		- -	0	- C	5	0	0	0	0	0	0	c		0		0	0	0	0	0	0	0	0	0
Hq		7.6	7.6	7.6	7.4	7.7	7.6	7.8	7.2	7.4	7.4	7.6	7.7	7.7	7.5	7.6	7.3	7.5	0		5°.	· · ·	7.3	7.5	7.8	7.8	7.9	7.9	7.6	7.8	r r	- t		n ~ r	L	2.9	7.4	7.7	8.0	7.8	7.6	1°2	7.8
Tannin and	P.p.m.	1.0	0.6	0.4	0.3	0.3	0.2	0.2	2.0	1.5	••••	••••	•	•	0.3	0.4	1.4	••••		0°0	0.5	0.0	0.4	2.3	0.5	2.4	1.1	1.3	1.1	0.8	0	2 0 2 0	C•0	L.J	+ • •	1.7	0.4	0.4	0.2	1.7	1.5	1.4	1.1
so4=	P. p.m.	23	19	22	18	20	19	20	11	12	80	80	10	9	10	6	21	•••••	;	11	CI.	CT -	14	13	8	10	10	10	10	14	t	- 0	07	77	CT 1		12	12	13	23	24	6	15
\$102	P.p.m.	4.0	6.0	0 8	0.6	10.0	0.6	8.0	3.0	3.0	•••••	5.0	6.0	6.0	4°0	7.0	5.0	•	0	0°0	8°0	ດໍວ	8.0	5°2	7.0	3.5	3.0	4.0	7.0	8.0	c	0.0	ດ ເຊິ່	0.7	4° C	0.7	5.0	6.5	7.5	4.5	4.5	5.5	6.5
NO2-	P.p.m.	0.00	0,00	00.00	0.00	00.00	00*00	0.01	0.00	•	• • •	•	•	• •	••••	00*0	00.00	0,00	.0.0	10.0	0.00	0.00	0.00	0.01	••••	0.00	0.00	•	0.01	00.00	00	00.0	10.0	0.01	0.0		0 01	0.02	0.01	0.00	0.01	0.01	00*00
NO3 ⁻	P.p.m.	1.9	2.9	2.6	2.4	2.8	3.3	2.9	1.4	•	• • •	•	• • •	• •	••••	2.6	1.7	••••	1	1.2	3°0	т. 5	3.0	2.0	••••	2.1	1.9	:	2.8	1.7	0	0°0	5 0 N 0	ກູ ເ	י ג יינ	4 ° 4		3.4	3.9	1.9	2.3	2.7	2.5
c1_	P.p.m.		•					•	3.0	2.5	2.0	2.5	3.0	3.0	3.0	3.5	4°0	3,5	6	0°0	0°0	به د	5.0	3.0	3.0	4.0	3.0	4.5	3.5	3.5	ı. c		, n 1 1 1	0°1	ດ ເບີ້ນ ເບີ້ນ	ວ ແ ວ ຕ	5 C	3.0	3.5	4.0	4.5	4.0	3.0
Ca ⁺⁺	P.p.m.	16	18	21	21	23	21	22	6	14	18	21	21	20	23	23	20	18	0	77	22	20	22	14	22	19	22	19	20	19	00	20	12	77	77	11	22	33	22	20	20	18	18
Mg^++	P.p.m.	4.9	5.8	4.9	5.8	5.3	5.3	5.8	2.9	5.3	5.3	5.8	5.3	5.8	5.3	4.9	4.4	4.9		5° 0	6°.	ۍ د د	6°.	3°4	3,9	4.4	4.4	5.3	4 • 4	5.3	4	ה מ ייי	ο.	1°0	0 0 7 U	0.0		4.9	5.3	5.3	5.8	4.9	4,9
Fe	P.p.m.	0.20	0.10	01.0	0.10	0.10	0.10	0.10	0,15	0.10	•	0.10	0.12	0,10	0,15	0.05	0.15	• • •		91.0	0,13	0.20	60.0	0.19	0.15	0,24	0.12	0.17	0,10	0.20			CT . 0	0,14	0.23	010	0.11	0.10	0.14	0.19	0.17	0,14	0,11
Cu	P.p.m.	01.0	•	010	0.10	0.10	0.10	0,10	0.10	•••••	::	0.08	0.10	0.06	0.07	0.08	0.08	••••	0	0.05	0.05	10.0	0.07	0.05	:	•	•	•	•	•		•	•	•	0	0.03	0.04	0.06	0.05	0.02	0,01	0.06	0.05
Al	P.p.m.	0.15	0.10	0 15	0.10	0.10	0,10	0.10	0.23	•	•	•	••••	• • •	•	0.09	0.13	0.11	000	0.03	0.07	21.0	••••	•	::	: :	••••	:	•	• • •		•	:	•		60.0	0.04	0.04	0.02	0.08	0.08	0.12	0,13
emper- ature	° C.	ო	0	c	• c	0	0	1	2	4	80	16	12	12	14	11	7	T	,		0 0	.	4	11	17	18	15	7	1	0	c	2 0	5 0	N r	1 [16	11	13	15	1	9	4	Ţ
Date 1		<u>1962</u> 12/5	12/17	1/14	1/28	2/19	3/4	3/18	4/2	4/25	5/20	6/5	6/2	8/19	9/17	10/12	11/18	12/9	1964	1/13	2/4	3/4	3/24	5/4	7/8	8/4	9/3	10/21	11/24	12/15	1965	17/01	07/7	3/10	4/16	5/0	6/30	7/27	8/17	9/20	10/12	11/3	12/8

ī

flow. These values increased as the flow receded to summer levels, decreased again during fall rains, but became high again when flows were low in winter. Chlorides were lower during the spring runoff, but were nearly constant the remainder of the year. Chlorides were higher in 1964 and 1965 than in 1963. Nitrite was seldom present in the early period of the study but was found in many samples in the later period. Concentrations of tanninlike and ligninlike compounds were highest when flows increased, especially during the spring runoff, but dropped as the flow receded: concentrations were low in the winter. The pH values were low during the spring runoff and rose slowly in the summer to a level that was maintained until spring. The pH values dropped when the flow increased. Phenolphthalein alkalinity was zero for all samples. Ranges for values of selected measurements were: magnesium, 2.9 to 5.8 p.p.m.; calcium, 9 to 23 p.p.m.; pH, 7.2 to 8.0; total alkalinity, 22 to 74 p.p.m.; total hardness, 34 to 80 p.p.m.; and conductivity, 66 to 153 micromhos. Water temperature varied from 0° to 18° C. (32° to 64º F.).

Big Creek had a flow of 1.1 m.3/sec. (40 c.f.s.) that varied little except for higher flows during the spring runoff. The water was clear, cool, slightly alkaline, and had little or no color or turbidity except during the spring runoff.

Water quality data were collected from December 1962 through December 1965 at the U.S. 41 bridge (table 2). Concentrations of magnesium, calcium, total alkalinity, and total hardness, and conductivity readings were lower during the spring runoff and remained nearly constant the rest of the year. Chlorides remained low throughout the year. Nitrite and phenolphthalein alkalinity were not detected. Concentrations of tanninlike and ligninlike compounds were highest in the spring and were low or zero the rest of the year. The pH values were lower during the spring runoff but changed little during the rest of the year. The ranges for values of selected measurements were as follows ("usual ranges" are given for measurements that varied only during the spring runoff): magnesium, 3.4. to 6.3 p.p.m.; calcium, 16 to 26 p.p.m., usually 22 to 26 p.p.m.; pH, 7.3 to 8.1; total alkalinity, 46 to 80 p.p.m., usually 70 to 80 p.p.m.; total hardness, 58 to 88 p.p.m., usually 78 to 88 p.p.m.; and conductivity, 99 to 154 micromhos, usually 142 to 154 micromhos. Water temperature varied from 1° to 12° C. (33° to 53° F.).

The flow of Cedar Creek was about $0.7 \text{ m.}^{3/2}$ sec. (24 c.f.s.) and varied little except for higher flows during the spring runoff. The water was clear, cool, slightly alkaline, and had little or no color or turbidity except during the spring runoff.

Water quality data were collected from December 1962 through December 1965 at the U.S. Highway 41 bridge (table 3). Concentrations of magnesium, calcium, total alkalinity, and total hardness, and conductivity readings were lower during the spring runoff and were nearly constant the rest of the year. Chlorides remained low throughout the year. Nitrite was not detected. Concentrations of tanninlike and ligninlike compounds were highest during the spring runoff and were low or zero the rest of the year. The pH values were lower during the spring runoff and when flows were higher. The pH values changed little during the rest of the year. Phenolphthalein alkalinity was zero for all samples. The ranges for values of selected measurements were (usual ranges are given for measurements that varied only during the spring runoff): magnesium, 3.4 to 6.3 p.p.m.; calcium, 16 to 22 p.p.m., usually 20 to 22 p.p.m.; pH, 7.4 to 8.1; total alkalinity, 48 to 68 p.p.m., usually 64 to 66 p.p.m.; total hardness, 54 to 76 p.p.m., usually 68 to 72 p.p.m.; and conductivity, 96 to 135 micromhos, usually 120 to 127 micromhos. Water temperature varied from 1° to 12° C. (33° to 53° F.).

The flow of Cherry Creek was about 0.7 $m.^3$ /sec. (25 c.f.s.) and varied little except flows were slightly higher during the spring runoff. The water was usually clear, cool, slightly alkaline, and had little or no color.

Water quality information was collected at the U.S. Highway 41 bridge from December 1962 through December 1965 (table 4). Concentrations of magnesium, calcium, total alkalinity, and total hardness, and conductivity readings were nearly constant throughout the year, but values were slightly lower during the spring runoff. Chlorides remained low throughout the study. Nitrite was not present. Tanninlike and ligninlike compounds were present during the spring runoff and periods of rain. Early in the study, pH remained below 8.0 but was usually above 8.0 in the latter half of 1964 and most of 1965. Phenolphthalein alkalinity was not detected. The ranges for values of selected measurements were (usual ranges are given for measurements that varied only during the spring runoff): magnesium, 4.9 to 7.8 p.p.m.; calcium, 23 to 26 p.p.m., usually 25 to 26 p.p.m.; pH, 7.6 to 8.3; total alkalinity, 70 to 82 p.p.m., usually 80 to 82 p.p.m.; total hardness, 80 to 96 p.p.m., usually 84 to 90 p.p.m.; and conductivity, 142 to 156 micromhos, usually 151 to 156 micromhos. Water temperature varied from 1° to 11° C. (33° to 51° F.).

LITTLE GARLIC RIVER, MARQUETTE COUNTY, MICH.

The Little Garlic River, a tributary to Lake Superior, was sampled at County Road 550 bridge in Marquette County, Mich. The main stream is 10 km. (6 miles) long and has 23 km. (14 miles) of small tributaries and a drainage area of about 31 km.² (12 sq. miles). Table 2.--Water quality of Big Creek (tributary to Chocolay River), Marquette County, Mich., 1962-65

Date	Temper-	Al	Сц	Fe	Mg ++	Ca ++		NO-	NO-	S10.5	= 804	Tannin and	Hu	Phenol- phthalein	Total alka-	Total hard-	Conductivity
	ature							,		1	4	lignin		alkalinity	linity	ness	at 18° C.)
	° C*	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.		P.p.u	1. as Cat	203	
12/5	4	0.10	0.10	0.10	5.8	22	•	2.7	00*00	8.0	18	0.0	7.9	0	72	80	142
12/17	e	0.05	•	0.10	5.8	24	•	3.1	0.00	0°6	19	0.0	7.8	0	76	84	150
1963	-	0.05		10 0	۳ ت	24		0 0	00 0	0.01	0	0	c t	c	t	J G	L
1 /90	4	0.05			5 a	F 7	•	0 C 0 C					• •	0	11	00	101
01/6		co.o	01.0	01.0	ים ים ים	47 74	•	0.0	00.0	0.01	10	0.0	L . L	0 0	16	6 7	149
CT /2			01.0		0 0	4-7 F 7	•	ז ג יינ	00.0	10.01	F1	0.0	6.7	0 0	22	80 9	149
3/18	4 C	0.05	01.0	0.05	ນ ບໍ່ເ	24	:	2.2	00.0	0°01	20	0.0	7.8	0 0	78	84	149
01/0	4 0	0°0	20100		0 U	20	• •	0.4	00.0	n°nT	5 0	1°0	л ° л	5 0	27	80	101
4/25	o 10	CT.0	n	0110	0 ° ° °	25	0.5	7°7	00.00	0.0	57 CR	Т° 4	5°/	5 0	0 0 7	200	99
5/20	~ ~				6.3	24	1.0	• •	•		0 4	T * >	C		7 8	10 10 10	140
6/5	11		0.08	0.08	6.3	25	0.5			0.6	۰ uc.	•	7 8		80	2 2	150
6/2	6		0.10	0.06	5.8	26	1.0			11.0) ac	•	2.6		80	88	151
8/19	6	•	0,09	0.06	6,3	24	1.0			10.0	22	• •	7.8	0	80	86	152
9/17	10	•	0.08	0,03	5.3	26	1.5	•	•	0°6	7	0.0	7.4	0	80	86	153
10/17	6	0.09	0,10	0.07	5.3	25	1.0	2.2	0.00	10.0	5	0°0	7.7	0	80	84	152
11/18	7	0.05	0,08	0.05	5.8	25	1.0	2.5	00.00	10.0	6	0.1	7.6	0	78	86	151
12/9	e	0.05	•	*	5.3	22	1.0	•	0.00	• • •		• • •	7.8	0	70	78	140
1964	c	10 0	0.07	10 0	e v	20	0	0 0	00 0	0 11	t	-	c t	¢	G	00	075
07 / C	а с	***		1 20) () (0 0		• •	.	0.11	- (T • 0	0 , 1	> (0	000	140
5/7	90	0.02	0°04	0°07	0° 2°	97 97	0.1	χ γ γ	0.00	11.0	ອ ເ	0.1	7.6	0 0	76	86	148
10/ 0	n u	10.0	0.00	0.04	4" U	07	л•т	0 0	0.00	0°07	2.0	0.1	7 • 6	0 0	74	08	145 145
2/ 24	0 0	n 4 9	0.00	0.03	ν°ς •	97	C°1	2° 0	0.00	0.6	10	0.0	7 ° 6	0	16	86	148
5/4	י ת	:	0.08	0.02	4° 1	24	1.0	3.1	0.00	0°6	11	0.6	7°9	0	74	80	146
8/1	11	:	:	0.03	2° 2	25	1.0	•	• • •	10.0	S	0.0	7.9	0	80	86	152
8/4	12	•	•	0.02	5°3	25	1.0	2.7	0.00	8.0	4	0.5	8.0	0	80	84	152
9/3	1	•	•	0.09	2° 1	25	1.0	1.7	00°00	8.0	ŝ	0.0	8.0	0	80	86	149
12/01	- 0	•	•	0.07	ກ ເກີ	24	1.0	• • (• •	0°6	10	0.2	8.0	0	28	85	145
11/24	ימי	•	•	0.08	2°2	24	1.0	2.7	0.00	10.0	11	0.2	7.9	0	78	84	150
CT/21	77	• • •	•	0.08	5.3	25	1.0	2°8	00°0	11.0	10	0°0	8.0	0	78	84	150
1/27	2			0.09	00 12	24	0	ب م	00 0	0.01	61	0	0 6	C	7.0	84	148
2/26	1			0.12	5.8	25	1.0	2.4	0.00	10.01			0.8		80	86	151
3/16	4	•	•	0.11	4.9	25	1.5	2.9	0.00	10.0	13	0.7	8.1	0	78	82	147
4/12	с л	•	•	0.12	3.4	21	1.5	2.3	0.00	8.0	12	0.4	7.7	0	56	66	118
5/6	11	0.06	0.04	0.10	4.9	22	1,5	3.3	0.00	7.5	13	0.7	8.0	0	70	76	135
6/7	11	0.06	0.05	0,11	4.9	26	1.0	1.3	0.00	9°2	10	0.3	7.9	0	78	84	149
6/30	80	0.04	0.02	0.07	5.8	25	1.0	2.0	00.00	0°6	90	0,1	8.0	0	80	86	152
7/27	10	0.02	0.04	0,04	5°3	26	0.7	1.9	0.00	10.0	10	0.2	2.9	0	80	86	153
8/17	11	0.02	0.04	0.03	6.3	25	1.0	1.8	00°0	10.0	11	0.0	8.0	0	80	88	154
9/20	6 :	0.03	0.07	0.11	5.3	24	1.0	1.8	00°00	10.0	13	0.6	2°6	0	72	82	146
10/12	2	0.02	0.04	0,10	6.3	24	1.0	2.0	0.00	9.5	12	0.1	7.8	0	78	86	151
11/3	9	0.03	0.05	0.03	4 ° 9	26	1.0	2,3	0.00	10.0	00	0.2	2°9	0	78	84	150
12/8	4	0.01	0.03	0.10	5.8	24	1.0	2.2	0.00	10.0	00	0.1	8.0	0	76	84	149

[Water samples were taken at U.S. Highway 41 bridge.]

Table 3.--Water quality of Cedar Creek (trihutary to Chocolay River), Marquette County, Mich., 1962-65

	Temper-	:	ć	p	++	+	ľ	07		-010	11 C C	Tanıln	1	Phenol-	Total	Total	Conductivity
Date	ature	TW	2	94	i	CR	5	504	201	2010	500	lignin	in a	alkalinity	linity	ness	at 18° C.)
	• C.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	Р.р.ш.	P.p.m.	P.p.m.	P.p.m.	Р.р.ш.	P.p.m.		P.p.n	. as Cat	.0 ³	
1962	4	010	0.10	0.01	4.9	19		1.1	0.00	7.0	15	0.0	7.8	0	63	68	121
12/17	4	0.05	0.10	0.01	5.3	19	•	6*0	00°0	8.0	18	0.0	7.7	0	63	20	125
1963								1	000		ļ	0	(c		0	
1/14	1	0.05	0.10	0.10	4 °	20	• • •	1.5	00.0	0.6	17	0.0	7.8	0	64	90	121
1/28	T	0.05	0.10	0.01	4°9	20	• • •	0.8	00.00	0°6	15	0.0	1.7	0	66	20	129
2/19	1	0.08	0.10	0.01	5.3	20	• • •	1.2	0.00	8.0	16	0.0	7.9	0	99	72	123
3/4	4	0.05	0.10	0.01	5°3	20	•	0°9	0.00	8.0	17	0.0	7.8	0	99	72	123
3/18	03	0.05	0.10	0.05	6.3	20	••••	0.6	00°0	9°0	ŝ	0.0	7.9	0	99	76	124
4/2	4	0.10	0.07	0.15	3.4	16	1.0	0.8	00°0	5.0	ŝ	1.0	7.4	0	48	54	96
4/25	S	:	••••	0.03	5.3	21	1.0	•	::	8.0	4	0.2	7.6	0	99	74	125
5/20	7	•	::	•	4.4	22	1.0	•	:	• • •	ı	•	7.8	0	67	72	124
6/4	10	•	0.10	0.08	5°3	22	0.5	•	•	8.0	ŝ	•	7.9	0	99	76	135
6/1	6	••••	0.10	0,09	5,3	21	1.0	•	•	8.0	9	•	7.7	0	99	70	123
8/19	6	•	0.07	0.04	4.9	20	1.5	•	:.	0°6	4	•	1.9	0	99	20	124
9/17	6	•	0.08	0.07	4.9	20	1.0	•	••••	7.5	7	0.0	7.6	0	68	70	127
10/17	6	0.08	0,09	0.08	3.9	21	1.0	0.4	00.00	8.0	ŝ	0°0	7.7	0	99	68	125
11/18	7	0,06	0.06	0.10	3.9	21	1.5	0.7	0,00	8.0	ŝ	0.0	7.6	0	64	68	122
12/9	e	0.07	:	:	4.4	20	1.0	••••	0°*0	• • •	•	• • •	7.9	0	62	68	120
1964													1			;	
1/13	63	0.00	0.07	0.01	3°9	21	1.0	1.1	0°00	9°2	4	0.1	7.8	0	64	68	125
2/4	e	0.06	0.05	0.03	4°9	21	1.0	2.1	0°00	0°6	9	0.1	7.7	0	99	72	123
3/4	3	0.02	0.08	0.11	4 .4	19	1.2	0.8	0.00	8.0	11	0.3	1.7	0	62	99	119
3/24	7	;	0.05	0.02	4.4	20	1.5	0.5	00*00	1.0	4	0.0	1.7	0	64	68	120
5/4	6	:	0.07	0.03	4°4	20	2.0	2.0	0.00	7.0	9	0.5	8.0	0	64	68	125
7/8	11	•	:	0.07	4.4	20	1,0	::	••••	7.0	ო	0.3	8.0	0	66	68	124
8/4	11	••••	•	00.00	4.9	20	1.0	1.4	00.00	8.0	7	0.0	8.0	0	99	70	124
9/3	12	:	:	0.02	4.4	20	1.0	0.3	00*00	8,0	7	0.0	8.0	0	99	68	125
10/21	2	••••	•	0.02	4°4	20	1.0	•	•	7.0	4	0.4	7.9	0	64	68	122
11/24	4	••••	••••	0.10	4.4	20	1.0	0.7	00.00	0°6	4	0.1	7.8	0	99	68	122
12/15	63	•••••	:	0.07	4.4	20	1.0	0.7	0°°0	10.0	10	0.0	8.0	0	64	68	122
1965													(¢	000	00	001
1/27	01	•	••••	00*00	4.4	20	1°0	1.2	0.00	8°0	4	1.0	6°.	5 (00	201	144
2/26	Ч	:	•••••	0.03	4.9	20	1.0	0.8	0.00	7.0	Ω.	0.0	7°9	0 0	64	0,2	123
3/16	ດາ	:	••••	0.10	3,9	21	1°2	1,6	00.0	0.0	x0 I	0.4		0	64 1	20	071
4/12	4	•	:	0,09	3.4	20	1.0	0.9	0,00	0°9	2	0.1	7.8	0	28	64	717
5/6	11	0.05	0.04	0.04	3.9	20	2°0	1.3	00.00	6.0	11	0.4	8.1	5	60	99	211
6/1	11	0.02	0.04	0.10	4.4	20	1.0	0.3	00°0	7°0	9	0.4	8,0	0	99	68	121
6/30	00	0.04	0.03	0,09	4.4	20	1.0	0.4	0.00	8,5	4	0.0	 	o (64	99	707
7/27	10	0.03	0.04	0.07	4°9	20	0.5	0.3	00°0	8.0	ŝ	0.3	7°9	0	99	2	57T
8/17	10	0.04	0.05	0.10	4°9	20	1.0	0,5	0.00	9°0	9	0.0	8,0	0	99	20	125
9/20	00	00°0	0.05	0,02	4.4	20	1.0	0.5	0°00	8,5	ŝ	0.1	8.0	0	64	98	123
10/12	9	0.01	0.05	0*02	4.4	21	1.0	0.4	0°00	0°6	9	0.0	7.8	0	64	02	123
11/3	9	0.03	0.01	0.01	4°4	20	1.0	0.7	00°0	8.0	S.	0.2	7.9	0	64	68	123
12/8	4	0.01	0.07	0.15	4.4	20	1.5	0.7	0.00	10.0	9	0.0	8.0	0	64	68	122

[Water samples were taken at U.S. Highway 41 bridge.]

Table 4.--Watsr quality of Cherry Creek (tributary to Chocolay River), Marquette County, Mich., 1962-65

_
bridge.
41
Higbway
U.S.
at
taken
were
aples
1 38U
Water
Ľ,

Date	Temper- ature	Al	Сп	P.e	Mg++	cat t	c1_	NO3 ⁻	NO2	S102	so4=	Tannin and lignin	Hq	Phenol- pbthalein alkalinity	Total alka- linity	Total hard- ness	Conductivity (micromhos/cm. ³ at 18° C.)
1 06.9	° C,	P.p.m.	P.p.m.	P.P.m.	P.p.m.	P.p.m.	P. P.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.		P.D.m	I. as CaC	<u>8</u>	
12/5	4	0.05	0.10	0,00	5.8	24	:	0.9	00*00	0.6	17	0*0	7.9	0	62	84	154
12/17	4	0.10	0.10	00*00	6.3	25	••••	0.8	0.00	0°6	19	0*0	7.7	0	79	88	154
$\frac{1963}{1/14}$	1	0.07	0.10	0.01	4.9	26		6.0	0,00	0°6	18	0.0	7.9	0	80	84	154
1/28		0.05	0.10	00.00	5.8	25		0.8	0.00	10.0	16	0.0	7.8	0	82	86	154
2/19	0	0.05	0.10	00*0	6,8	25	•	0.8	0,00	9°0	16	0.0	7.9	0	82	06	154
3/4	4	0.05	0.05	0.05	6.3	25	•	0.7	00.00	8.0	18	0.0	7.9	0	80	88	154
3/18	с С	0.05	0,10	0.05	5.8	26	•••	0.3	00*00	0°6	80	0*0	6.7	0	82	88	154
4/2	9	0.10	0,07	0.05	5.3	23	2.0	1.6	00.00	6.0	11	0,6	7.7	0	70	80	142
4/25	9	• • •	•••••	0.05	6.3	26	1.5	••••	•	8,0	6	0.1	7.8	0	81	06	156
5/20	2	••••	•	••••	5.8	26	1.5	••••	•	:	4	:	7.8	0	82	88	154
6/4	6	•	0.08	0.04	7.8	26	1.0	• • •	:	0°6	S	• • •	7.9	0	82	96	156
6/1	90	•	0.09	00*0	5.8	26	1.5	• • 7	•	0°6	ŝ	•	7.8	0	82	88	154
8/19	6	•	0.08	0.06	5.8	26	2.0	•	•	9°2	ŝ	•	7.9	0	82	88	155
9/17	6	•	0.06	0.06	5.8	26	2.5	•	•	0°6	00	0.0	1.7	0	82	88	155
10/12	6	0.05	0.09	0.07	6,3	22	2.0	0.5	0*00	10.0	2	0*0	7.8	0	80	88	156
11/18	00 ·	0,05	0.07	0.05	6,3	26	2.0	0.8	0.00	0°6	7	0.0	7.6	0	82	06	156
12/9	4	0.05	••••	•	6.8	25	1.5	••••	0,00	•	•••••	:	8.0	0	80	06	151
1/13	c	0.00	a0 0	01.0	5	26	u r	0	00 0	0 1 1	٢	- 0	0	c	6.0	20	15.4
1/10	o ₹		0000	0.4.0	4 0 • U	0 0	5 U 4 r		0.0				. r	,			164
3/4	4 4	0.03	0.09	0.04	0 ° °	26	5.0	0.4	0.00	5°2	1	0.4	7.8	00	80	90 90	152
3/24	00		0.07	0.02	5.3	26	2.0	0.7	0.00	0.0	9	0.0	7.8) C	80	88	154
5/4	00		0.08	0.05	5,3	25	1.0	1.7	0.00	8,0	0	0.3	8.0	0	82	84	156
7/8	10	:	•	0.02	5.8	25	1.5	•	•	9°0	9	0,1	8.0	0	82	86	154
8/4	10	•	••••	0.04	5°3	26	1.5	1.4	00°0	0°6	14	0*0	8.0	0	82	86	154
9/3	11	:	•	0,09	5.3	25	1.0	0.4	00*0	8.0	7	0,1	8.1	0	80	84	151
10/21	7	•••••	•••••	0.00	5,8	25	1.5	••••	•	7.0	S	0.4	8.0	0	80	86	151
11/24	4	••••	••••	0.05	5,8	25	1.5	0.7	0°°0	0°6	80	0.2	7.9	0	80	86	154
12/15	e	••••	•	0.00	5.8	25	1.5	0.6	00.00	0°6	2	0.0	8.1	0	80	86	154
1965	c			000	с и	20		0		0	01		0	c	50	20	15.4
2/26	- c	•	•	01.0	ູ່	26.0	ט נ י י				13				82	2 2	155
3/16				0.04	5.3	26	2.0	1.2	0.00	0.0	14	0.2	8.2		80	86	151
4/12	Ω.			0.10	5.8	25	1.5	0.7	0.00	8.0	6	0.0	8.0	0	78	86	152
5/6	11	00*0	0.06	0,09	5.8	25	1.5	0.7	0.00	8.0	14	0.1	8,3	0	76	86	150
6/7	11	0.03	0.04	0.08	4.9	26	1.0	0.3	00.00	8,5	12	0,3	8.2	0	80	86	151
6/30	80	0.03	0.04	0,09	6.3	25	1.0	0.4	00°0	8.0	6	0.0	8.0	0	82	88	149
7/27	6	0*03	0.04	0,08	5.8	25	1.5	0.4	0°00	9,5	14	0.0	7.8	0	80	86	154
8/17	თ	0.05	0.03	0.01	5,3	26	1.0	0.5	00.00	8.0	80	0°0	8.0	0	80	86	156
9/20	80	00*00	0.05	0,03	5,8	26	1.5	1.0	00.00	9.5	14	0,1	8.0	0	78	88	154
10/12	7	00*00	0.04	0.05	5.8	26	1.0	0.3	0.00	7.5	13	0.0	7.9	0	78	88	151
11/3	9	0.01	0.03	0.01	5,8	26	1.5	0.7	00*0	0*6	12	0.3	8.0	0	80	88	154
12/8	5	0*03	0,03	0.00	5,8	26	1.5	0.4	0°00	9.5	5	0.0	8.0	0	80	88	156

The flow usually ranged from 0.1 to $0.4 \text{ m.}^3/\text{sec.}$ (3 to 15 c.f.s.), but the discharges were higher during the spring runoff. The water was clear, slightly alkaline, and had a light color. The turbidity and color were higher during increased flows.

Water quality data were collected from January 1963 through December 1965 (table 5). Aluminum, copper, iron, and magnesium concentrations remained low most of the year. Concentrations of calcium, total alkalinity, and total hardness, and conductivity readings were lowest during the spring runoff and when flow increased. The highest values were in late summer or fall when the flow decreased. Chlorides remained low throughout the study. Concentrations of nitrate and sulfate were low in the summer. Nitrite and phenolphthalein alkalinity were zero for all samples. Concentrations of silica were highest in late summer and winter and lowest in spring and early summer. Concentrations of tanninlike and ligninlike compounds were highest during the spring runoff and when the flow increased, but dropped as the flow receded. The lowest values were in the winter. The pH values were lowest during the spring runoff and highest in late summer. The ranges for values of selected measurements were: magnesium, 1.5 to 5.3 p.p.m.; calcium, 8 to 26 p.p.m.; nitrate, 0.1 to 2.2. p.p.m.; silica, 3.0 to 8.5 p.p.m.; sulfate, 2 to 22 p.p.m.; pH, 7.1 to 8.0; total alkalinity, 18 to 78 p.p.m.; total hardness, 26 to 82 p.p.m.; and conductivity, 48 to 146 micromhos. Water temperatures varied from 0° to 22° C. (32° to 72° F.).

BIG GARLIC RIVER, MARQUETTE COUNTY, MICH.

The Big Garlic River, a tributary to Lake Superior, was sampled at County Road 550 bridge in Marquette County, Mich. The main stream is 10 km. (6 miles) long and has 66 km. (41 miles) of tributary streams and a drainage area of 80 km.² (31 sq. miles) (Brown, 1944). The flow of the Big Garlic River usually ranged from 0.3 to $3.3 \text{ m.}^3/\text{sec.}$ (9 to 117 c.f.s.), but discharges were higher during the spring runoff. The water was clear, slightly alkaline, and had light to moderate color, although turbidity and color were higher during increased flows.

Water quality data were collected from August 1962 through December 1965 (table 6). Aluminum, copper, and iron concentrations remained low throughout the year. Magnesium concentrations dropped during the spring runoff and varied little the remainder of the year. Concentrations of calcium, total alkalinity, and total hardness, and conductivity readings were lowest during the spring runoff. These values increased as the flow decreased and were highest in late summer and fall. Chlorides remained low throughout the study. Concentrations of nitrate were low from May to November. Nitrite and phenolphthalein alkalinity were not detected. Silica was highest when flows were low in late summer and winter. Sulfate concentrations were highest in winter. Tanninlike and ligninlike compounds were highest during the spring runoff and when flow increased but dropped as the flow decreased. The pH values were lowest during the spring runoff and at other times when flows increased. The ranges for values of selected measurements were: magnesium, 1.5 to 5.8 p.p.m.; calcium, 6 to 20 p.p.m.; nitrate, 0.1 to 2.9 p.p.m.; silica, 3.0 to 9.5 p.p.m.; sulfate, 3 to 22 p.p.m.; pH, 7.0 to 7.9; total alkalinity, 14 to 62 p.p.m.; total hardness, 20 to 66 p.p.m.; and conductivity, 40 to 124 micromhos. Water temperatures varied from 0° to 21° C. (32° to 70° F.).

FORD RIVER, DELTA COUNTY, MICH.

The Ford River, a tributary to Lake Michigan, has its origin in Dickinson County and flows through Marquette and Menominee Counties to its mouth in Delta County, Mich. The main stream is 179 km. (111 miles) long and has 407 km. (253 miles) of tributary streams and a drainage area of 1,225 km.² (473 sq. miles) (Brown, 1944). The U.S. Geological Survey (1964) reported an average flow of 9.7 m.³/sec. (342 c.f.s.) for 1954-60; the yearly average ranged from 6.6 to 18.0 m.³/sec. (233 to 640 c.f.s.). The water was clear, slightly alkaline, and moderately colored. Turbidity and color became higher when flows increased.

Water quality data were collected from December 1962 through December 1965 (table 7): regularly at State Highway M-95 bridge; intermittently at County Road 581 bridge in Dickinson County; bridge in section 19, 5 km. (3 miles) west of Woodlawn, Mich.; and the mouth of the Ford River. Aluminum, copper, and iron concentrations varied little throughout the year. Concentrations of magnesium, calcium, total alkalinity, and total hardness, and conductivity readings were lowest during the spring runoff and when flow increased. These values increased as the flow decreased and were highest in winter and late summer. Chlorides were low during the spring runoff and high when flows were low in late summer. Concentrations of nitrate, silica, and sulfates were lowest in the summer. Nitrite was recorded on four occasions. Concentrations of tanninlike and ligninlike compounds were lowest in the winter and highest during the spring runoff and when flows increased. The pH values were lowest during the spring runoff and highest when flows were low in summer and fall. Phenolphthalein alkalinity was in two samples. The ranges for values of selected measurements were: magnesium, 7.8 to 27.0

Table 5.--Water quality of the Little Garlic River, Marquette County, Mich., 1963-65

Date	Temper-	Al	Cn	Fe	++ Mg	Ca ⁺⁺	c1 ⁻	NO3 ⁻	NO2	S102	S04 [≂]	Tannin and	Hq	Phenol- phthalein	Total alka-	Total hard-	Conductivity (micromhos/cm. ³
	ainia											lignin		alkalinity	linity	ness	at 18° C.)
1062	° C.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.		P.p.n	1. as Ca(03	
1/6	1	0,10	0.10	0.20	3.4	17	•	0.6	0.00	6.0	22	0.7	7.7	0	47	56	102
1/23	0	0.10	0.10	0.20	3.4	19	•	0.9	0,00	5.0	18	0.4	7.5	0	54	62	113
2/5	0	0.10	0.10	0.20	4.4	22	•••••	1.0	0.00	8.0	19	0.2	7.7	0	60	72	121
2/26	0	0.10	0,10	0.20	4.4	22	:	0.9	0.00	8.0	19	0.0	7.6	0	62	72	125
3/12	0	0.10	0.10	0.20	4.4	22	::	0.8	0.00	8.0	10	0.2	7.7	0	62	72	129
3/27	I	0.15	0.10	0.20	3.2	13	1.0	1,2	0.00	6.0	6	1.0	7.4	0	34	46	LL
4/8	61	0.17	0.08	0.10	2.4	80	1.0	1.0	0.00	4.0	7	1.5	7.1	0	20	30	48
4/23	ر	0.15	0.10	0.10	2.4	11	1.0	0.4	0.00	4.0	11	1.2	7.3	0	28	38	72
5/20	10	0.10	::	0,15	3.4	14	1.0	0.3	0.00	4.0	5	0.8	7.4	0	40	48	81
6/4	16	0.14	0.08	0.10	2.4	13	1.0	0.4	0.00	4.0	5	1.3	7.4	0	36	42	72
6/27	16	0.15	0.05	0,13	2.9	16	1.0	0.4	0.00	5.0	4	0.6	7.3	0	44	52	88
1/10	15	0.07	0.08	0.12	3 9	21	1.5	0.4	0.00	6.0	2	0.5	7.6	0	62	68	120
7/26	19	0.12	0.10	0.12	4.4	22	1.5	0.2	0.00	6.0	4	0.4	1.7	0	68	74	129
8/20	14	0.06	0.03	0.15	3 °0	22	2.0	0.3	0.00	4.5	9	0.6	7.7	0	99	72	125
9/19	14	0,05	0.08	0.12	3° 0	23	1.0	0.2	0.00	e•0	S.	0.4	7.6	0	20	74	135
10/3	12	0.07	0.07	0.11	3,9	26	2.0	0.2	0.00	6°0	4	0.4	7.4	0	76	80	144
10/16	11	0.07	0.08	60°0	4.4	26	1.0	0.2	0.00	8.5	9	0.6	7.5	0	78	82	146
11/14	ო	0.10	0.06	0.23	3.4	21	1.0	0.5	0.00	7.0	11	0.4	7.4	0	58	66	116
12/6	0	0.09	0.06	0.50	3°9	22	1.5	0.5	0.00	6.0	13	0.5	7.5	0	58	70	124
1964																	
1/8	0	0.06	0.01	0.18	3.1	20	1.5	0.8	0.00	5.0	6	0.6	7.6	0	52	62	111
1/27	0	0.07	0.06	0.18	3.4	20	1.0	0.7	0.00	7.5	80	0.0	7.5	0	54	64	114
2/14	0	0.09	0.06	0.15	3.4	20	1.5	0.5	0.00	7.0	12	0.5	7.4	0	52	64	111
3/2	0	0.10	0.03	0.12	3.1	19	1.5	0.8	0.00	8.0	12	0.5	7.4	0	50	60	108
3/23	0	:	0.09	0.19	3.4	17	1.5	0.8	0.00	7.0	12	•	7.3	0	48	56	98
4/7	0	:	0.06	0.20	2.4	15	1.5	1.1	0.00	5.0	11	0.6	7.4	0	40	48	89
4/28	7	•••••	0.08	0,16	1.9	6	1.5	1.5	0.00	3.0	12	1.3	7.4	0	22	30	55
L/L	18	::	•	0,10	3.4	22	1.5	0.4	00.00	6.0	11	0.4	7.7	0	66	70	125
7/21	22	::	•	0.02	4,4	23	1.5	0.5	00.00	6 •0	7	0.6	7.9	0	20	76	128
9/2	14	::		0.18	3.4	18	1.0	0.4	0.00	4.5	10	0.8	7.8	0	54	60	106
10/22	9	::	•	0.03	2.4	15	1.0	0.3	0.00	4.5	4	0.8	7.7	0	40	80 0	85
11/23	0	•	•	0.00	2,9	15	1.5	0.5	00*00	5.5	9	1.3	7.6	0 (42	200	00
12/14	0	•••••	•••••	0.07	2,9	13	1.0	0.5	0.00	6°0	90	0.5	7.5	0	34	44	R.1
1965	¢				0				0	c 1	;	u	u r	c	4.4	50	94
6T/T	-	•	:	0.18	ה ה איני	0 1	0°1	0.4	0.00		11	с С			49	1 4	104
C7 /7	2 0	•	•	77.0	יי יי	0 C	0°1		0.00		0				19	200	100
11/0	- c	•	•	01.0	N 0	01	0 ° 0	N 0	0,00		151	4 T		> c	o l	000	53
5/6	1 01		:0	0 19	ר ר מיר	10 a	~ ~	۲°۵	00.0		c i [1.4	7.4	00	18	26	48
5/28	3 0	01.0	500	0 15	, o	14		, c		5.6	1 01	1.2	7.6	0	38	46	81
6/17	11	0.04	0.05	0.14	. 4.	19	1.0	0.4	0.00	5.5	10	0,3	7.9	0	56	62	110
7/19		0.03	0.07	0.08	4.4	23	1.5	0.3	0.00	6.0	11	0.2	7.8	0	70	76	132
8/9	19	0.04	0.07	0.14	2.9	23	1,0	0.2	0.00	7.5	7	0.1	8.0	0	64	70	124
6/6	12	0.05	0.03	0.12	5.3	24	1.5	0.1	00.00	5.5	5	0.3	7.8	0	72	82	139
10/13	9	0.05	0.04	0.20	3.9	20	1•5	0.4	00.00	6.0	12	1.9	1.7	0	56	66	115
11/2	e	0.09	0,01	0.08	2.9	15	1.5	0.6	0.00	5.5	11	1.3	7.6	0	40	50	50 C
12/8	1	0.10	0.02	0.13	2.4	13	1.0	0.4	0.00	4.5	12	0.8	7 °6	0	32	42	10

Table 6.--Water quality of the Big Garlic River, Marquette County, Mich., 1962-65

[Water samples were taken at County Road 550 bridge.]

Date	Temper- ature	Al	Cu	ц.	Mg^++	ca ++	c1 ⁻	NO3	NO2	S102	504 ⁼	Tannin and lignin	hq	Phenol- phthalein alkalinity	Total alka- linity	Total hard- ness	Conductivity (micromhos/cm. ³ at 18° C.)
	° C.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.		P.p.n	t. as Cat	8	
$\frac{1962}{8/23}$:	0.15	•	0.20	4.9	18	:	0.1	0.00	5.0	18	0.2	7.6	0	58	66	109
12/13	:	0.20	• • •	0.30	3.9	14	••••	0.8	0°*00	7.0	18	0.6	7.2	0	40	50	88
1963	-	0.50		0. 0	9 0	91		0	00 0	0 2	06	0.4	7.6	0	45	52	9,8
1/23	4 0	0.15	0.10	0.20	. 6	18	•	1.6	0.00	0.8	22	0.3	7.3	0	52	64	106
2/5		0.15	010	0.20	0.4	0 0	•	0.4 1		o ⊂ o a	307	0.0	2.5		45	64	109
2/26	00	01.0	0.10	0.20	. 4. 6	61		1.5	00.00	0°8	18	0.0	7.5	0	56	62	111
3/12	0 0	0.10	0.05	0.15	3.9	19		1.5	0.00	8.0	17	0.2	7.6	0	56	64	111
3/27		0.20	0.05	0.20	2.9	13	0.5	2.0	0.00	6.0	7	1.0	7.4	0	34	44	77
4/8	2	0.20	0.10	0,15	2.2	7	1.0	1.6	0.00	4.0	9	1.6	7.0	0	18	26	47
4/23	ო	0.15	0.05	0.15	3.4	10	1.0	0.8	00*0	6.0	10	1.1	7.2	0	30	40	75
5/20	80	0.10	:	0.15	3.9	14	0.5	0.4	00.00	5.0	5	0.6	7.3	0	42	52	85
6/4	16	0.13	0.10	0.20	3.4	14	1.0	0.4	00*00	5.0	5	0.9	7.3	0	40	48	84
6/27	17	0.17	0.07	0.20	3.4	16	0.5	0*9	00*0	7.0	4	0.3	7.3	0	48	54	91
7/10	14	0.11	0.07	0.20	3.9	18	0.5	6.0	00*00	7.0	9	0.5	7.5	0	56	62	110
7/26	19	0.14	0.04	0.20	3.9	20	1.0	0.5	00.00	7.0	e	0.5	7.7	0	62	99	120
8/20	13	0.13	0.09	0.22	3.9	18	1.0	0.7	0.00	8.5	7	0.7	7,6	0	54	62	108
9/19	14	0.14	0.05	0.21	3.1	20	1.0	0.6	00*0	7.5	5	0.6	7.6	0	60	63	114
10/3	11	0.12	0.04	0.20	3.9	20	1.0	0.2	0.00	6.0	4	0°9	7.4	0	60	99	124
10/16	11	0.08	0.08	0.15	3.6	20	1.0	0.2	0.00	8.5	5	0.8	7.5	0	59	64	116
11/14	e	0.17	0.05	0.25	2.9	12	1.5	1.5	0.00	5.0	12	1.5	7.2	0	30	42	74
12/6	0	0.07	0.06	0.40	3.4	18	1.0	1.7	0.00	7.0	11	0.4	7.5	0	50	58	104
1964														1	:	;	4
1/8	0	0.06	0.05	0.15	3.4	17	1.0	1.6	00.00	8.0	12	0.4	7.4	0	48	56	98
1/27	0	0.08	0.02	0.09	2.9	18	1.0	1.5	00.00	8.0	9	0°0	7.4	0	20	56	102
2/14	0	0.12	0.05	0.18	4.4	17	1.0	1.0	00.00	7.0	10	0.3	7.2	0	50	60	100
3/2	0	0.06	0.08	0.21	2.9	17	1.0	1.8	00°0	9°0	9	0.5	7.1	0	48	54	98
3/23	0	:	0.07	0.23	3°6	17	1.0	1.1	0.00	8.5	9	0.5	7.1	0	49	20	101
4/1	0	••••	0.10	0.27	2.4	14	1.5	1.6	0.00	7.0	ŝ	0.3	7.3	0	40	46	20
4/28	7	••••	0.06	0.20	1.5	90	1.5	6°0	0.00	4°0	6	1.4	7.3	0 0	20	26	53
1/1	17	::	•	0.17	2.4	20	1.0	1.0	0.00	1.0	n ·	0.1	8.1	> (90	0.0	TOS
1/21	21	:	:	0.29	2.9	20	1.0	0.9	0.00	6.0	4	0.8	7.8	0	09	29	11/
9/2	13	•	:	0.25	3°8	17	1.0	0.8	0.00	6.0	ŝ	6.0	7.9	5	20	20	a,
10/22	9	••••	••••	0.09	3.4	14	1.0	0.5	00.00	5.0	9	0.8	7.6	0	40	48	84
11/23	0	::	•••••	0.09	5.8	15	1.0	1.1	00.00	8.0	7	0.9	7.6	0	45	62	96
12/14	0	:	•	0.05	2.9	14	1.0	1.1	0.00	7.0	5	0.5	7.5	0	40	46	85
1965													1	¢		6	0
1/19	0	:	•••••	0.07	2.9	16	1.0	0.7	0.00	8.5	7	0.1	7.5	0	46	22	96
2/24	0	••••	••••	0.23	3.4	17	1,0	1.7	0.00	9.5	10	0.2	7.6	0	20	9 C	103
3/17	0	::	•	0.14	3.4	18	1.5	2.9	00*00	8.5	12	0.2	1°1	0	20	58	101
4/13	61	:	• • •	0.17	2.2	00	1.0	1.5	00°0	6.0	11	1.3	7.3	0	20	30	ĉ

Conductivity (micromhos/cm. ³	at 10 01)	40	77	96	110	96	114	97	79	83		115	158
Total hard-	03	20	42	54	64	56	62	54	44	44		62	90
Total alka-	1. as CaC	14	36	48	56	46	56	46	34	38		56	88
Phenol- phthalein	A.Q.Y	0	0	0	0	0	0	0	0	0		0	0
pH		7.1	7.5	7.9	7.8	7.9	7.8	7.7	7.5	7.8		7.8	8.0
Tannin and	P. p.m.	1.6	1.2	0.4	0.4	0.8	0.2	1.1	1.0	0.4		0.9	0.3
S04"	P.p.m.	13	9	8	10	12	8	12	6	14		10	8
S102	P.p.m.	3.0	6.0	7.0	9.5	8.0	0°6	7.5	7.5	8.5		6.0	0°6
NO2 ⁻	P.p.m.	0.00	0.00	0,00	00.00	0.00	0.00	0.00	00*00	0.00		0.00	00.00
NO3 ⁻	P.p.m.	1.7	0.6	0.7	0.8	0.7	0.6	0.5	0.8	0.6		0.6	0.7
c1 ²	P.p.m.	1,0	0.7	0.5	0.5	1.0	0.5	0.5	1.5	1.0		2.5	0.5
Ca ⁺⁺	P.p.m.	9	12	16	19	16	19	16	13	14		18	29
₩ ⁶ .	P.p.m.	1.5	2.9	3.4	3.9	3.9	3.4	3.4	2.9	2.4		3°9	4 °4
e He	P.p.m.	0.12	0.28	0.15	0.15	0.22	0.21	0.24	0.04	0.19		0.30	0.06
Cu	Р.р.н.	0.01	0.05	0.07	0.07	0.06	0.06	0.06	0,05	0.07		•	::
Al	P.p.m.	0.12	0.16	0.05	0.02	0.05	0.02	0.07	0.11	0,09		•	••••
Temper- ature	° C.	10	6	10	••••	18	12	9	ю	1		13	11
Date		5/6	5/28	6/17	7/19	8/9	6/6	10/13	11/2	12/8	1964	9/27/	9/27/6

Table 6. --Continued

1/ Wilson Creek, tributary to main stem. Water sample was taken above junction with Sawmill Creek.
2/ Sawmill Creek, tributary to main stem. Water sample was taken at County Road 550 bridge.

ł

Table 7.--Water quality of the Ford River, Delta County, Mich., 1962-65

												E			E	÷	0
Date	Temper-	A1	Сu	Fe	Me ⁺⁺	Ca ⁺⁺	C1_	N0.5	NO.	SiOo	="SO4"	utuae.	Hu	Phenol-	alka-	hard-	conductivity (micromhos/cm. ³
	ature				D			2	7	7042	F-0-2	lignin		alkalinity	linity	ness	at 18° C.)
	° C.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	Р.р.ш.	P.p.m.	P.p.m.	P.p.m.		P.p.n	1. as CaC	03	
1962													1			, 	0000
12/10	0	0.10	01.0	0.15	0.8L	34	•	1.3	00*0	8.0	22	0.8	7.9	0	141	160	597
1/7	0	0.10	0.10	0.15	24.0	45	• •	1.6	00*00	11.0	23	0.6	7.9	0	194	210	346
1/21	0	0.05	0.10	0.10	26.0	47	•	2.2	0.00	11.0	25	0.4	7.8	0	212	226	374
2/4	0	0.05	0.10	0.15	26.0	47	:	2.3	0.00	12.0	27	0.2	7.7	0	210	224	374
2/25	0	0.05	0.10	0.15	25.0	50	•	2.2	0.00	11.0	25	0.2	8.1	0	210	226	374
3/11	0	0.10	0.05	0,15	26.0	47	•	1.9	0.00	11.0	20	0.5	7.9	0	208	224	355
3/25	0	0.15	0.02	0.20	16.0	31	•	1.7	0.00	6.0	21	1.0	7.7	0	128	146	255
4/14	4	:	:	•••••	15.0	31	•	•	••••	•	•••	:	8.0	0	120	138	232
4/28	00	:	•	•	12.0	29	4.0	::	•••••	••••	17	•	7.5	0	94	120	192
5/12	7	:	::	•	0°6	19	2.5	•	•	:	15	:	7.9	0	58	85	130
6/9	17	•	••••	••••	13.0	26	3.0	0.9	0.00	4.0	2	2.0	7.7	0	98	118	183
6/30	27	:	•	:	18.0	40	4.0	:	•	5.0	11	•	8.0	0	152	176	283
7/14	19	:	:	:	25,0	49	3.5	•	:	0.6	16	••••	8.3	0	208	226	365
7/28	•	:	0.05	0,16	25.0	48	3,5	•	:	8.0	13	1.2	8,3	4	214	224	365
8/12	16	0.10	0.06	0.22	26.0	46	3.5	0.7	0.00	8.0	13	1.1	8.1	0	206	220	350
9/3	13	::	0.08	0.23	25.0	50	7.0	:	::	10.0	24	::	8.2	0	200	226	357
9/22	11	::	0.06	0.25	26.0	48	8.0	•	•	10.0	14	:	8.1	0	210	228	365
10/6	14	:	0.06	0.20	26.0	47	5.0	•	•	0°6	22	1.4	8.0	0	206	224	370
11/12	с С	0.28	0.10	0.60	23.0	48	5.5	1,1	00.00	7.0	20	3.6	7.5	0	204	216	360
12/2	I	0.12	0.05	0.22	25.0	45	5.0	1.6	0.00	8.0	34	0.9	7.7	0	188	216	360
1964																	
1/6	1	0.10	0.08	0.23	27.0	46	3.5	1.8	00*00	11.0	23	0.4	7.8	0	206	228	374
2/3	0	0.06	0.09	0.18	24.0	48	3.5	1.7	0.00	8.0	24	0.4	7.6	0	198	220	360
3/9	1	0.05	0.03	0.07	24.0	47	4.5	2.3	00.00	11.0	21	0.5	7.7	0	194	216	360
3/30	ı	::	0.07	0.08	25.0	48	4.5	1.3	00*0	12.0	26	0.9	7.8	0	202	222	374
4/16	1	••••	0.04	0.17	12.0	25	6.5	4.1	0.00	3.5	35	2.0	7.6	0	74	112	200
6/9	18	••••	0.07	0.24	13.0	36	4.0	1.3	0.01	3.5	28	1.8	7.9	0	116	142	245
6/12	11	::	:	0.21	12,0	27	4.0	••••	•••••	3.0	28	2.6	7.6	0	84	116	188
1/6	17	••••	••••	0.24	14.0	33	4.5	••••	•	3.5	15	2.8	7 . 9	0	118	140	230
7/27	18	:	::	0.17	15.0	35	4.0	1.1	0.00	4.0	19	2.2	7.8	0	124	148	240
8/23	14	::	••••	0.20	17.0	37	7.0	1.0	0.00	5.0	6	2.1	8.2	0	144	162	267
9/28	7	•••••	••••	0.04	12.0	26	4.0	1.1	00*0	3.0	80	3.1	7.6	0	94	114	184
11/11	00	•••••	••••	0.15	13.0	30	4.0	1.1	00*00	5.0	13	1.5	7.8	0	108	130	221
12/14	I	:	•	0.16	18.0	40	4.5	1.2	0.00	10.0	18	0.8	7.9	0	156	174	290
1965																	
1/25	T	•••••	•••••	0.21	22.0	42	5.0	1.3	0.01	11.0	20	0.7	7. 9	0	178	194	326
2/22	0	••••	:	0.17	24.0	43	5°0	1.8	00*0	11.0	15	1.2	8.0	0	190	208	346
3/15	-	•	•	0.27	23.0	45	6.0	1.3	0.01	10.0	19	0.1	8.0	0	192	208	346
4/19	7	••••		0.19	7.8	18	2.0	2.4	0.00	4.0	22	2.1	7.5	0	58	78	137

[Water samples were taken at Highway M-95 bridge.]

Table 7.--Continued

Conductivity (micromhos/cm. ³ at 18° C.)			150	280	360	350	355	238	276	226		374	365	228		336	269		312	211		312	250	
Total hard- ness	03	1	98	170	218	214	220	144	166	130	1	228	224	136		204	166		188	132		188	152	
Total alka- linity	I. as CaC		76	154	202	196	196	108	138	98		208	202	120		186	138		172	98		172	128	
Phenol- phthalein slkalinity	P.p.n		0	0	0	0	5	0	0	0		0	0	0		0	0		0	0		0	0	
Hq			7.6	8.2	8.3	8.2	8°3	7.9	8.1	7.9	,	7 ° 1	1.7	7.6		7.8	8.1		7.9	7.7		7.7	7°9	
Tannin and lignin	P.p.m.		2.4	1.1	1.2	1,1	0°9	2.0	1.1	0.8		0.6	0.8	0.8		0.7	1.6		0.4	1.8		0.6	1.5	
so4	P.p.m.		2	14	17	19	28	34	28	30	1	29	24	17		27	24		23	30		23	24	
S102	P.p.m.		2.5	6.0	7.5	0°6	0.5	5.0	9,5	8.0		10.0	10.0	3.0		7.0	3.0		11.0	5.0		10.0	3,5	ļ
NO2	P.p.m.		00.00	00°0	00°0	0.01	00°0	00*0	00.00	00°0		00.0	0.00	0,00		00.00	•		0.00	:		0.00	:	
NO3 ⁻	P.p.m.		1.1	1.0	1.0	0.8	0.2	0.9	0.8	1.9		0.8	0.8	2.1		0,9	•		0.4	••••		0°6	•	
c1_	P.p.m.		2.0	5.0	3.5	4.0	8.0	5.0	4.0	5.5		•	••••	2.5		2.5	2.0		2.0	2.0		2.0	2.0	
Ca ⁺⁺	P.p.m.		22	39	47	47	49	35	37	28		54	52	33		50	39		41	29		41	36	
Mg^++	P.p.m.		10.0	17.0	24.0	23.0	24.0	14.0	18.0	15.0		23.0	23.0	13.0		19.0	16.0		21.0	15.0		21.0	15.0	
Fe	P.p.m.		0.17	0.16	0.23	0.19	0.06	0.13	0.16	0.08		0.13	0,15	0,15		0.20	0.21		0.30	0.28		0.27	0.28	
Сц	P.p.m.		0.02	0.04	0.04	0.06	0.02	0.05	0.06	0.03		0.10	0.10	0.10		0.04	::		0,09	:		0.07	••••	
Al	P.p.m.		::	0.07	0.05	0.04	0.01	0.04	0.07	0.03		0.05	0.08	0.15		0.04	::		0.04	••••		0.03	:	
remper- ature	°C,		14	21	18	18	13	10	9	2		0	¢	0		0	16		0	13		0	16	
Date			5/23	6/20	7/18	8/8	5/1	10/10	10/31	12/12	19631/	1/24	2/27	3/28	19641/	3/10	6/12	19642/	3/10	6/12	19643/	3/10	6/12	

1/ Water samples were taken 1/4 mile above mouth. $\overline{2}$ / Water samples were taken at County Road 581 bridge. $\overline{3}$ / Water samples were taken at bridge, T. 41 N., R. 24 W., sec. 19.

p.p.m.; calcium, 18 to 50 p.p.m.; chlorides, 2.0 to 8.0 p.p.m.; pH, 7.5 to 8.3; total alkalinity, 58 to 214 p.p.m.; total hardness, 78 to 228 p.p.m.; and conductivity, 130 to 374 micromhos. Water temperature varied from 0° to 27° C. (32° to 80° F.).

Water quality data from the stations at State Highway M-95 bridge and the mouth were similar (table 7). Values for data from the two intermediate stations were slightly lower.

PENSAUKEE RIVER, OCONTO COUNTY, WIS.

The Pensaukee River, a tributary to southern Green Bay, Lake Michigan, was sampled at U.S. Highway 141 bridge in Oconto County, Wis. The main stream is 48 km. (30 miles) long and has 121 km. (75 miles) of tributary streams and a drainage area of 453 km.² (175 sq. miles). The North Branch of the Pensaukee River is the main tributary and, except during the spring runoff, contributes most of the water. The flow ranged from 0.3 to 0.9 m.³/sec. (10 to 30 c.f.s.) but flows were higher during the spring runoff and heavy rains. The water was clear, slightly alkaline, and moderately colored. Turbidity and color increased during high water.

Water quality data were collected from December 1962 through December 1965 (table 8). Aluminum, copper, and iron varied little throughout the year. The lowest concentrations of magnesium, calcium, total alkalinity, and total hardness, and conductivity readings were during the spring runoff. From May through August, when flows remained nearly constant or slowly receded, these values dropped and reached a low in July and August, and then increased to their highest in the winter. Chlorides were higher during low flows and lower at high flows. Concentrations of nitrate, silica, and sulfates were lowest in the summer. Nitrite was found in many samples. Concentrations of tanninlike and ligninlike compounds were highest during the spring runoff and when flows increased and lowest during low flows. The pH values were lowestin the winter and during the spring runoff and highest in the summer and fall. Phenolphthalein alkalinity was found in many samples from April through November. The ranges for values of selected measurements were: magnesium, 5.3 to 35.0 p.p.m.; calcium, 20 to 86 p.p.m.; chloride, 4.5 to 14.0 p.p.m.; pH, 7.5 to 9.0; phenolphthalein alkalinity, 0 to 18 p.p.m.; total alkalinity, 60 to 302 p.p.m.; total hardness, 72 to 360 p.p.m.; and conductivity, 149 to 576 micromhos. Water temperature varied from 0° to 33° C. (32° to 91° F.).

AHNAPEE RIVER, KEWAUNEE COUNTY, WIS.

The Ahnapee River, a tributary to Lake Michigan, was sampled at County Road J bridge in Door County, Wis. The main stream is 21 km. (13 miles) long and has 85 km. (53 miles) of tributary streams and a drainage area of 285 km.² (110 sq. miles). The flow usually ranged from 0.2 to 0.4 m.³/sec. (6 to 15 c.f.s.) but was higher during the spring runoff and heavy rains. The water was clear, slightly alkaline, and moderately colored. Turbidity and color increased when flow increased.

Water quality data were collected from December 1962 through December 1965 (table 9). Aluminum, copper, and iron varied little throughout the year. Concentrations of magnesium, calcium, total alkalinity, and total hardness, and conductivity readings were low during the spring runoff. From May through September as flows remained nearly constant or slowly receded, these values dropped to low levels in August and September, and then increased to their highest in winter. The values were higher when flow increased in rainy weather. Chlorides were high during low flows and lower when flows increased. Concentrations of nitrate, silica, and sulfates were lowest in the summer. Nitrite was present in most samples and was highest in the winter. Concentrations of tanninlike and ligninlike compounds were high during the spring runoff and when flow increased. The pH values were highest in the summer and fall and were low in the winter and during the spring runoff. Phenolphthalein alkalinity was found in many samples from April to November. The ranges for values of selected measurements were: magnesium, 20.0 to 45.0 p.p.m.; calcium, 29 to 89 p.p.m.; chloride, 5.5 to 13.0 p.p.m.; pH, 7.8 to 8.8; phenolphthalein alkalinity. 0 to 18 p.p.m.; total alkalinity, 156 to 354 p.p.m.; total hardness, 192 to 400 p.p.m.; and conductivity, 317 to 614 micromhos. Water temperature varied from 0° to 24° C. (32° to 76° F.).

OTHER STREAMS TRIBUTARY TO LAKES SUPERIOR AND MICHIGAN

Water quality measurements for other streams tributary to Lake Superior (table 10) and Lake Michigan (table 11) were few and scattered but are sufficient to provide data on some general characteristics of the streams and lake drainages.

Traces of aluminum, copper, and iron and varying amounts of nitrate, silica, sulfate, and tanninlike and ligninlike compounds were found at most stations.

1962-65
W1s.,
County,
Oconto
River,
Pensaukee
the
of
quality
Water
8
Table

[Water samples were taken at U.S. Highway 141 bridge.]

												Tanuta		Dharry	W		
Date	Temper-	Al	Си	Fe	Mg ⁺⁺	Ca ⁺⁺	-12	NO3 ⁻	NO2-	S102	S0₄=	pus	Hd I	rneno1- hthalein	10131 alka-	Total hard-	Conductivity (micromhos/cm. ³
	2 4 4 4											lignin	Ĩ	lkalinity	linity	nesa	at 18° C.)
1962	0 0	P.p.a.	P.p.m.	P.p.m.	P.p.m.	Р.р.п.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.		P.D.	. as CaC	03	
1963	0	0.10	0,10	0.15	35.0	86	:	1.5	0.00	5.0	80	2.1	8.2	0	294	360	557
1/7	0	0.02	0.10	0.15	27.0	69	•	4.5	0.01	10.0	35	1.1	8.0	0	249	282	461
1/21	0	0.05	0.10	0.10	33.0	79	:	4.6	0.03	13.0	40	0.9	7.7	00	296	332	557
2/4	0	0.05	0.10	0.10	35.0	78	•	4.2	0.02	14.0	47	0.8	7.6	0	302	340	557
2/25	0 0	0.05	0.10	0.10	32.0	76	::	3.8	0.01	13.0	45	0.8	7.7	0	284	320	576
3/11	э,	0.05	0.10	0.15	29.0	64	••••	4.0	0.01	12.0	37	0.9	7.7	0	246	280	461
3/25		0.10	0.02	0,15	5.3	20	:	1.4	0.02	2.0	15	3.6	7.6	0	60	72	149
51 /F	2 0 0	•	:	:	0.62	59	• • •	••••	•	:	:	••••	•	9	202	244	386
4/20	01 1	•	•	•	30.0	99	10.0	••••	•	•	52	• • •	8,3	9	214	288	427
21 12	11	•	•	:	0. 52	29	7.5	• •	•••	•	64	••••	8.3	ŝ	194	254	403
6/90	5.5	••••	•	•	23.0	23	6°2	0°4	0°*00	7.0	21	1.5	8.1	0	206	228	365
		•	•	•	0.02	77	6.5	::	:	0°6	23	:::	8.7	14	182	208	374
66/2	12	:	• • •	• • •	24.0	38	11.0	•	•	5.0	16	•	8.9	16	172	194	329
07/1	•••	• • •	0.05	60.0	26.0	55	7.0	•	:	5.0	15	6.0	0.0	18	172	188	300
21/2	12	0.06	0.05	0.12	27.0	34	13.0	0.2	0.00	3.0	16	0.7	8.1	0	174	194	331
00/0) T	•	0.08	0.12	25.0	42	8.5	:	:	1.0	23	••••	8.2	0	184	208	343
27/6	10 1	:	0.06	0,09	26.0	45	14.0	:	•	0.5	26	:	8.8	00	193	220	360
9/0T	12	- 4	10.0	0.11	28.0	46	7.5		••••	0.5	30	1.0	8,5	12	208	230	376
21/11	4	0.05	0.07	60.0	29.0	58	8.0	0.1	0.00	3.0	34	1.0	8.3	4	236	262	432
12/2	Т	0.05	0.08	0.14	34.0	73	14.0	1.4	0.01	6.0	54	1.2	8.3	9	276	322	557
1964	-	10 0	50 0	50 0	0.00	00	1		0								
	- <	10.0	0.03	0°00	0.00	202	6.5	а. С	00.00	12.0	33	0.8	7.7	0	268	304	499
2/3	ο,	60.0	0°0°	0.19	20.02	29	9°2	2.0	0.02	5.0	36	2.7	7.5	0	200	236	413
3/9	-, ,	0.08	0.04	0.16	7.3	59	8.5	3.5	0.01	5.0	32	2.5	7.7	0	148	178	322
3/30	-1 (•••••	0.05	0.16	24.0	57	7.0	1.0	0.00	6.0	42	1.3	8.0	0	204	242	413
4/16	6	•	0.05	0.26	22.0	55	12.0	1.0	0.00	3.5	55	1.9	8.1	0	166	230	398
6/9	26	•••••	0.08	0.21	26.0	56	8.0	0.6	00.00	1.5	33	1.5	8.5	7	218	248	403
9/1	19	••••	:::	0.05	25.0	38	7.0	::	* *	6.0	20	1.1	8.3	0	182	200	336
12/1	5.2	•	••••	0.12	18.0	40	4.5	0.4	0.00	4.0	25	1.2	8.2	0	154	176	296
8/23	20	••••	• • •	0.05	24.0	39	11.0	0.3	0.00	1.5	24	0.6	8.8	12	178	198	331
97.28	57 0	•	•	0.12	28.0	67	12.0	0.4	0.00	4.0	51	2.1	8.3	0	230	284	480
11/11	77	••••	••••	0.05	30.0	66	13.0	0.3	0.00	2.0	52	1.4	8.4	9	234	286	480
12/14	-	:	•	60°0	30.0	20	10.0	2.8	0.01	8.0	44	1.0	8.1	0	258	298	499
1/25	Ţ			0.18	0.92	70		000	50.0	0 0 1	10	0	1	¢	0.0	100	0
2/22	0			0 25	0.02	2.9	10.01	0.0		0.91	200	0.1			2027	204	800
3/15				010	0.01	r 0	0.01	0.1	20.0	D 0	200	0°0	0.7	0	277	PC2	461
4/19	9	•		0.22	15.0	000	ר א סיט	0 H C		ວ ເ ວ	25	20 00	× ×	0 0	128	154	259
5/23	17		0.06		0.04	07	2 u C		0.02	4°.0	40		ۍ د م • د	-	134	971	302
6/20	26	80.0	20.0	20.0	0.00	00	n • •	0°T	0.00	0°T	00	20	χ.,	0	224	270	413
2/10	210	0.00			0.00	37	0.0	0.8	TO 0	0.5	30	1.2	8°9	9	200	230	355
0/0	10	0.00	20.0	11.0	20.02	46	6.0	0.3	0.00	2.5	37	1.3	9°0	14	166	196	317
0/0	17	0.03	0.03	0.13	23.0	40	7.5	0.2	0.00	3.0	24	1.0	8°3	0	174	194	293
01/01	14	20.02	90°0	0.24	26.0	47	8°2	1.0	0.01	11.0	16	6.0	8.5	4	198	224	379
10/31	5- Q	0.00	0.04	CZ*0	0.12	75	10.0	0.8	0*00	5.0	56	2.4	8.4	4	216	274	446
12/12	° ~	0.02	0.06	0 14	18.0	21	2°2	0.6	0.00	1,5 1	46	2.2	8°6	∞ c	238	294	461
		32.0	22.2	ET.V	10°01	17	N° 1	2 * 4	Tn.0	6° 5	31	0.8	8.1	2	154	194	331

1962-65
Wis.,
County,
Kewaunee
River,
Ahnapee 1
the .
of
quality
9Water
Table (

nductivity cromhos/cm. ³ t 18° C.)		480	614	595	595	576	595	461	413	446	437	422	422	418	384	403	CC2	379	338	442	475	C U U	2004	400	499	004 000	382	300	322	040	31/	000	406	228	538	456	355	370	422	389	355	374	370	490	538	427
Fotal Con nard- (m10 ness at		338	400	368	374	366	368	278	270	286	282	266	264	256	242	252	212	230	228	274	292	010	040	010	312	077	234	877	200	0.AL	76T	012	007	330	332	268	214	222	274	246	220	230	224	316	346	256
Total alka- linitv	I. as CaCO	302	354	332	340	332	334	240	228	266	248	242	238	238	228	230	767	208	206	248	264	0.00	216	7.97	272	100	162	184	166	0/T	174	184	077	298	294	234	156	172	232	220	194	208	202	256	292	212
Phenol- hthalein lkalinitv	P. p. w	0	0	0	0	0	0	0	00	9	ŝ	0	0	9	10	0 (0	0	4	5	0	¢	5 0	5 0	0 0	0 0	0	18	10	יני	9	0 0	.1	0	0	0	0	0	00	e	0	0	0	0	0	0
d Hq		8.3	8.2	1.9	7.9	7.9	7.8	7.8	8.4	8.4	8.3	8.0	0.8	8.3	8.5	8.0	8.1	8,3	8.3	8°3	8.1	ŗ	1°2	7.9	0°1		8	2° 20	8°.7	5° 1	8° 1	່	x.3	8.1	7.9	7.8	7.9	8,1	8,6	8,6	8,3	8.0	8.1	8.0	8.4	8.1
Tanıln and lienin	P.p.m.	1.2	1.6	1.1	1.1	1.0	1.3	1.8	5 a	• • •	* * *	1,5	• • •	•	1.5	1.5		•	0.9	1.1	1.0	(,	7.7	1 • 1	1.2	L.3	1.3	1.2	1.2	1.2	0.9	1.3	1.0	1,1	2.3	2.4	1.6	1.7	2.6	1.3	1.4	1.3	1.0	2.1	2.2	0.9
SO4	.p.m.	35	42	37	42	38	35	33	•	38	25	17	24	12	0	15	20	18	24	30	30		31	28	38	49	67	42	36	21	16	26	33	36	41	37	55	54	45	28	22	18	18	51	38	36
S102	.p.m.	2.0	6.0	8.0	9°0	10.0	10.0	7.0	•	* * *	* * *	3.0	2.0	4 ° 0	7.0	8.0	4,0	2.0	1.0	2.0	1.0		۲°۵	4.0	1.5	2.0	1.0	0.5	2.0	2.0	2,5	1.0	1.5	3.0	3.0	5.5	3.0	3.5	0.0	1.5	3.0	2.0	3.0	2.5	0.5	3.5
NO2 ⁻	P. p.m.	00*00	0.01	0.03	0.03	0.04	0.03	0.03	•	* *		0°°0	•••••	•	••••	0.01	:	:	•	0.00	00.00		0.01	0.02	0.01	0.02	0.01	0.01	0 9 9	0.01	0.00	0.00	0,00	0.01	0.04	0.05	0.02	0.02	10.0	00.00	10.0	0.01	0.01	0,03	0,01	0.01
NO3	P.p.m.	4.7	6.4	5.6	6.0	5.4	5.8	4.4	:	•	•	0.5	••••	:	•••	1,4	••••	•		0.4	0.7		1.2	3.5	4.3	1.9	1.8	0.8	• • •	0.6	0.3	0.7	0.3	0.5	4 0	00	3.0	5.4	1.4	0.7	0.7	0.6	0.8	3.0	3,1	5.0
c1 ⁻	P.p.m.	:	:	•	•	• • •		:		7,5	5.5	6.0	7.5	8,0	8.0	10.0	0.11	13.0	8.5	0.0	9°0		6° 1	7.0	8.0	6.5	8.0	8,0	0°0	0°6	13.0	8,0	8,5	10.0	5 0	0.6	6.0	6.0	6.0	7.0	7.5	8.0	7.5	8.5	0°6	7.5
ca++	P.p.m.	72	89	84	83	82	69	62	60	56	54	56	50	50	42	46	42	42	38	50	55		96	66	99	22	53	41	29	31	30	37	47	66	74	63	49	54	63	57	38	42	43	78	78	59
Mg^++	P.p.m.	38.0	43.0	38.0	40.0	39.0	45.0	30.0	29.0	35.0	36.0	31.0	34.0	32,0	33.0	34.0	27.0	30.0	32.0	36.0	37.0		44.0	36.0	35,0	24.0	25.0	31.0	31.0	29.0	29.0	29.0	34.0	41.0	36.0	27.0	22.0	20.0	28.0	25.0	30.0	31.0	28.0	29.0	37.0	26.0
Fe	P.p.m.	0.10	0.15	0.10	0.20	0.15	0.15	0.15	•	:	•	••••	• • •	•	0.15	0.18	0.20	0.12	0.10	0.14	0.12		0.10	0,15	0.11	01.0	0.17	0.13	0.12	0.00	0.03	0.13	0.00	0,17	0.13	0.19	0.14	0.08	0.00	0.02	0.15	0.11	0.18	0.16	0.09	0.03
Си	P.p.m.	0,10	0.10	0.10	0.10	0.05	0,10	0.05	:	:	••••	•	:	:	0.05	0,08	0.08	0.07	0.06	0.10	0,06	000	0.00	0.05	0.09	0.09	0.08	0.09	:	••••	::	::	•	:				:	0.05	0.01	0.03	0.05	0.06	0.04	0.02	0.07
Al	P.p.m.	0,05	:	0.05	0.05	0.05	0.05	0.05	••••	••••	••••	•	•	:	•	0.08	:	••••	••••	0.04	0.07	10	0.03	ະບ.ບ ເ	0.06	::	:	••••	••••	•	:	• • •	• • •	:				•	:	0.02	0.02	0.03	0.05	0.04	0.07	0.02
emper- ature	° C.	0	0	0	0	0	0	7	7	13	12	22	22	22		19	18	13	15	4	1	c	v -	-	с, с	-	6 00	23	18	12	18	01	77	г	Ţ	0	1	ø	17	24	21	21	17	11	80	с
Date T	1969	1963	1/7	1/21	2/4	2/25	3/11	3/25	4/14	4/28	5/12	6/9	6/30	7/14	7/28	8/12	9/3	9/22	10/6	11/12	12/2	1964	0/1	2/3	3/9	3/30	4/16	6/9	9/1	12/1	8/23	87.6	11/11	12/14	1/25	2/22	3/15	4/19	5/23	6/20	7/18	8/8	6/7	10/10	10/31	12/12

[Water samples were taken at County Road J bridge in Door County, Wis.]

Table 10.--Water quality of streams tributary to Lake Superior, 1962-65

.

[Stream numbers correspond to those assigned to atreams in the text and figure 1. Letters in parentheses indicate more than one location on a stream was sampled.]

County stream	v, state, n number, date	Temper- ature	Al	Cu	F.C	Mg^++	Ca ⁺⁺	c1 ⁻	NO3 ⁻	NO2 ⁻	S102	S04≅	Tannin and lignin	Hd	Phenol- phthalein alkalinity	Total alka- linity	Total hard- ness	Conductivity (micromhos/cm. ³ at 18° C.)
Ch1ppew Mic	ra County, .h.	°C°	P.p.a.	P.p.m.	Р.р.п.	P.P.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.		P. P.	l. as CaC	S	
1	1/15/64	0	0,42	0.02	0.65	18.0	52	19.0	3.1	00.00	11.0	63	4.9	7.5	0	142	204	379
0	7/21/63 1/14/64	17 1	0,06	0.06 0.04	0.07	3°0 5°0	10	0.5	 0.4	00.00	7.0 9.5	94	0.4	7.5	00	32 36	42 40	67 74
3	7/21/63 1/14/64	13 2	0.18	0.07 0.08	0.38 0.29	3.9 3.4	14 14	0.3	0.6	00.00	6.0 10.0	8 13	0.6	7.6 7.5	0 0	48 44	52 50	90 92
4	1/14/64	1	0.10	0.07	0.03	4.9	16	0.5	2.5	00*00	8.0	6	0.2	7.7	0	50	60	106
£	7/21/63 1/14/64	15 3	0.05	0.06	0.05	7.3	22 21	0.5	2.8	00.00	7.0 11.0	9 10	0.2	7.9 7.8	00	82 74	86 82	151 145
9	7/21/63 1/14/64	14	0.05	0,08 0,09	0.10 0.05	8.3	24 22	0.5	1.2	00.00	6.5 9.5	6 12	0.1	7.9 7.6	00	88 76	94 84	162 148
7	1/14/64	1	0°0	0.07	0,08	6.3	18	0.5	2.8	0,00	8.0	12	0.4	7.8	0	62	72	132
80	7/21/63 1/15/64	14 0	0.10	0.03	0.16 0.15	3.4 5.3	14 14	2.0	1.6	0.00	4.0 6.0	13 14	0.7	7.8 7.4	00	40 36	50 56	91 93
9 (a)	1/15/64 7/6/64 7/14/64	0 23 21	0.17	0.09	0.38 0.32 0.26	6.3 5.8	25 27 26	2.0 1.5	1.1	0.00	5.0 3.5	24 25 19	1.1 1.3 1.2	7.6 8.1 7.9	000	66 80 76	88 96 88	152 169 156
(q) 6	1/15/64 7/14/64	0 21	0.05	0.06	0,13 0,23	5.8 6.8	24 30	1.5	0.7	00.00	8.0 3.5	16 19	0.8 1.2	7.3	00	72 90	84 102	146 177
10	1/15/64 8/19/65	0 17	0.14 0.23	0.04 0.03	0,80 2,10	3.4 2.9	10	1.0 1.0	0.7 0.9	0.00	4.0 1.5	പര	1.4 2.8	7.5	0 0	30 32	40 38	66 60
Luce Co	ounty, Mich																	
11	11/18/63 7/28/65	6 13	0.18 0.17	0.07	0.80 1.75	4.4 7.3	15 19	1.0	0.6 0.6	0.00	5.0 4.5	7 7	1.2 2.0	7.4 7.4	0 0	46 62	56 78	91 111
12 (a)	11/18/63 7/21/65	8 14	0.25 0.13	0.04 0.04	0.85 0.04	4°4	18 22	1.5	1.0 0.7	00.00	4.0 4.5	10 3	1.4 1.4	7.5 7.9	0 0	52 60	62 74	107 113

Count strea	y, state, n number, 1 date	Temper- ature	Al	Сц	Fe	*++	Ca ⁺⁺	c1-	NO3 ⁻	NO2 ⁻	S102	S04≡	Tannin and lignin	ų Hq	Phenol- ohthalein ilkalinity	Total alka- linity	Total hard- ness	Conductivity (micromhos/cm. ³ at 18° C.)	
		° C.	P.p.m.	P.P.m.	P.p.m.	P.P.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.P.m.	Р.р.ш.		P.P.B	. as CaC	33		
12 (b)	11/18/63 7/21/65	6 11	0.15 0.12	0.06	0.65 0.14	4.4 5.3	17 18	1.0	0.7 0.8	0.00	6,0 4.5	o u	1.0	7.5 7.8	00	52 62	60 68	104 113	
12 (c)	11/18/63 7/21/65	6 13	0.22 0.11	0.07 0.04	0.80 0.94	4°0	19 22	1.0	1.0 0.8	0.00	5.0 5.0	ແນ	1.3 1.4	7.6 8.0	00	60 66	68 76	116 122	
12 (d)	7/21/65	14	0,29	0.05	1.90	3.4	19	0.5	1.1	0.00	1.0	01	3.5	7.8	0	09	62	102	
12 (e)	7/21/65	12	0,06	0.06	0.72	5.8	22	0.5	0.6	0.00	6.0	6	0.7	7.9	0	72	80	126	
12 (f)	7/21/65	13	0.30	0,07	2.30	5.3	16	1.0	1.3	0.00	0.5	63	4.5	7.7	0	52	62	94	
13	9/9/63 11/20/63	. 9	0.06	0.10	0.24 0.15	5.3 5.8	21 21	1.0		00.00	2.0	€ 4 ⁴	0.8 0.3	8.2 7.6	00	6 9 72	74 76	125 133	
Alger	County, Mich	÷																	
14 (a)	9/9/63	14	•	0.07	0.33	5.3	17	2.0	:	:	4.5	7	1.4	7.7	0	53	64	112	
14 (b)	9/9/63 11/20/63 8/19/65	14 4 14	0.13	0.08 0.03 0.03	0.23 0.21 0.40	4.4 4.4	18 17 17	2.0 1.5 1.0	0°9	0.00	6.0 5.0 4.5	961	1.2 1.4 2.1	7.7 7.6 7.8	000	58 52 4	64 60 62	111 108 106	
14 (c)	9/9/63 11/20/63 8/19/65	14 6 10	0.04	0.05 0.06 0.06	0.10 0.10 0.11	5.3 5.3	53 53 53 53 53 53 53 53 53 53 53 53 53 5	1.0 0.5 0.5	0.5	0.00	8.5 9.0 8.5	4 12	0.6 0.1 0.1	7.8 7.7 8.0	000	75 76 74	80 80 80	140 140 138	
15	11/26/63	ę	0.15	0.05	0.31	4.4	14	1.5	1.5	00*0	4.0	13	1.7	7.5	0	40	54	93	
16	11/26/63	4	0.18	0.07	0.38	4.9	22	1.0	0.5	00*00	5.0	12	1.0	7.6	0	64	74	128	
17	7/15/63 11/21/63	16 6	0.03	0.08	0.06	5.3 4.4	24 23	0.2		00.00	7.0	9 11	0.1	8.7 7.6	4	68 68	82 76	132 135	
18	7/16/63 11/21/63	15 6	0.04	0.06	0.10 0.10	14.0 15.0	30 30	0.5 1.0		00.00	4.0	10	0.5	8.3 7.9	• •	120 116	132 138	211 230	
19	11/21/63	9	0.11	0.05	0.17	16.0	32	2.0	1.2	0.00	4.0	23	0.8	7.9	0	128	148	246	
50	1/10/63	~	0.05	0.10	0.10	5.3	26		2.5	0.00	8.0	25	0.2	7.8	0	73	86	154	
	2/7/63	1 (3)	0.05	0.10	0.10	5.8	24	:	1.2	00.00	8.0	21	0.1	7.9	0	74	84	154	
~	3/6/63	2	0.10	0.10	0.05	6.8	25	• •	2.3	0.00	8.0	14	0.1	7.8	0	74	06	154	
	4/9/63	с 4	0.15	0.10	0.15	4 U	21	2.5	2.0	00.0	5°0	12 12	1.1	7.8	ə c	58 74	70 84	154	
	5/17/65	1	22.2	2	4) a	16	0.0	2		•			4 2) c	85	76	139	

Table 10. -- Continued

0
60
<u> </u>
100
24
-
1.4
-
C
-
0
23
Y .
-
0
-
A 1
-
_
0
CC I
-
and the second s
F
F

Count	y, state,	Temper-	AL	Cu	Fe	+++	Ca ⁺⁺	c1_	"NO3"	NO2	S102	S04 ⁼	Tanıln and	d Hq	Phenol- hthalein	Total alka-	Total hard-	Conductivity (micromhos/cm. ³
an	d date	ature											lignin	8	lkalinity	linity	ness	at 18° C.)
		° C.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	Р.р.п.		P.p.m	. as cac	ଙା	
21	1/16/64	7	0.02	0.05	0.14	7.3	23	2.0	1,2	00*00	8.0	20	0.4	7.6	0	72	88	161
	4/27/64	•		0.04	0.30	4.9	16	2.5	0.8	0.00	3.0	22	1.8	7.3	0	46	60	110
	9/20/65	12	0.07	0.04	0.23	6.8	21	2.0	0.7	00.00	5.5	19	1.3	7.8	0	64	80	139
22	1/16/64	ı	0.10	60°0	0.18	2.4	9	1.0	0.1	0.00	5.0	14	0.8	6.9	0	14	26	54
00	63/01/ L	-	0.05		010	13.0	32		0.5	0,00	5.0	25	0.5	8.0	0	118	132	221
22	CO/01/1	- 0	2000		01.0	0.01	2 6 6	•		00.0	5.0	2.2	0.3	6 2	0	124	138	235
	2/1/63	ə -		0.05	015	14.0	34		2.1	0.00	5.0	15	0.4	7.8	0 0	124	140	230
	20/0/2	- 7		0.05	0.12	2.6	26		1.6	00.00	4.0	13	0.8	7.6	0	92	106	178
	1/30/64	r T	0.05	0.04	0.10	11.0	32	2.5	0.6	0.00	5.0	13	0.1	7.6	0	114	126	216
24 (a)	1/30/64	I	0,08	0,02	0.18	6.8	21	2.5	1.4	0.00	4.5	25	0.7	7.4	0	56	80	145
24 (h)	9/11/62	13	0,10	0.10	0.10	15.0	33	•	0.2	00.00	4.0	27	0.5	8.1	0	122	144	254
	1/10/63		0.10	0.10	0.15	14.0	27		0.5	00*00	4.0	38	0.8	7.8	0	98	124	206
	2/7/63		01.0	0.10	0.10	15.0	31		0.7	00*00	5.0	37	0.3	7.8	0	116	138	240
	3/6/63) c	01.0	0.10	0.15	15.0	32		1.3	0°°0	5,0	32	0.3	7.8	0	116	142	240
	20/0/2	,	0.15	0.05	01.0	8.5	17	1.5	1.5	0,00	3.0	17	1.8	7.6	0	52	66	123
	29/21/0	3	0.440	0.04	0.12	16.0	34	5.0			3.5	28	0.4	8.3	e	132	152	266
	1/30/64		0.09	0.03	0.18	10.0	25	3.0	1.3	00°0	4.0	31	0.6	7.6	0	76	104	180
							(0	00	0 21	21	-	1 1	c	13	24	52
25 (a)	9/11/62 4/23/63	1 6 4	01.0	0.10	0.20	1.9	ە ە	2.5			3.0	13	1.5	7.1	00	12	22	48
				;							6	V L	с с	0	c	a	18	36
25 (b)	4/23/63	9	•	0.01	0.18	1.7	4	1.5	•	•	3.0	14	7.7	0.4	5	0	01	0
26	3/7/63	0	0.10	0.10	0.15	9.7	25	:	1.0	00.00	5.0	25	0.9	7.4	0	78	102	173
	1/30/64	I	0.05	0.03	0.14	7.8	22	3.0	1.7	00*00	4.0	30	0.8	7.3	0	58	86	156
27	3/7/63	0	0.15	0.05	0,10	8.3	20	•••••	0.9	0.00	6.0	24	0.5	7.6	0	66	84	149
	1/20/64		0.08	0,06	0.10	7.3	18	4.0	0.7	0.00	5.0	24	0.7	7.5	0	54	76	142
	8/24/64	•	•	•	0.28	6.8	16	4.0	0.8	0.00	2.5	ø	2,4	7.6	0	20	89	/0T
Marque Mi	tte County, ch.																	
29	2/28/63	0	0.15	0.10	0.25	11.0	42	5.0	3.1	00*0	7.0	65	0.6	7.4	0	96	148	288
	7/29/63	21	•	0.04	0.50	5.3	37	8.5	• •	••••	4.0	37	• • •	0.0 7) c	94	136	692
	1/20/64	1	0.11	0*03	0.22	10.0	38	0.11	2.1	0.00	0.2	Ŧ	C*0	· ·	2	5	0.01	2
30	2/28/63	0	0.15	0.10	0.30	2.9	10	• (0.6	00"0	4.0	18	1.2	7.1	00	30	38 32	67 59
	1/10/64	0	0.05	00°0	0.30	1.9	10	1.0	0.6	0,00	0,0	0	T • T	E . 1	>	r a	3	2

Count: stream and	y, state, n number, l date	Temper- ature	Al	Си	Fe	Mg ⁺⁺	Ca ⁺⁺	c1-	NO3	NO2	S102	S04=	Tannin and lignin	Hď	Phenol- phthalein ikalinitv	Total alka- linitv	Total hard-	Conductivity (micromhos/cm. ³	
		° C.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.n.	P.p.B.	P.p.m.		P.p.n	n. as CaC	03		
31	1/10/64	0	0,11	0.04	0.25	3.4	22	1,5	0.5	00"0	7.5	00	0.5	7.4	0	58	68	120	
	8/9/65	22	0.04	0.05	0*00	ດ ຕ	19	1.0	0.1	0°00	4.5	10	0.3	8.0	0	56	64	111	
34	3/14/63	0	0,15	0.10	0.25	4.4	18	•	0.8	00*00	8.0	00	0.4	7.6	0	56	64	109	
	1/28/64	0	0.07	0.06	0.23	3°0	17	0.5	1,1	0.00	0°6	80	0.6	7.6	0	50	58	101	
35	3/14/63	0	0.10	0.10	0.15	3.9	19	•	0.4	00.00	7.0	00	0.6	7 ° 6	0	54	64	108	
	1/28/64	٦	0.04	0,10	0,15	3°0	16	0.5	0.4	0.00	5.0	2	0.6	7.6	0	48	56	98	
36	8/13/63	15	•	0.05	0,18	4.4	21	1.0	• • •	• • •	6.5	ŝ	•	7.6	0	66	70	125	
	1/28/64	0	0.06	0,07	0,10	3.4	18	0.5	0.7	00*0	9°0	4	0.4	7.5	0	56	60	108	
12	8/13/63	22	•	0.07	0.10	2.9	13	1.0	*	•	3.5	ŝ	• • •	7,3	0	36	44	80	
	1/28/64	1	0.05	0.05	0.09	3.4	14	1.0	0.4	00°0	5.0	9	0.4	7.4	0	42	50	88	
8	11/19/63	3	0,18	0.04	0,50	3.4	14	1.5	0.3	00*00	6°0	9	0°0	7.2	0	38	48	82	
6	11/19/63	4	0.14	0.07	0,19	2.9	10	2.0	0.5	0°*00	5.0	12	1.3	7.2	0	24	36	67	
	1/22/64	1	0.08	0.04	0.16	4.4	12	1.5	0.8	0,00	6.0	00	0.6	7.3	0	32	48	78	
	10/19/65	13	0.10	0.04	0.28	2.9	11	1.5	0.3	0°00	4.5	11	1.5	7.0	0	28	40	72	
3a raga	County, Mic	h.																	
10	1/22/64	I	0.12	0.02	0.28	2.2	12	4.0	0.7	00°0	5.0	11	0.8	7.4	0	30	38	80	
	9/22/64	14	•	0 0	0.11	2.9	16	2.5	•	•	3.5	7	0.7	7.7	0	46	52	89	
11	1/22/64	1	0,10	0.05	0.22	3.6	15	1.0	0.5	00.00	6.0	11	0.6	7.6	0	42	52	93	
	9/22/64	13	•	•	0.08	3.9	18	0.5	•	• •	6.0	4	0.4	8,1	0	54	60	106	
2	1/16/63	0	0.20	0 0 0	0.30	3.4	15	•	0.7	0.00	7.0	18	0.7	7.4	0	44	52	94	
	2/6/63	0	0.10	*	0.30	3.9	18	•	0.7	0°00	8.0	17	0.4	7.7	0	54	60	109	
	3/5/63	0	0.10	• • •	0.30	3 °0	19	• • •	1.0	00°0	9°0	18	0.6	7.7	0	58	64	117	
	4/4/63	-	0.22	0.05	0.20	1.9	2	1.0	1.3	0,00	3.0	10	2.1	7.1	0	12	20	35	
	1/22/64	-	0,13	0.01	0.26	5.8	18	1.5	0.6	0°00	5.5	00	0°9	7.6	0	54	70	112	
3	1/22/64	1	0.02	0.03	0.13	6.3	26	1.5	0.9	00°0	9"0	10	0.4	7.6	0	80	06	154	
	9/22/64	14	•	0 0	0,18	5,8	27	1,5	:	•	5.0	9	0.7	8.4	63	86	92	160	
4	8/2/62	18	•	• •	0.50	• • •	•	:	:	:	0.6	17	1.0	7.8	0	62	66	120	
	6/18/63	21	• •	0.08	0.18	5°3	23	0.0	••••	•	9°0	4	0.5	7.9	0	78	80	147	

66 80

7.9

::

0.0

• •

44

Table 10. -- Continued

Table 10. -- Continued

County stream and	, state, number, date	Temper- ature	Al	Си	Fe	Mg^++	Ca ⁺⁺	c1 ⁻	NO3 ⁻	N02 ⁻	S102	S04 ⁼	Tannin and lignin	pH p	Phenol- hthalein lkalinity	Total alka- linity	Total bard- ness	Conduct1v1ty (micromhos/cm, ³ at 18° C.)
		° C.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.		P.p.m	. as CaC	8	
Houghto	n County, h.																	
45 (a)	9/5/62	15	•	0.10	0.30	8.7	28	:	0.1	0.00	8.0	20	0.9	7.6	0	96	106	178
	1/16/63	0	0.25	0.10	0.30	4.4	17	:	6°0	0.00	6.0	18	1.4	7.4	0	54	60	108
	2/6/63	0	0.15	0.10	0.35	5.3	20	::	1.0	0.00	8.0	19	1.2	7.6	0	64	72	125
	3/5/63	0	0.15	:	0.35	14.0	49	15.0	2.0	0.00	15.0	37	2.1	7.9	0	158	180	403
	4/4/63	8	0.22	0.05	0.25	2.9	10	1.5	1.6	0.00	3.5	7	1.9	7.2	0	30	38	69
	6/18/63	15	:	0.03	0.30	3.4	12	1.5	•	••••	2.0	1	2.7	7.5	0	36	44	72
	1/27/64	1	0.10	0.03	0.22	6.3	25	2.0	0.8	0.00	8.0	00	0.8	7.4	0	82	88	160
45 (b)	9/3/63	19	:	0.06	0,26	5.3	25	3.0	•	•	5.0	5	• • •	7.6	0	76	84	146
	1/27/64	1	0.07	0.01	0.30	5.8	23	3.0	0.9	00.00	7.0	œ	0°0	7.6	0	76	82	150
45 (c)	3/13/63	0	0.10	0.10	0.15	21.0	72	45.0	1.5	0.00	25.0	15	1.2	8.0	0	244	266	557
	3/26/63	0	0.10	0.10	0.20	5.3	23	3.5	1.5	0.00	7.0	9	1.1	7.8	0	76	80	154
	6/18/63	13	••••	0.04	0,22	5.8	19	1.0	• • •	:	4.0	73	2.2	7.8	0	64	72	118
	1/27/64	1	0.15	0.05	0.42	9.7	30	1.0	0.5	00.00	10.0	0	0.5	7.6	0	116	116	216
45 (d)	3/13/63	0	0.05	0.10	0.10	31.0	54	65.0	3.0	0.02	31.0	42	1.1	8.6	10	234	264	624
	3/26/63	0	0.15	0.10	0.20	4.9	21	4.0	1.4	0.00	8.0	4	0.7	1.7	0	64	72	133
	6/18/63	13	•	0.07	0.22	4.9	18	3.0	•	• • •	6.0	I	1.6	7.8	0	56	66	110
	1/27/64	I	0.11	0.06	0.22	6.3	25	4°0	0.8	0.00	11.0	9	0.6	7.8	0	82	00 00	167
46	8/2/62	e 0	0.10	•	0.10	7.8	30	5.0	•	9 8 9	8.0	22	0.2	8,3	4	81	108	208
	1/27/64	1	0.08	0.00	0.03	5.8	30	12.0	3.2	0.01	8.0	14	0°6	7.7	0	76	98	190
47 (a)	8/4/63	18	•	0.10	0.10	6.3	55	94.0	•	•	10.0	00	•	7.9	0	20	164	398
	1/20/64	1	60.0	0.10	0.20	5,8	42	59,0	2.0	00.00	8.0	6	0,1	7.5	0	56	130	293
47 (b)	8/4/63	17	•	0.04	0.16	5.3	20	3.0	•	:	10.0	ß	• •	8.0	0	66	72	130
47 (c)	8/4/63	17	•	0,09	0.20	6.3	126	287.0	•	•	0°6	13	• • •	7.7	0	70	340	942
48	8/2/63	17		0.08	0.10	5.1	17	4.0	•	•	7.5	10	4 0 4	7.8	0	44	64	105
49 (a)	9/22/64 5/24/65	14 16	• • • •	0.03	0.75 0.58	3.9	14 6	1.5	1.5	00.00	6.0 0.5	т 0	2.1 4.8	7.3 6.8	0 0	40 12	52 24	96 37
10 (5)	10/01/2	2			0 03	v +	U	0			5	1	3.0	8.9	C	00	20	36
(1) 65	E0 /7T //	4	•	•		•	>	2	•) 					1	1	
50	5/12/64	14	•	:	0.38	2.4	4	2.0	•	•	1.0	6	1,4	6.9	0	10	20	35

														i 					
Count	ty, state, um number,	Temper-	Al	Cu	Fe	Mg^++	Ca++	c1-	NO3 ⁻	NO2	S102	SO4 ⁼	Tannin and	lq Hq	Phenol- hthalein	Total alka-	Total hard-	Conductivity (micromhos/cm. ³	
81	nd date	ature											lignin	69	lkalinity	linity	ness	at 18° C.)	
		°C°	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.		P.p.B	1. as CaCC	33		
51	8/2/63	20	•	0.05	0.70	4.9	15	2.0	:	•	7.0	ო	•	7.8	0	57	58	109	
	1/20/64	0	0.21	0.07	0.40	3.9	14	1.5	0.5	00.00	7.5	6	0.8	7.4	0	46	52	101	
	5/13/64	6	•	•	0.28	2.9	9	2.0	•	•	2.0	ŝ	2.6	6,8	0	16	28	46	
52	5/12/64	11	:	:	0.09	2.4	11	2.5	:	•	7.0	13	0.8	7.1	0	26	38	74	
53	5/12/64	10	:	:	0.12	1.9	10	2.0	•	•	3.5	0	1.5	7.2	0	25	34	60	
54	5/12/64	11	:	:	0.14	2.4	11	1.0	•	• • • •	6.0	13	1.0	7.1	0	25	38	65	
55	8/2/62	:	:	0.10	00.00	5.8	25	:	•	•	8.0	25	0*0	7.9	0	75	86	166	
56	8/2/62	•	•	0.10	0.10	5.3	23	:	•	* *	0*6	30	0*0	7.6	0	70	80	157	
57	8/3/62 1/13/64	• 0	0.10 0.05	0.08	0.00	4.4	26 26	2.0	4.1	00.00	11.0	18 12	0.0		• •			 152	
8	8/3/62 9/5/63 1/13/64	13 16 0	0.10	0.10 0.09 0.08	0.19	4°0 5°5	22 21 21	2.0			6.0 9.0 11.0	15 6	0.0	7.9 7.8 7.6	000	69 70 64	74 74 72	136 131 146	
59	9/2/63	11	:	0.08	0.10	4.4	24	2,5	•	•	10.0	4	:	8.1	0	76	78	135	
60	1/13/64 9/9/64	• :	0.10	0.03	0.09 0.02	3.9 3.9	20 18	1.0	1.6	0.00	10.0 7.0	4 0	0.3	7.7 8.1	00	62 56	66 62	123 110	
Keveen	aw County, ch.																		
61	1/20/64	0	0.19	0.05	0.53	3.9	11	1.0	0.7	0°*00	6.0	80	1.4	7.2	0	34	44	77	
62	1/20/64 9/22/64 5/24/65	0 14 16	0.08	0.03	0.17 0.03 0.09	2.9 3.4 9.7	9 6	2.0 0.5 1.0	0.3	0.00	3.0 2.5	5 10 6	0.6 0.6 1.1	7.3 7.5 7.3	000	28 20 20	34 34 30	62 69 44	
63	1/20/64	0	0.08	0,06	0.37	3.4	18	5,5	0.5	0°*00	8.0	13	0.4	7.4	0	50	60	111	
64	1/20/64 10/19/65	0 12	0.10 0.07	0.02 0.04	0.16 0.15	4.4 3.9	13	3.5	0.7 0.4	0.00	5,0 8,0	4	0.7 1.6	7.5	0 0	3 8 42	50 58	91 117	
65	6/18/63	:	:	0.19	0.12	4.4	44	55.0	:	•	10.0	7	•	7.3	0	68	128	307	

Table 10. -- Continued

T
õ
Ĵ
2
-
_
9
0
Ŷ
- 1
÷.
<u> </u>
0
ă.
a l
65
1

County, stream and	state, number, date	Temper- ature	Al	Cu	Fe	Mg++	Ca ⁺⁺	c1 ⁻	-con	NO2	S102	SO4	Tannin and lignin	Ph ph	henol- thalein kalinity	Total alka- linity	Total hard- ness	Conductivity (micromhoa/cm. ³ at 18° C.)
		° C.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.		P.p.u	1. as CaC(33	
Ontonage Mich	on County, 1.																	
66 (a)	8/3/62		0.10	•	0.10	10.0	34	:			0.6	15	0.0	• c • ot	00	1190	126	221
	8/28/62	16	0.10	: :	0.20	10.0	34	• •	0.3	0.00	10.0	22	0.2	8°.3	0	119	128	225
	9/27/62	6	0.10		0.20	7.3	30	:	0.2	0.00	9.0	22	0.8	7.9	0	100	106	192
	1/13/64	0	0.11	0.04	0.20	7.3	30	2.5	0.8	0.00	0°6	00	0.6	7.8	0	98	104	184
(q) 99	9/27/62	:	0.10	:	0.20	9.2	33	:	0.2	0.00	8.0	19	0.7	7.8	0	110	120	208
66 (c)	9/27/62	:	0.10	:	0.20	7.8	31	:	0.1	0.00	8.0	26	0.7	7.7	0	105	110	195
67	1/21/64	0	0.11	0.01	0.28	6.3	22	3.5	0.5	00.00	5.0	62	0.0	7.5	0	74	82	147
	9/9/64	•	:	:	0.15	5.3	18	3.0	•	• •	3.0	12	1.9	8.0	0	56	68	117
68	1/21/64	0	0.06	0.08	0.31	5.8	26	13.0	0.9	0.00	5.0	17	0.4	7.2	0	68	88	176
69 (a)	1/21/64	0	0.02	0.09	0.19	5,8	20	1.5	1.2	00.00	7.0	6	0.1	7.7	0	64	74	139
(q) 69	7/2/63	26	:	0,03	0.15	4.4	15	2.0	:	:	3.0	ю	•	7.7	0	46	56	16
	1/21/64	1	0.04	0.07	0.12	4.9	18	1.5	1.3	0.00	5.0	00	0.1	7.6	0	58	64	119
69 (c)	7/2/63 1/21/64	22 0	0.03	0.01 0.04	0.10 0.08	6.8 14.0	26 41	1.5 3.0	2.5	00.00	6.0 16.0	4 13	0.1	7.9 8.1	00	88 156	92 160	163 283
(P) 69	7/2/63 1/21/64	22 0	0.08	0.01 0.02	0.20 0.19	4.9 4.9	23 21	1.5 1.5	2.0	0.00	5.0 10.0	5 10		7.8 7.6	00	74 68	78 72	136 132
69 (e)	7/5/63	13	:	0.08	0.20	5.3	19	1.0	•	:	0°6	9	:	7.8	0	64	70	132
(J) 69	7/5/63	13	:	0.05	0.14	4.1	17	1.0		•	6.0	4	:	7.8	0	54	59	108
(ĝ) 69	7/5/63	14	:	60°0	0.10	5.8	26	1,5	•	• •	11.0	5	• • •	8.0	0	86	88	158
70	1/29/64	0	0.12	0.05	0.35	5.3	30	8.5	0.4	0.00	4.0	11	0.4	7.4	0	86	96	188
71	1/29/64	0	0.10	0.08	0.37	8.7	42	30.0	1.4	0.00	8.0	24	1.2	7.6	0	106	142	317
72	1/29/64	0	0.11	60°0	0.32	7.8	41	75.0	2.3	0.01	0.6	30	1.4	6°1	0	06	134	422
73	1/29/64	0	0,10	0.08	0.25	3.4	19	16.0	0.7	0.00	6.5	13	0.6	7.6	0	40	62	137
74	1/29/64	0	60°0	0.03	0.20	3°0	27	24.0	0.5	00*0	5.0	11	0.1	7.5	0	50	84	176

Count	tv state												Tower		Dhowel-	TotoT	Totol	
stre	an number, nd date	Temper- ature	Al	Сп	Fe	Mg ⁺⁺	Ca ⁺⁺	c1_	NO3	N02 ⁻	S102	SO4	and lignin	μd	phthalein alkalinity	alka- linity	hard- ness	(micromb at 18°
Gogebi	ic County, Ich.	ຳ ເ	P.p.m.	P.p.a.	P.p.m.	Р.р.ш.	P.p.m.	Р.р.н.	P.P.m.	P. p. #.	P.p.m.	P.p.m.	P.p.m.		P. P.	1. as CaC	8	
75	1/23/64	1	0.09	60°0	0.40	5.3	22	1.5	0.8	0,00	11.0	ŝ	0.2	7.4	0	92	78	146
76	1/23/64	1	0.16	0,04	0.43	5.3	22	5.0	2.3	0°°0	8.5	17	1.0	7.5	0	64	78	155
77	1/23/64	0	0.17	0.01	0.39	6,3	37	45.0	2.4	0.01	12.0	15	0.7	7.5	0	58	118	267
Ashlan	ld County, W	/18.																
78 (a)	5/23/63	11	:	:	0.30	•	•	1.5	•	•	:	4	•	7.5	0	46	56	88
(q) 82	1/22/63	0	0.25	0,10	0.40	6,3	22		1.9	00 0	13.0	20	0.7	7.4	0	74	80	149
	2/18/63	0	0.18	:	0.40	6.3	22		1.7	0.00	14.0	20	0.6	7.5	• •	76	82	154
	4/1/63	4	0.20	0.10	0.20	2.9	6	2.0	1.4	0.00	4.0	9	1.6	7.2	0	22	34	62
	5/23/63	6	•	:	0.30	:	:	1.5	:			ო		7.5	0	36	46	72
	12/11/63	0	0.05	0.05	0.10	5.3	18	2.5	1.3	0.00	8.0	13	0.9	7.6	0	54	67	120
	2/10/64	0	0.10	0.06	0.36	16.0	59	6.0	2.7	0.00	22.0	22	1.6	8.0	0	202	212	370
	9/29/64	11	•••••	•	0.27	4.4	15	2.5	:	•	3.5	18	3.1	7.5	0	36	56	94
78 (c)	5/23/63	10	•		0.25	•		2.0				en	:	7.5	0	18	32	49
	12/11/63	0	0.08	0.02	0.11	4.4	15	3.0	2.1	0.00	5.0	12	1.4	7.6	0	40	56	105
	2/10/64	0	0,11	0.04	0.36	4.9	19	2.0	1.3	0.00	11.0	11	1.0	7.6	0	62	68	124
	9/29/64	11	•	•	0.30	4.9	11	2,5	•	•	3.0	17	4.2	7.2	0	22	48	11
(p) 82	5/23/63	12	•	•	0.25	:	:	1.5	•	•••	:	e	•	7.5	0	70	74	130
18 (e)	12/11/63	0	0.05	0.07	0.13	5.8	26	1,5	1.4	0.00	0.6	9	0.1	7.9	0	86	88	135
	2/10/64	0	0.04	0°0	0.12	6,3	27	2.0	0.4	0.00	13.0	80	0.5	7.5	0	92	94	168
	9/29/64	11	:	:	0.21	6.3	23	1.5	•••••	:	6.0	9	1.7	7.9	0	80	84	150
18 (f)	5/23/63	6	:	:	0.30	•	•	1.0				9		7.3	0	49	56	97
	12/11/63	0	0.07	0.06	0.08	6,3	23	1.0	1.8	0.00	0.11	2	0.3	8.0	0	82	84	151
	2/10/64	0	0,02	0.08	0.23	86.0	115	540.0	4.2	0.06	32.0	92	4.3	8,3	9	522	644	2,452
	3/16/64	0	0.10	0.06	0.28	6.3	21	4.0	3.8	0.00	8.0	6	1.8	7.6	0	72	78	152
	9/29/64	11	:	:	0.28	6.8	22	1.5	:	:	6.5	ŝ	1.4	7,8	0	76	82	146
(g) 8,	3/16/64	0	0.10	0.06	0.28	5.8	24	2.0	2.2	00.00	11.0	ŝ	1.0	7.5	0	84	84	156
(H) 8	3/16/64	C	0.05	0.05	0.24	רי ע	06	0	6	00.0	0.0	U	c c	u t	c	Ċt	C t	149

00.00 0.00

2.2

Table 10. -- Continued

														-					
Count	y, state, m number,	Temper- ature	Al	cr	Fe	Mg ⁺⁺	Ca ++	_10	NO3	NO2	S102	S04=	Tannin and lienin	pH	Phenol- phthalein alkalinity	Total alka-	Total hard-	Conductivity (micromhos/cm. ³ o+ 100 C)	
8	ח המרכ	° C.	P. p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.		P.p.1	n. as CaC	03	/10 07 n	
(I) ZR (I)	5/23/63	101			0.20		20	1.0		:		4	:	7.0		20	44	49	
	12/11/63	0	0.04	0.03	0.14	3.9	13	1.5	1.0	00.00	4.5	80	0.8	7.8	0	38	48	86	
	2/10/64	0	0.08	0.10	0.31	5.3	15	2.0	1.0	00*0	0°6	12	1.0	7.7	0	54	60	113	
	3/16/64	1	0.08	0.06	0.26	4.4	15	1,5	1.4	00*0	0°6	12	1.0	7.2	0	50	56	104	
	9/29/64	13	•	•••••	0.28	4.4	10	1.0	•	•	3.5	7	2.0	7.4	0	28	44	67	
(1) 82	5/23/63	6	•	•	0.20	•	•	1.5	:	:	:	n	:	7.4	0	23	40	54	
	12/11/63	0	0.13	0.00	0.10	3.9	12	2.0	2.0	00.0	2.5	13	1.6	7.5	0	30	46	82	
	2/10/64	0	0,09	0.04	0.40	4.4	18	2.0	0.9	00*0	10.0	6	1.0	7.6	0	54	62	114	
	9/29/64	10	:	•	0.31	4.9	11	2.0	:	:	3.5	19	3.6	7.2	0	22	48	73	
78 (k)	5/23/63	10	•	•	0.20	•	•••••	2.0	:	:	:	61	•	7.4	0	22	34	51	
	12/11/63	0	0.07	60.0	0.12	3.9	10	2°2	1.9	0.00	3.5	16	1.4	7.4	0 0	26	42	77	
	2/10/64 0/20/64	°	0.10	0.04	0.23	ກ່ອ ຕໍ່ຕ	14	0 9 8 8	7.1	00.0	4.0	23	2.7	7.4	- 0	7C	20	88	
	E0 /07 /0	11	•	•		2 2		2				1		•	,	}	2	1	
Bayfle W1	ald County, s.																		
64	1/6/64	0	0.04	0.02	0.11	5.8	20	1.0	0.4	00*0	12.0	5	0.0	8.0	0	74	74	138	
80	1/6/64	0	0.05	0,08	0,16	4.9	18	1.0	0.3	00*00	12.0	4	0°0	8.0	0	64	66	118	
81	1/6/64	0	0.06	0,06	0,18	7.8	26	0.7	0.1	00*0	12.0	1	0°0	8.0	0	98	98	164	
	10/14/64	14	:	•	0.17	8.7	26	1.5	:	•	8.0	7	0.4	8,1	0	86	102	188	
82	1/6/64	0	0.04	0,05	0,05	4.9	22	0.5	0.3	00*00	12.0	ы	0°0	8.0	0	74	74	133	
83	1/6/64	0	0.06	0.02	0.13	4.9	17	1.5	0.1	00*00	12.0	63	0*0	7.8	0	60	62	113	
84	1/6/64	0	0.04	0.02	0.11	5.8	22	3.5	1.6	00*00	12,0	S	0*0	7.8	0	76	78	148	
85	12/2/63	0	0.07	0,04	0.20	5.8	20	1.0	0.3	00.00	8.0	7	0.4	6.7	0	74	74	144	
86	12/2/63	0	0.04	0.07	0.10	13.0	40	1.5	0.7	00*00	11.0	12	0.4	8.1	0	152	154	269	
	10/14/64	12	:	•	0.10	10.0	34	2.5	•	•	8.0	7	1.0	8.2	0	123	128	235	
87	12/2/63	0	0.15	0.06	0.50	14.0	43	4°0	0.2	0.00	0°6	18	0.8	8.0	0	162	166	298	
	10/14/64	12	•	•••••	0.53	6,3	20	4,0	• • •	•	2.0	e	5.0	7.7	0	67	76	138	

Table 10. -- Continued

Count stream and	y, state, m number, i date	Temper- ature	Al	Cu	a la	t. M	Cm++	c1_	"EON	NO2 ⁻	S102	S04=	Tannin and lignin	pH p	Phenol- hthalein lkalinitv	Total alka- linitv	Total hard-	Conductivity micromhos/cm.3 at 18° C.)
Douglas W1s	s County, s.	• C•	P. D. H.	P.p.m.	P.p.m.	P.p.m.	P. P. m.	P. P. H.	P. P. B.	P.P.B.	Р.р.п.	Р. р. н.	P.p.a.		P.D.B	as caco	33	
88 (a)	1/22/63 2/18/63 4/1/63 12/2/63 7/8/65	0 0 1 0 1	0.10 0.05 0.15 0.06 0.02	0.10 0.05 0.06	0.10 0.10 0.20 0.14 0.15	4 4 4 4 9 0 0 4 0 0	17 16 13 18	2.0 2.5	0.0 0.0 0.3 0 0 0 0 0 0 0	00.000000000000000000000000000000000000	13.0 12.0 7.0 8.5	17 18 5 8	0.0 0.2 0.1 0.1	7.6 7.8 7.5 8.0	00000	60 56 62 56	62 60 64 62	119 111 84 120
88 (b) 88 (c)	7/8/65 7/8/65	14 13	0.05	0.05	0.09	4.4	15 14	2.5	0.2	0.00	11.0	ຊາ ເນ	1.0 1,4	8.1	0 0	5 2 8 2	56 52	100 92
88 (d)	7/8/65	16	0.03	10.01	0.22	4.4	14	1.5	0.5	00*0	5.5	6	1.6	7.5	0	44	52	06
68 06	12/4/63 12/4/63	5 1	0.11	0.02	0.30	6.8 7.3	18 21	6.5 7.0	3.4	0.00	8.0 7.0	21 25	1.9 2.0	7.6 7.8	0 0	52 62	74 82	144 162
16	12/4/63	0	0.12	0.03	0.65	5.6	17	4.0	1.0	0.00	4.0	13	1.5	7.7	0	58	66	130
92 (a) 92 (b)	12/4/63 12/4/63	~ ~	0.12	0.05	0.45	12.0 5.8	34	4.0 3.0	1.2	0.00	9.0 4.0	35 14	1.1 3.0	7.3	0 0	110 46	132 60	237 120
St. Lou Min	ils County, m.																	
93 Lake Co	1/8/64 unty, Minn.	г	0.31	0.01	0.07	8.7	30	17.0	2.1	00.00	6.0	28	8° 8	7.5	0	76	112	231
94	1/8/64	1	0,05	0.00	0.13	7.8	23	8.5	1.9	00*00	7.0	12	0.2	8.0	0	72	06	170
95	1/8/64 10/16/ 64	1 15	0.14	60°0	0.55 0.38	6.3 5.3	24 16	5 .5 3.0	2.0	0.00	11.0 4.0	13	0.4 1.9	8.0	00	74 44	86 62	166 108
96 Cook Co	1/8/64 untv. Minn.	T	0.15	0.06	0.37	4.4	13	2.0	2.4	0.00	10.0	00	1.2	7.8	0	36	50	87
97	1/8/64	1	0.08	0.06	0.31	2.9	80	2.0	1.8	00*00	0.6	9	0.5	7.7	0	26	32	63
86	1/8/64	I	60*0	0.04	0.13	3.4	7	1.0	1.1	0.00	6.5	4	0.6	7.7	0	26	32	61
66	1/8/64 10/16/64	12	0.07	0.09	0.30	3.9	89	2.5	1.4	0.00	7.0 3.0	യന	0.5	7.6 7.4	00	22 13	32 26	58 42

Table 11.--Water quality of streams tributary to Lake Michigan, 1962-65

[Stream numbers correspond to those assigned to streams in the text and figure 2. Letters in parentheses indicate more than one location on a stream was sampled.]

County stream and	/, state, n number, 1 date	Temper- ature	Al	Си	Fe	Mg^++	Ca ⁺⁺	c1-	NO3 ⁻	NO2	S102	S04 [≂]	Tannin and lignin	Hd Hd	Phenol- bhthalein ilkslinitv	Total alka- linitv	Total hsrd-	Conductivity (micromhos/cm. ³ at 18° C.)
		° C.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.		P.p.m	as CaC	33	
Mackins Mic	ac County, ph.																	
1 (a)	2/4/64	٦	0,09	0.05	0.15	9.2	34	1.5	0.4	00*0	8.0	37	0.3	7.5	0	80	122	203
1 (b)	2/4/64	T	0.03	0.08	0.19	9.7	27	0.7	0.8	00°0	7.0	12	0.2	7.8	0	96	108	185
1 (c)	2/4/64	I	0.16	0,08	0.52	7.8	29	0.7	0.7	00*00	6.0	9	0.8	7.8	0	96	104	176
21	2/4/64	с	0.24	0,09	06*0	9.7	36	1.0	0.5	0,00	4.0	4	1.2	7.9	0	122	130	214
e	2/4/64	ო	0.07	0.05	0.23	9.7	34	1.5	0.3	0°*00	7.0	9	0.5	8.0	0	116	124	207
4	2/5/64	0	0.11	0.06	0,28	9.2	36	1.0	0.4	0.00	5.0	10	0.5	7.7	0	120	128	213
2	2/5/64	0	0.09	00.00	0.10	6.3	31	1.5	1.2	0°*00	3.0	24	0.7	7.6	0	80	104	175
6 (a)	2/5/64	0	0.20	0.07	0.61	6.3	30	1.0	0,9	0.00	4.5	17	1.2	7.7	0	82	100	166
6 (b)	2/5/64	0	0.12	00*00	0.20	10.0	31	1.5	1.3	00*0	3.0	27	0.8	7.7	0	92	120	202
7 (a)	2/12/64	2	0,12	0.04	0.30	4.4	18	1.0	0.3	0.00	4.0	ŝ	0.3	7.3	0	58	64	115
(q) L	2/12/64	ľ	0,15	0.04	0.40	4.9	16	1.0	0.6	0.00	5.0	10	0.4	7.4	0	52	60	107
8 (a)	2/12/64	73	0.05	0.07	0.16	9.2	37	2.0	0.8	0.00	6.5	25	0.3	7.6	0	110	130	223
8 (b)	2/12/64 5/15/65	1 14	0.08	0.05	0.22	9.7 8.3	45 32	6.0 1.5	1.2	0.00	5.0	51	1.0	7.5	00	102 88	152 114	264 174
8 (c)	2/12/64 5/15/65	1 13	0.07	0.06	0.12	9.2 8.3	34 23	2.0	1.0	0.00	4.0	39	0.9	7.5	00	82 60	124 92	202 130
School Mi	craft Count ch.	у,																
61	2/26/64	1	0.11	0,09	0.23	10.0	46	2.0	1.5	0.00	5.0	17	1.1	7.6	0	130	156	254
10	2/26/64	1	0.05	0.05	0,16	12.0	34	4.0	0.7	0.00	3.0	27	1.0	7.5	0	102	134	228
11	2/26/64	I	0.04	0.06	0.02	14.0	34	6.5	0.3	0.00	0°0	19	0.4	7.8	0	112	142	232

	Pher phths
	Hq
	Tannin and
	S04
itinued	S102
11	NO2"
Table	NO3 ⁻
	c1"
	ca++
	Mg ⁺⁺⁺

}

Count stream	y, state, m number, d date	Temper- ature	Al	Сп	Fe	Mg ⁺⁺	Ca++	c1"	NO3 ⁻	NO2"	S102	S04=	Tannin and lignin	d Hq	Phenol- bthalein	Total alka- linity	Total hard- ness	Conductivity (micromhos/cm. ³ at 18° C.)
		° C.	Р.р.ш.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.		P.P.B	. as CaC(3	
12 (a)	2/26/64 9/13/65	1 21	0.14 0.02	0.03	0.22	12.0 23.0	43 72	2.5 13.0	2.6 0.4	0*00	5.5 17.0	24 57	1.3 0.9	7.8 8.4	00	130 222	156 276	250 413
12 (b)	2/26/64	1	0.08	0*06	0.12	16.0	50	5.0	1.1	0°*0	6.0	58	1.5	7.7	0	122	194	312
13	3/3/64	8	0.18	0,08	0.70	5.8	34	2.0	0.7	00*0	6.0	36	1.0	7.4	0	76	110	194
14	3/3/64	4	0.04	0,05	0,15	11.0	34	3.0	0.8	00*00	4.5	12	0.5	7.8	0	116	128	218
15	3/11/64	1	0*06	0.07	0,14	7,3	28	2.0	2.5	00*0	5.0	19	1.1	7.4	0	84	100	174
16 (a)	3/11/64	0	0.04	0*06	0.05	11.0	29	1.0	0.8	0.00	4.0	14	0.5	7.7	0	104	116	195
16 (h)	3/11/64	0	0.02	0,06	0,03	8.7	34	1.0	0*0	0.00	5.0	90	0.3	7.7	0	110	120	200
17	3/11/64 9/13/65	1 12	0.35	0,03	1.10 0.04	7.8 15.0	2 0 42	1,5 8,0	1.7 0.3	0.00	3.0 3.0	7 10	2.3 1.4	7.5 8.1	00	66 154	82 168	132 269
18	3/11/64	1	0.05	0.03	0.38	16,0	39	1.5	1.0	0.00	5.5	12	0.9	7.9	0	152	162	264
19	3/11/64	0	0,11	0.06	0.45	8.3	20	1.5	1.5	0.00	5.5	13	1.0	7.7	0	70	84	146
Delta (County, Mic	.h.																
20	3/3/64	Ţ	0.12	0.04	0.50	6.3	18	1.5	2.3	0.00	3,5	21	1.6	7.4	0	50	70	128
21	3/3/64 6/22/65	1 18	0.14 0.20	0.05 0.04	0.63	10,0 9,2	33 26	2.0	0.9	0.00	8.0 1.5	46 18	1.5 3.4	7.4	00	84 80	126 104	220 164
22	3/3/64 6/22/65	1 17	0.08 0.17	0.05 0.05	0.46 0.83	9.7 8.3	32 28	1.5	0.6	0.00	6.0 3.0	27 20	1.0 2.6	7.6 7.9	00	94 84	120 104	201 167
23 (a)	1/30/63 2/20/63 3/19/63	0000	0.20	0.10 0.10 0.10	0.70 0.70 0.65	8°3 7°83 8°5	31 30 12	· · · · ·	0.5 0.8 1.9	00.00	7.0 7.0 7.0	22 28 18	0.00	7.6 7.6 7.1	0000	80 80 80 80 80 80 80 80 80 80 80 80 80 8	112 106 108	192 187 184 79
	5/6/63 3/12/64	13	0.20	0.10	0.70	6.3	50 G	1.5	0.6	0.00	8.0	12	6.0	7.4	000	60 84	76 98	122 175
23 (b)	5/6/63	13	:	:	0,80	4.9	19	1.0	:	÷	÷	9	÷	7.3	0	54	68	109
23 (c)	3/12/64	1	0.31	0.06	1.60	4.4	26	1.0	0.6	0.00	5.0	6	1.1	7.5	0	78	82	146
23 (d)	4/30/63	5	:	:	0.50	4.9	18	1.0	•	:	:	5	:	7.3	0	52	64	106

_
^v
۳.
2
4
2
Y
i
-
۵.
-Ă
A
0
H

Count	y, state, m number	Temper-	LA.	Cn	Fe	Mg ⁺⁺	Ca ⁺⁺	c1 ⁻	NO3	NO2	\$102	SOd ⁼	Tannin and	a Ha	Phenol- hthalein	Total alka-	Total hard-	Conductivity (micromhos/cm. ³
and	d date	ature				þ					1		lignin	, cl	lkalinity	linity	ness	at 18° C.)
		° C.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.P.m.	P.p.m.	P.p.m.		P.p.1	1. as CaC	33	
24	3/12/64	0	0.29	0.05	0.86	6.3	21	1.0	0*9	0*00	6.0	20	1.9	7.4	0	60	78	129
25	3/12/64	0	0.25	0.03	06*0	8.7	32	4.5	1.7	00*0	3.5	27	1.7	7.5	0	06	116	201
26	3/12/64	I	0.09	0.02	0.34	5.8	20	2.5	6.0	00*00	5.0	19	0.6	7.3	0	60	74	136
27 (a)	1/30/63	0	0,10	0.10	0.20	15.0	39	:	1.0	0.00	6.0	24	0.5	7.8	0	146	160	250
	2/20/63	0	0.10	0.10	0.25	14.0	38	••••	1.4	0.00	6.0	24	0.3	6.7	0	140	152	250
	3/19/63	0	0.10	0.10	0.30	14.0	36	:	1.3	0.00	6.0	15	0.6	1.9	0	136	148	248
	4/10/63	01	0.06	0.05	0.20	7.8	20	2.0	1.1	0.00	3.0	21	1.6	7.6	0 0	64	82	135
	2/6/64	-	0.08	0.06	0.20	9.7	30	г. г	8°0,	0.00	0.0	12		c•/) (202	911	181
	3/18/64 6/3/65	14 0	0.07	0.04	0.21	14.0 9.7	36 31	1.5	0.1	0.00	2.0	9 E	0.9 1.9	8.2	00	901	118	232 188
				0	000		000	< -	< -	00 0	0	5	4	0	c	1 20	146	040
27 (b)	2/6/64	-	90.0	80.0	0.23	0.21	20	0.T	0.1	0.00	0.0		.	•••	> <	077	0.T	0.64
	3/18/64	0	• • •	0.05	0.25	12.0	37	1.0	1.2	0.00	6.0	16	0.5	7.9	0	126	142	230
	6/3/85	13	0.05	0.03	0.23	11.0	35	1.0	•	00.00	3.0	11	1.6	8.2	0	120	134	216
27 (c)	2/6/64	-	0.07	0.02	0.09	13.0	32	2.0	1.1	0,00	4.0	28	0.8	7.8	0	108	134	219
ì	3/18/64	0		0.06	0.88	16.0	41	7.0	3.2	0.00	8.0	37	2.1	7.6	0	138	166	298
	6/2/65	11	0.08	0.07	0.22	8.7	27	2.0	6°0	00.00	1.5	S	1.8	8.2	0	92	104	168
	101010	¢				0	10	4	c	00 0	0	a		0	c	80	110	186
27 (d)	3/18/04	5	•	0.04	0.04	0.1	10	о ч ч	0.0		2		• •			5 6		2004
	6/3/85	12	0.19	0.05	0.19	5.8	18	1.5	•	0.00	e.0	-	4°	۵°۶	5	90	02	107
27 (e)	3/18/64	0	:	0.06	0.08	15.0	40	2.0	2.7	00.00	4.0	25	0.7	7.7	0	136	162	269
	6/2/65	11	0.05	0.07	0,17	12.0	31	1.0	1.2	00°0	2.0	ო	1.4	8.1	0	110	126	197
27 (1)	3/17/64	0		0.06	0.08	16.0	30	1.0	1.8	0°°0	4.5	29	0.9	7.8	0	102	138	214
ì	6/2/65	11	0.03	0.06	0.01	11.0	26	1.0	0.8	00°0	1.5	S	1.4	7°9	0	96	110	168
27 (0)	3/17/64	0		0.04	0.06	16.0	44	1.0	1.7	0.01	4.5	18	0.7	7.9	0	164	178	293
è	6/2/65	11	0.02	0,09	0.13	14.0	37	1.0	0.5	00*00	3.0	14	1.1	8.3	0	130	150	230
27 (h)	3/17/64	0		0.08	0.12	15.0	40	1.5	1.7	0,01	5.5	24	0.7	7.9	0	142	162	274
Ì	6/2/65	11	0.00	0.05	0.12	12.0	34	1.0	0°0	0°*00	1.5	ო	1.2	8,2	0	120	134	211
27 (1)	3/17/64	0	0.16	0.05	0.33	4.6	00	1.5	1.0	00°0	6.0	17	2.2	6.7	0	21	40	63
	6/3/65	12	0.12	0.01	0.18	4°4	2	1.0	•	0.00	0°0	4	3.4	7.2	0	18	36	39
27 (4)	3/11/64	0	•	0.05	0.15	12.0	23	1.5	0.9	00°0	5.0	28	1.5	7.3	0	72	108	159
•	6/3/65	12	0.08	0.02	0.15	7.3	18	1.0	:	00°0	0.5	1	2.4	8.0	0	64	16	119

Count	v. state.												Tanıın		Phenol-	Total	Total	Conductivity
strea	m number, d date	ature	Al	Cu	Fe	Mg++	Ca++	c1_	-EON	N02 ⁻	S102	so4=	and 11gn1n	pH a	hthalein lkalinity	alka- linity	hard- ness	(m1cromhos/cm. ³ at 18° C.)
		° C°	P.p.m.	P.p.m.	Р.р.п.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.		P. P. H	1. as CaC	e S	
28 (a)	2/6/64	1	00*00	0.04	0.12	15.0	40	25.0	•	00*00	10.0	33	2.8	7.4	0	108	160	331
28 (b)	2/27/64	1	0.05	0.03	0,11	6.3	44	2.0	1.9	0,00	4.5	27	1.2	7.8	0	106	136	223
29	2/27/64	1	0.07	0.04	0.05	11.0	47	3.0	2.4	00*00	7.0	28	0.4	7.9	0	138	164	279
30	8/20/62	•	0.10	00.00	0.10	11.0	32	•	••••	• •	3.0	17	0.4	8.3	5	108	126	211
	8/28/62	16	0.10	0.02	0.20	0.11	30	•••••	0,1	0.00	4.0	19	0.3	8.3	0	108	120	203
	9/5/62	17	0,15	0.02	0.30	9.2	31	• • •	0.5	0.00	3.0	25	1.2	6.7	0	94	116	194
	1/30/63	0	0.10	0.10	0.25	12.0	37	:	0.9	00°0	8.0	20	0.3	7.8	0	126	140	235
	2/20/63	0	0.13	0,10	0.20	11.0	34	•	1,2	00.00	7.0	23	0.2	1.9	0	116	128	211
	3/19/63	0	0.10	0,10	0.25	11.0	33	• (1.6	0.00	8.0	24	0.4	7.8	0	112	128	213
	4/10/63 3/10/64		0,10	0.05	0.10	6.8 11.0	24 43	2°0	2.1	00.00	3.0	30	1.4	7.7	0 0	13.2	88 154	144 276
	-0 / DT / D	>		5	****		2	0	•	00.00		2	0.4		5	701	#0T	017
31	3/10/64	0	0.05	0.06	0.32	6°.7	29	2.0	1.1	0.00	8,0	15	0.3	7.8	0	96	112	189
32	3/2/64	63	0.40	0.08	1,20	7.3	38	14.0	3.9	0.05	5.0	32	2.2	7.5	0	125	126	302
34	4/20/63	ß	:	0.10	0,15	6.3	19	2.0	•	÷	4.0	19	1.2	7.2	0	48	74	118
35	2/27/64	1	0.05	0.04	0,16	19,0	82	6.0	4,1	00.00	11.0	34	1.1	7.8	0	246	286	470
Menomi	nee County, ch.																	
36 (a)	1/24/63	0	0,10	0.10	0.20	22.0	69	•	1.0	0.00	10.0	29	1.1	7.7	0	240	262	403
	2/27/63	0	0.07	0.05	0.20	21.0	68	••••	1.3	00*0	10.0	24	1.1	7.9	0	234	256	422
	3/28/63	0 0	0.10	0.05	0.20	8.7	31	3.0	2°3	0.00	5.0	20	1.3	7.7	0 (100	114	199
	3/2/04	þ	10.0	60°0	11.0	23.0	0	°°2	° °	0,00	0.0	C 7	1.4	1.1	Э	242	260	389
36 (b)	3/2/64	0	0.07	0.04	0*01	19.0	55	3.5	2.0	0.01	5.0	23	1,9	7.7	0	188	216	360
36 (c)	3/2/64	1	0.07	0.05	0.21	27.0	66	10.0	0.5	0.00	0°6	25	1.5	7.6	0	254	276	451
37	4/16/63	4	:	0.10	0,10	7.8	26	2.0	•	•••••	1.0	13	1.4	7.5	0	74	96	151
	2/27/64	1	0,14	0.05	0.50	19.0	81	1.5	0.3	00.00	8.0	29	0.9	7.5	0	250	280	451
38	4/16/63	0	:	0.10	0,15	6.3	23	2.0	:	:	2.0	19	1.2	7.1	0	58	84	131
39	4/16/63	8	•	0.10	0,10	9.2	26	3.5	:	:	2.0	23	1.1	7.2	0	70	104	149
	2/24/64	0	0.14	0.04	0.43	41.0	91	14.0	1.1	00.00	13.0	45	2.8	7.6	0	348	400	634
40	4/16/63	1	:	0.10	0.05	8,3	20	2.5	••••	•	2.0	21	1.1	7.3	0	58	84	131

Table 11. --Continued

3Ž

d d
e
3
d l
d
- G
ň
Y
- i -
· ·
- i -
-
63
1
ĩ.

County	y, state, n number,	Temper- ature	Al	Cu	F.e	Mg^++	Ca ⁺⁺	c1-	NO3-	NO2	S102	SO4	Tannin and lignin	q Hq	Phenol- hthalein lkalinity	Total alka- linity	Total hard- ness	Conductivity (micromhos/cm. ³ at 18° C.)
NII D		° C.	p.p.m.	P.p.m.	P.p.a.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.		P.p.u	. as CaC	03	
41	4/16/63	4		0.08	0.10	14.0	40	2.5	:	:	1.0	32	1.2	7.6	0	116	156	230
4	2/24/84	0	60.09	0.05	0.23	20.0	66	2.5	0.3	0.00	12.0	24	1.3	7.9	0	222	252	403
4.0	4/16/63	4	:	01.0	0.10	9.7	43	3.0	•	•	1.0	22	1.3	7.7	0	122	148	235
2	2/24/64	0	0.08	0.04	0.12	20.0	68	7.0	0.7	0.00	12.0	32	1.2	7.8	0	224	254	418
43	2/24/64	0	0.07	0.07	0.12	0.11	37	3.5	0.5	0.00	10.0	28	2.5	7.4	0	114	136	238
Marine	tte County, s.																	
44	2/10/64	0	0.06	0,09	0.10	0.11	44	1.5	1.6	00*00	11.0	15	0.2	7.8	0	144	154	261
Oconto	County, W1	°																
45	2/10/64	1	0.14	0.04	0.22	12.0	47	11.0	:	00*0	7.0	27	14.0	7.2	0	138	168	302
Door C	ounty, Wis.																	
47	4/12/63	e7			•	26,0	50	•	•	••••	•	• • •	•	7.8	0	210	232	374
	2/24/64	0	0.02	0.07	0.01	32.0	63	2.0	2.3	00°0	4.0	30	1.0	8.0	0	258	288	442
48	4/12/63	7	•	•	• •	27.0	57	- t - - (• •	•••	- C - U	••••	•••	7.9	00	244	256	408
	2/24/64	0	0.04	0.10	0.13	31.0	65	3°2	4 °4	T0°0	0.0	° °	т.•т	n • •	>	3		
49	4/12/63 2/24/64	r 0	0.03	0.06	0.03	24.0 34.0	45 48	5.0	1.2	0.00	6.0	29	0.8	8.0 8.1	00	230	212	340 413
C L	110100	t				0 26	5						•	7.9	0	226	262	416
De	4/12/63 2/24/64		0.00	0.07	0.10	31.0	62	4.0	5.0	0.00	6.0	28	6*0	7.9	0	246	282	442
[5	4 /1 2 / 63	7			•	30.0	63	•	•	• • •	•	•	* * *	8.0	0	240	282	446
1	2/24/64	T	0.10	0.06	0.23	33.0	70	3.5	2.2	0.00	10.0	53	1.1	8,0	0	250	308	490
Kewaun W1	ee County, s.																	
53	2/10/64	0	0.04	0.06	0.02	35.0	74	6.0	3.6	0.01	10.0	62	0.9	7.5	00	272	328	518 499
	3/30/64 4/16/64	с I	• • • •	0.06	0.16	35.0 31.0	67 70	5°5	5 N	0.01	0.1	99	1,6	8.0	00	226	302	480
54	2/10/64	0	0.03	0*06	0.13	34,0	72	9,5	4.3	0.02	10.0	60	1.2	7.8	0	262	318	538

D.
0
3
É.
ى ھە
- H
0
C
1
- 1
_
_
e
g
E-

Temper- Al Cu Fe Mg ⁺⁺ Ca ⁺⁺ Cl ⁻ NO ₃ - ature	° C. P.p.m. P.p.m. P.p.m. P.p.m. P.p.m. P.p.m.	ty,	54 2 0,02 0,09 0,14 33,0 70 7.5 4,2	ty,	63 11 0.09 0.11 11.0 42 14.0	63 11 0.08 0.11 12.0 40 9.5
NO2 ⁻ S102	P.p.m. P.p.n		0.01 9.5		··· 6.c	5.0
SO4 ⁼	1. P.p.m.		67		31	14
Tannin and lignin	P.p.m.		0°0		e 4	:
pH p a			7.9		8.0	8.0
Phenol- hthalein lkalinity	P.p.m		0		0	0
Total 1 alka- 1 linity 1	as caco.		248		126	134
Fotal lard- (312		150	150
onductiv licromhos at 18° C			518		269	254

Concentrations of magnesium, calcium, chlorides, total alkalinity, and total hardness, and values of pH and conductivity generally varied inversely with the flow. They were lowest during spring runoff and heavy rains, and highest during low flow in late summer and the colder periods of winter. Exceptions were the Ahnapee and Pensaukee Rivers, tributaries to Lake Michigan, where calcium, total alkalinity, total hardness, and conductivity decreased from late spring and summer to lowest values in August and September when flows were stable or slowly receding.

Chlorides varied more in tributaries to Lake Superior than in tributaries to Lake Michigan. In the Lake Superior tributaries, chlorides ranged from 0.0 to 540.0 p.p.m., usually 0.5 to 5.0 p.p.m. The extremely high value of 540.0 p.p.m. was recorded in the Marengo River, a major tributary of the Bad River, on February 10, 1964, when the flow was low. During more usual flows, chloride concentrations there were 1.0 to 1.5 p.p.m. Other tributaries of the Bad River did not have high chloride concentrations. A high chloride value of 6.0 p.p.m. also was found at one station on the Bad River below the confluence of the Marengo River on February 10. 1964.

High concentrations of chloride also were recorded in Scales Creek (287.0 p.p.m.), a tributary of the Traprock River, and Hill Creek (55.0 p.p.m.) of the Lake Superior drainage. The high chloride values in these streams did not appear during low flow. The two creeks, which drain opposite sides of the same ridge, may be affected by copper mining in the area.

Concentrations of chlorides were higher than usual on a few streams in Ontonagon and Gogebic Counties of the Lake Superior drainage in late winter during periods of low flow. Magnesium, calcium, total hardness, and conductivity values also were high when the chloride content was high.

The range for chlorides was 0.7 to 25.0 p.p.m., usually 1.0 to 14.0 p.p.m. in Lake Michigan tributaries. The high value of 25.0 p.p.m. was obtained at one station on the Rapid River. The water at this station was affected by discharge of waste from a milkprocessing plant located upstream. Above this plant the chloride concentration was lower.

Nitrites were found at a few stations.

All streams were alkaline with the exception of Five Mile Creek (pH 6.9), Mud Lake Inlet (pH 6.8), Mud Lake Outlet (pH 6.8), and Rice Lake Outlet (pH 6.9), tributaries to Lake Superior, and the upper portion of Werners Creek (pH 6.7), a tributary to the Whitefish River that flows into Lake Michigan. These streams are small and have flows less than $1.0 \text{ m.}^3/\text{sec.}$ (35 c.f.s.).

The pH was lowest during the spring runoff when streams that normally are alkaline may become acid for short periods. The pH slowly rose to a peak in August or September. With the onset of winter, the pH fell until spring. The pH may be high when flows are extremely low in late winter.

Phenolphthalein alkalinity was seldom found in Lake Superior tributaries. It was detected when flows were low in late winter and late summer in Seven Mile Creek and Rock, Falls, Otter, Pilgrim, and Marengo Rivers.

Ahnapee and Pensaukee Rivers of Lake Michigan had phenolphthalein alkalinity from April to November, and it was present in some samples from the Ford River, Days River, and Marblehead Creek.

Temperature records for many of the streams discussed in this report are available from the Bureau of Commercial Fisheries Biological Station at Marquette, Mich., for dates other than those shown on the tables.

CAUSES OF CHANGES IN WATER QUALITY

Water quality of the streams changed throughout a year and from year to year. The values of the various measurements varied with the flow, temperature, and season of the year.

The quality of stream water was influenced by various natural and manmade causes. Natural factors that affected the water quality in a given area were flow of the stream, elevation of the water table, turbulence, shade from vegetation, and variable influences of tributary streams. The water quality also was influenced by the physical and chemical characteristics of the ground topography of the stream bed and drainage. Man affected the water quality through industrial wastes, domestic sewage, changes in land use, and impoundments of water behind dams.

LITERATURE CITED

- AMERICAN PUBLIC HEALTH ASSOCIATION. 1960. Standard methods for the examina
 - tion of water and wastewater. 11th ed. American Public Health Association, 626 pp.
- APPLEGATE, VERNON C., JOHN H. HOWELL, JAMES W. MOFFETT, B. G. H. JOHNSON, and MANNING A. SMITH.
 - 1961. Use of 3-trifluormethyl-4-nitrophenol as a selective sea lamprey larvicide. Great Lakes Fish. Comm., Tech. Rep. 1, 35 pp.

BROWN, C. J. D.

1944. Michigan streams--their lengths, distribution and drainage areas. Mich. Dep. Conserv., Inst. Fish. Res., Misc. Publ. 1, 21 pp. HACH CHEMICAL COMPANY.

- 1963. Hach DR colorimeter methods manual, 4th ed., Ames, Iowa, 102 pp.
- HOWELL, JOHN H., and WILLMAN M. MAR-OUETTE.
 - 1962. Use of mobile bioassay equipment in the chemical control of the sea lamprey. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish, 418, iv + 9 pp.

KANAYAMA, RICHARD K.

1963. The use of alkalinity and conductivity measurements to estimate concentrations of 3-trifluormethyl-4-nitrophenol required for treating lamprey streams. Great Lakes Fish. Comm., Tech. Rep. 7, 10 pp.

- SMITH, STANFORD H.
 - 1962. Temperature correction in conductivity measurements. Limnol. Oceanogr. 7(3): 330-334.
- U.S. GEOLOGICAL SURVEY.
 - 1964. Compilation of records of surface waters of the United States, October 1950 to September 1960. Part 4. St. Lawrence River basin, U.S. Geological Survey, Water-Supply Pap. 1727, p. 53.

APPENDIX

STREAMS AND SAMPLING LOCATIONS

(*Designates the stream where more than one location was sampled)

Lake Superior:

- Chippewa County, Mich .:
- 1. Waiska River M-28 bridge, T. 46 N., R. 2 W., on south line of sec. 15.
- Pendills Creek Lake Shore Drive, T. 47 N., R. 4 W., sec. 28.
- 3. Grants Creek Lake Shore Drive, T. 47 N., R. 5 W., sec. 13.
- 4. Halfaday Creek Lake Shore Drive bridge, T. 47 N., R. 5 W., sec. 14.
- 5. Naomikong Creek Lake Shore Drive, T. 47 N., R. 5 W., sec. 19.
- 6. Ankodosh Creek Lake Shore Drive, T. 47 N., R. 6 W., sec. 14.
- 7. Roxbury Creek East and West Road bridge, T. 47 N., R. 6 W., sec. 14.
- 8. Galloway Creek M-123 bridge, T. 48 N., R. 6 W., sec. 29.
- *9. Tahquamenon River -
 - (a) M-123 bridge, T. 48 N., R. 6 W., sec. 15;
 - (b) M-117 bridge, T. 46 N., R. 10 W., on east line of sec. 23.
- 10. Betsy River Wire Road bridge, T. 49 N., R. 6 W., sec. 3.
- Luce County, Mich .:
- 11. Little Two Hearted River Fisher Bridge, T. 49 N., R. 9 W., sec. 12.
- *12. Two Hearted River -
 - (a) weir site, T. 50 N., R. 9 W., sec. 27;
 - (b) East Branch East Branch bridge, T. 49 N., R. 9 W., sec. 18;
 - (c) Highbridge on County Road 407, T. 49 N., R. 10 W., sec. 31;
 - (d) North Branch County Road 418 bridge, T. 58 N., R. 11 W., sec. 1;
 - (e) South Branch Hemlock Dam, T. 48 N., R. 11 W., sec. 21;
 - (f) Dawson Creek County Road 412
- bridge, T. 48 N., R. 10 W., sec. 5. 13. Dead Sucker River Grand Marais truck trail, T. 49 N., R. 12 W., sec. 1.
- Alger County, Mich .:
- *14. Sucker River -
 - (a) Graham Bridge on County Road 703, T. 49 N., R. 13 W., on east line of sec. 33;
 - (b) School Forest bridge, T. 49 N., R. 13 W., sec. 2;
 - (c) Grand Marais Creek County Road 700 bridge, T. 49 N., R. 13 W., sec. 10.
 - 15. Hurricane River County Road 700 bridge, T. 49 N., R. 15 W., sec. 10.

- 16. Sullivans Creek County Road 700 bridge, T. 49 N., R. 15 W., sec. 9.
- 17. Seven Mile Creek old bridge, T. 49 N., R. 16 W., sec. 11.
- Mosquito River Mosquito Falls, T. 48 N., R. 17 W., sec. 31.
- 19. Miners River U.S.F.S. Road 2489 bridge, T. 47 N., R. 18 W., sec. 10.
- 20. Anna River M-28 bridge, T. 46 N., R. 19 W., sec. 11.
- 21. Furnace Creek M-28 bridge, T. 47 N., R. 19 W., sec. 29.
- 22. Five Mile Creek U.S.F.S. Road 2491 bridge, T. 47 N., R. 19 W., sec. 18,
- 23. Au Train River first bridge below lake, T. 46 N., R. 20 W., sec. 5.
- *24. Rock River -
 - (a) M-28 bridge, T. 47 N., R. 21 W., sec. 15:
 - (b) U.S.F.S. Road 2279 bridge, T. 46 N., R. 21 W., sec. 15.
- *25. Deer Lake -(a) outlet, M-28 bridge, T. 47 N., R. 21 W., sec. 8;
 - (b) inlet, T. 47 N., R. 21 W., sec. 7.
 - 26. Laughing Whitefish River bridge, T. 47 N., R. 22 W., sec. 3.
- 27. Sand River County Road 480 bridge, T. 47 N., R. 23 W., on south line of sec. 14.
- Marquette County, Mich .:
- *28. Chocolay River -
 - (a) U.S. 41 bridge, T. 46 N., R. 24 W., sec. l;
 - (b) Big Creek U.S. 41 bridge, T. 47 N., R. 24 W., sec. 16;
 - (c) Cedar Creek U.S. 41 bridge, T. 47 N., R. 24 W., sec. 17;
 - (d) Cherry Creek U.S. 41 bridge, T. 47 N., R. 24 W., sec. 8.
- 29. Carp River 100 yards above M-28 bridge, T. 48 N., R. 25 W., sec. 36.
- 30. Dead River County Road 550 bridge, T. 48 N., R. 25 W., sec. 10.
- Harlow Creek County Road 550 bridge, T. 49 N., R. 25 W., sec. 19.
- 32. Little Garlic River County Road 550 bridge, T. 49 N., R. 26 W., sec. 3.
- *33. Big Garlic River -(a) County Road 550 bridge, T. 50 N., R. 26 W., sec. 33;
 - (b) Wilson Creek above junction of Sawmill Creek, T. 50 N., R. 26 W., sec. 29;

- *33. Big Garlic River (cont.) (c) Sawmill Creek - County Road 550
 - bridge, T. 50 N., R. 26 W., sec. 29. 34. Yellow Dog River - County Road 550
 - bridge, T. 51 N., R. 26 W., sec. 31. 35. Iron River - below Lake Independence.
 - T. 51 N., R. 27 W., sec. 13.
 - 36. Salmon Trout River County Road 550 bridge, T. 51 N., R. 28 W., sec. 1.
 - 37. Pine River County Road 550 bridge, T. 52 N., R. 28 W., sec. 21.
 - Little Huron River T. 52 N., R. 29 W., sec. 29.
 - 39. Huron River Big Eric's bridge, T. 52 N., R. 30 W., sec. 35.
 - Baraga County, Mich.:
 - 40. Ravine River Skanee Road bridge, T. 51 N., R. 31 W., sec. 4.
 - 41. Slate River Skanee Road bridge, T.51 N., R. 31 W., sec. 8.
 - 42. Silver River Skanee Road bridge, T. 51 N., R. 32 W., sec. 24.
 - 43. Falls River U.S. 41 bridge, T. 50 N., R. 33 W., sec. 5.
 - 44. Six Mile Creek U.S. 41 bridge, T. 50 N., R. 34 W., sec. 1.
 - Houghton County, Mich .:
 - *45. Sturgeon River -
 - (a) M-35 bridge, T. 51 N., R. 34 W., sec. 28;
 - (b) U.S. 41 bridge, T. 53 N., R. 33 W., sec. 4;
 - (c) West Branch Pelkie Road bridge, T. 51 N., R. 34 W., on east line of sec. 20;
 - (d) Otter River Pelkie Roadbridge, T. 51 N., R. 34 W., on east line of sec. 8.
 - 46. Pilgrim River U.S. 41 bridge, T. 54 N., R. 33 W., sec. 5.
 - *47. Traprock River -
 - (a) below junction with Scales Creek, T. 56 N., R. 32 W., on south line of sec. 16;
 - (b) above junction with Scales Creek, T. 56 N., R. 32 W., sec. 10;
 - (c) Scales Creek bridge, T. 56 N., R. 32 W., sec. 9.
 - 48. McCallum Creek bridge, T. 55 N., R. 32 W., sec. 20.
 - *49. Mud Lake -
 - (a) inlet, bridge, T. 55 N., R. 32 W., sec. 34;
 - (b) outlet, bridge, T. 55 N., R. 32 W., sec. 25.
 - 50. Rice Lake outlet, bridge, T. 55 N., R. 31 W., sec. 20.
 - 51. Traverse River Gay-Lake Linden Road bridge, T. 56 N., R. 31 W., sec. 28.
 - 52. Smith Creek bridge, T. 56 N., R. 34 W., sec. 13.
 - 53. Seven Mile Creek M-203 bridge, T. 56 N., R. 34 W., sec. 24.

- 54. Bear Creek M-203 bridge, T. 56 N., R. 34 W., sec. 23.
- 55. Lily Creek M-203 bridge, T. 56 N., R. 34 W., sec. 34.
- 56. Boston Creek M-203 bridge, T. 56 N., R. 34 W., sec. 34.
- 57. Schlotz Creek mouth, T. 55 N., R. 34 W., sec. 8.
- 58. Salmon Trout River mouth, T. 55 N., R. 35 W., sec. 20.
- 59. Graveraet River mouth, T. 55 N., R. 36 W., sec. 35.
- 60. Elm River bridge on section line, T. 54 N., R. 36 W., sec. 34.
- Keweenaw County, Mich.:
- 61. Tobacco River mouth, T. 56 N., R. 30 W., sec. 20.
- 62. Little Gratiot River old weir site, T. 58 N., R. 29 W., sec. 31.
- 63. Eliza Creek mouth, T. 57 N., R. 30 W., sec. 6.
- 64. Gratiot River bridge, T. 57 N., R. 32 W., on east line of sec. 19.
- 65. Hill Creek mouth, T. 57 N., R. 33 W., sec. 14.
- Ontonagon County, Mich .:
- *66. Misery River
 - (a) bridge, T. 53 N., R. 37 W., sec. 15;
 (b) North Branch mouth, T. 53 N., R. 37 W., sec. 25;
 - (c) above junction with North Branch, T. 53 N., R. 37 W., sec. 25.
- 67. Firesteel River bridge, T. 52 N., R. 38 W., sec. 7.
- Flintsteel River bridge, T. 52 N., R. 39 W., sec. 14.
- *69. Ontonagon River -
 - (a) Victoria Bridge, T. 50 N., R. 39 W., sec. 20;
 - (b) West Branch Victoria Dam, T. 50 N., R. 39 W., sec. 29;
 - (c) Middle Branch mouth, T. 50 N., R. 39 W., sec. 27;
 - (d) East Branch mouth, T. 50 N., R. 39 W., sec. 27;
 - (e) Jumbo River gravel pit, T. 47 N., R. 37 W., sec. 22;
 - (f) Middle Branch M-28 bridge, T. 47 N., R. 38 W., sec. 8;
 - (g) Trout Creek U.S.F.S. Road 208 bridge, T. 48 N., R. 38 W., sec. 35.
- 70. Potato River M-64 bridge, T. 52 N., R. 40 W., sec. 33.
- 71. Cranberry River M-64 bridge, T. 51 N., R. 40 W., sec. 5.
- 72. Iron River M-107 bridge, T. 51 N., R. 42 W., sec. 12.
- 73. Little Iron River M-107 bridge, T. 51 N., R. 42 W., sec. 11.
- 74. Union River M-107 bridge, T. 51 N., R. 42 W., sec. 15.
- Gogebic County, Mich .:
- 75. Presque Isle River M-28 bridge, T. 48 N., R. 44 W., sec. 23.

- 76. Black River bridge, T. 48 N., R. 46 W., on east line of sec. 32.
- 77. Montreal River County Road 505 bridge, T. 48 N., R. 49 W., sec. 15. Ashland County, Wis.:
- *78. Bad River -
 - (a) U.S. 2 bridge, T. 48 N., R. 3 W., sec. 25;
 - (b) T. 47 N., R. 3 W., sec. 1;
 - (c) Highway 169 bridge, T. 45 N., R. 2 W., sec. 32;
 - (d) White River mouth, T. 48 N., R. 3 W., sec. 26;
 - (e) White River Highway 13 bridge, T. 47 N., R. 4 W., sec. 26;
 - (f) Marengo River Highway 13bridge, T. 46 N., R. 4 W., sec. 36;
 - (g) Marengo River County Road C bridge, T. 46 N., R. 4 W., sec. 31;
 - (h) Marengo River bridge, T. 46 N., R. 3 W., sec. 33;
 - (i) Brunsweiler River Highway 13 bridge, T. 45 N., R. 4 W., sec. 1;
 - (j) Tyler Forks, T. 45 N., R. 2 W., sec. 16;
 - (k) Potato River Highway 169 bridge, T. 46 N., R. 1 W., on east line of sec. 17.
- Bayfield County, Wis .:
- 79. Fish Creek (Eileen Township) U.S. 2 bridge, T. 47 N., R. 5 W., sec. 2.
- Sioux River 1 mile above Highway 13, T. 49 N., R. 4 W., sec. 17.
- 81. Sand River Highway 13 bridge, T. 51 N., R. 5 W., sec. 14.
- 82. Siskiwit River bridge, T. 51 N., R. 6 W., sec. 35.
- Cranberry River Highway 13 bridge, T. 50 N., R. 7 W., sec. 8.
- 84. Flag River bridge, T. 50 N., R. 8 W., on south line of sec. 27.
- Iron River old Highway 13 bridge, T. 49 N., R. 9 W., sec. 4.
- Reefer Creek old Highway 13 bridge, T. 49 N., R. 9 W., sec. 4.
- 87. Fish Creek (Orienta Township) old Highway 13 bridge, T. 49 N., R. 9 W., sec. 5.
- Douglas County, Wis .:
- *88. Brule River -
 - (a) County Road FF bridge, T. 48 N., R. 10 W., on south line of sec. 15;
 - (b) County Road B bridge, T. 47 N., R. 10 W., sec. 34;
 - (c) County Road S bridge (Stones Bridge), T. 46 N., R. 10 W., sec. 30;
 - (d) Nebagamon Creek bridge, T. 47 N., R. 10 W., sec. 27.
- Poplar River Highway 13 bridge, T. 48
 N., R. 11 W., sec. 7.
- 90. Middle River Highway 13 bridge, T. 48 N., R. 12 W., sec. 12.
- 91. Amnicon River Highway 13 bridge, T. 48 N., R. 12 W., sec. 8.

- *92. Nemadji River
 (a) bridge, T. 47 N., R. 14 W., sec. 4;
 (b) Black River bridge, T. 47 N., R.
 14 W., on west line of sec. 4.
- St. Louis County, Minn.:
- 93. St. Louis River Highway 23 bridge, T. 48 N., R. 15 W., sec. 7.
- Lake County, Minn .:
- 94. Stewarts River U.S. 61 bridge, T. 53 N., R. 10 W., sec. 29.
- 95. Split Rock River U.S. 61 bridge, T. 54 N., R. 8 W., sec. 7.
- 96. Baptism River U.S. 61 bridge, T. 56. N., R. 7 W., sec. 15.
- Cook County, Minn.
- 97. Temperance River U.S. 61 bridge, T. 59 N., R. 4 W., sec. 32.
- 98. Devils Track River U.S. 61 bridge, T. 61 N., R. 1 E., sec. 13.
- Arrowhead River (Brule River) U.S.
 61 bridge, T. 62 N., R. 3 E., sec. 27.
- Lake Michigan:
 - Mackinac County, Mich .:
 - *1. Brevort River -
 - (a) U.S. 2 bridge, T. 41 N., R. 5 W., sec. 9;
 - (b) Silver Creek Federal Forest Highway 2 bridge, T. 42 N., R. 5 W., on south line of sec. 17;
 - (c) Little Brevort River Federal Forest Highway 2 bridge, T. 42 N., R. 6 W., sec. 24.
 - Cut River bridge above U.S. 2, T. 42 N., R. 6 W., sec. 7.
 - Paquin River U.S. 2 bridge, T. 42 N., R. 7 W., sec. 6.
 - 4. Davenport Creek U.S. 2 bridge, T. 42 N., R. 8 W., sec. 2.
 - Hog Island Creek U.S. 2 bridge, T. 43 N., R. 8 W., sec. 34.
 - *6. Black River -
 - (a) old weir site, T. 43 N., R. 8 W., sec. 30;
 - (b) East Branch mouth, T. 43 N., R. 8 W., sec. 29.
 - *7. East Mile Creek -(a) U.S. 2 bridge, T. 43 N., R. 9 W., sec. 22;
 - (b) West Mile Creek U.S. 2 bridge, T. 43 N., R. 9 W., sec. 21.
 - *8. Millecoquins River -
 - (a) County Road 930 bridge, T. 43 N., R. 10 W., sec. 14;
 - (b) Doe Creek M-117 bridge, T.43 N., R. 10 W., on west line of sec. 4;
 - (c) Furlong Creek M-117 bridge, T. 43 N., R. 10 W., on east line of sec. 8.
 - Schoolcraft County, Mich.:
 - 9. Milakokia River County Road P 432 bridge, T. 41 N., R. 13 W., sec. 2.
 - Bulldog Creek County Road P 432 bridge, T. 41 N., R. 13 W., sec. 4.

- Gulliver Lake Outlet first bridge below lake, T. 41 N., R. 14 W., sec. 2.
- *12. Marblehead Creek -(a) U.S. 2 bridge, T. 42 N., R. 15 W., sec. 36;
 - (b) Nelson Creek U.S. 2 bridge, T. 42 N., R. 14 W., sec. 32,
- Manistique River U.S. 2 bridge, T. 41 N., R. 16 W., sec. 12.
- 14. Thompson Creek U.S. 2 bridge, T. 41 N., R. 16 W., sec. 32.
- 15. Johnson Creek County Road P 435 bridge, T. 40 N., R. 17 W., sec. 1.
- *16. Deadhorse Creek -
 - (a) County Road P 435 bridge, T. 40 N., R. 17 W., sec. 14;
 - (b) Snyder Creek County Road P 435 bridge, T. 40 N., R. 17 W., sec 12.
 - 17. Bursaw Creek County Road P 435 bridge, T. 40 N., R. 17 W., sec. 23.
 - Parent Creek County Road P 435 bridge, T. 39 N., R. 17 W., sec. 4.
 - Poodle Pete Creek County Road P435 bridge, T. 39 N., R. 17 W., sec. 8.
- Delta County, Mich .:
- 20. Valentine Creek County Road 483 bridge, T. 40 N., R. 18 W., sec. 28.
- 21. Little Fishdam River U.S. 2 bridge, T. 41 N., R. 18 W., sec. 33.
- 22. Fishdam River U.S. 2 bridge, T. 41 N., R. 18 W., sec. 32.
- *23. Sturgeon River -
 - (a) U.S. 2 bridge, T. 40 N., R. 19 W., sec. ó;
 - (b) Palos Camp, T. 43 N., R. 19 W., sec. 33;
 - (c) U.S.F.S. Road 2259 bridge, T. 44 N., R. 19 W., sec. 33;
 - (d) Graham Dam, T. 44 N., R. 20 W., sec. l.
- 24. Ogontz River U.S. 2 bridge, T. 41 N., R. 20 W., sec. 34.
- 25. Squaw Creek County Road 513 bridge, T. 39 N., R. 22 W., sec. 12.
- 26. Hock Creek County Road 513 bridge, T. 40 N., R. 21 W., sec. 7.
- *27. Whitefish River -
 - (a) U.S. 2 bridge, T. 41 N., R. 21 W., sec. 28;
 - (b) East Branch U.S.F.S. Road 2236 bridge, T. 43 N., R. 20 W., sec. 30;
 - (c) West Branch County Road 444 bridge, T. 43 N., R. 21 W., sec. 9;
 - (d) Haymeadow Creek County Road 509 bridge, T. 42 N., R. 20 W., sec. 19;
 - (e) Dexter Creek bridge, T. 44 N., R. 21 W., on west line of sec. 13;
 - (f) Dexter Creek bridge, T. 45 N., R. 21 W., on south line of sec. 30;
 - (g) Scotts Creek bridge, T. 45 N., R. 22 W., sec. 35;
 - (h) Scotts Creek M-67 bridge, T. 44 N., R. 21 W., sec. 19;

- (i) Werner Creek County Road 533 bridge, T. 44 N., R. 23 W., sec. 2;
- (j) Werner Creek mouth, T. 44 N., R. 21 W., sec. 30.
- *28. Rapid River -
 - (a) U.S. 2 bridge, T. 41 N., R. 21 W., on south line of sec. 20;
 - (b) U.S. 41 bridge, T. 42 N., R. 21 W., sec. 19.
- 29. Tacoosh River U.S. 41 bridge, T. 41 N., R. 21 W., sec. 19.
- Days River U.S. 2 bridge, T. 40 N., R. 22 W., sec. 2.
- 31. Escanaba River T. 39 N., R. 23 W., sec. 1.
- 32. Portage Creek M-35 bridge, T. 38 N., R. 23 W., sec. 1.
- *33. Ford River -
 - (a) M-95 bridge, T. 43 N., R. 30 W., sec. 17;
 - (b) 1/4 mile above mouth, T. 38 N., R. 23 W., sec. 16;
 - (c) County Road 581 bridge, T. 43 N., R. 28 W., sec. 22;
 (d) bridge, T. 41 N., R. 24 W., sec.
 - (d) bridge, T. 41 N., R. 24 W., sec. 19.
 - 34. Sunny Brook M-35 bridge, T. 38 N., R. 23 W., sec. 20.
 - 35. Bark River M-35 bridge, T. 37 N., R. 24 W., sec. 27.
- Menominee County, Mich .:
- *36. Cedar River -
 - (a) weir site, T. 35 N., R. 25 W., sec. 11;
 - (b) County Road 551 at McCarty Bridge, T. 37 N., R. 25 W., on east line of sec. 22;
 - (c) U.S. 2 bridge, T. 38 N., R. 26 W., sec. 8.
 - 37. Sugar Creek M-35 bridge, T. 34 N., R. 25 W., sec. 4.
- 38. Rochereau Creek M-35 bridge, T. 34 N., R. 25 W., sec. 31.
- 39. Johnson Creek M-35 bridge, T. 33 N., R. 26 W., sec. 1.
- 40. Bailey Creek M-35 bridge, T. 33 N., R. 26 W., sec. 14.
- 41. Beattie Creek M-35 bridge, T. 33 N., R. 26 W., sec. 28.
- 42. Springer Creek M-35 bridge, T. 32 N., R. 26 W., sec. 7.
- 43. Menominee River T. 32 N., R. 28 W., sec. 14.
- Marinette County, Wis.:
- 44. Peshtigo River County Road Wbridge, T. 31 N., R. 21 E., sec. 28.
- Oconto County, Wis .:
- 45. Oconto River U.S. 141 bridge, T. 28 N., R. 20 E., sec. 34.
- 46. Pensaukee River U.S. 141 bridge, T. 27 N., R. 20 E., sec. 26.
- Door County, Wis .:
- 47. Ephraim Creek mouth, T. 31 N., R. 27 E., sec. 23.

- 48. Hibbards Creek mouth, T. 29 N., R. 27 E., sec. 14.
- 49. Whitefish Bay Creek mouth, T. 28 N., R. 27 E., sec. 15.
- Lily Bay Creek County Road Tbridge, T. 27 N., R. 27 E., sec. 6.
 Bear Creek - mouth, T. 26 N., R. 26 E.,
- 51. Bear Creek mouth, T. 26 N., R. 26 E., sec. 28.
- Kewaunee County, Wis .:
- 52. Ahnapee River County Road J bridge, T. 26 N., R. 25 E., on south line of sec. 29.
- 53. Three Mile Creek Highway 42 bridge, T. 24 N., R. 25 E., sec. 10.
- 54. Kewaunee River County Road F bridge, T. 23 N., R. 24 E., sec. 23.
- Manitowoc County, Wis.:
- 55. East Twin River Highway 147 bridge, T. 20 N., R. 24 E., sec. 4.
- Manistee County, Mich.:
- *56. Little Manistee River -
 - (a) M-37 bridge, T. 19 N., R. 13 W., sec. 11;
 - (b) bridge, T. 21 N., R. 16 W., sec. 21.

MS. #1608

.

Created in 1849, the Department of the Interior--a department of conservation--is concerned with the management, conservation, and development of the Nation's water, fish, wildlife, mineral, forest, and park and recreational resources. It also has major responsibilities for Indian and Territorial affairs.

As the Nation's principal conservation agency, the Department works to assure that nonrenewable resources are developed and used wisely, that park and recreational resources are conserved for the future, and that renewable resources make their full contribution to the progress, prosperity, and security of the United States--now and in the future.

UNITED STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE BUREAU OF COMMERCIAL FISHERIES WASHINGTON, D.C. 20240

OFFICIAL BUSINESS

Return this sheet to above address, if you do <u>NOT</u> wish to receive this material ____, or if change of address is needed ____ (in dicate change including ZIP Code). POSTAGE AND FEES PAID U.S. DEPARTMENT OF-THE INTERIOR