DISTRIBUTION OF FISH EGGS AND LARVAE, TEMPERATURE, AND SALINITY IN THE GEORGES BANKGULF OF MAINE AREA, 1953

SPECIAL SCIENTIFIC REPORT-FISHERIES №. 398

DISTRIBUTION OF FISH EGGS AND LARVAE, TEMPERATURE, AND SALINITY IN THE GEORGES BANK-GULF OF MAINE AREA, 1953

by
Robert R. Marak and John B. Colton, Jr.

United States Fish and Wildlife Service Special Scientific Report--Fisheries No. 398

Washington, D. C.
November 1961

CONTENTS

Page
Introduction 1
Collection of data 1
Cruise plan 1
Operation of Hardy Plankton Recorder 2
One-meter net tows 2
Laboratory examination of samples:
One-meter net tows 4
Hardy Plankton Recorder 4
Temperature and salinity 6
Drift bottles 6
Literature cited 12
FIGURES

1. Distribution of surface salinity and positions of l-meter net tows, Albatross I/l cruise no. 46, March 19 to April 2, 1953 2
2. Distribution of surface salinity and positions of 1 -meter net tows, Albatross $/ I /$ cruise no. 48 , April 2t to May 8, 1953 3
3. Distribution of surface salinity and positions of l-meter net tows, Albatross $/ / /$ cruise no. 50 , May 25 to June 3, 1953 3
4. Stages of development of haddock and cod eggs from fertilization to hatching 5
5. Traversing microscope used for examining recorder gauzes 6
6. Track of Albatross $/ I /$ cruise no. 46, (March 19 to April 2, 1953) giving positions for each gauze section of the surface Recorder 7
7. Track of Albatross III cruise no. 46, (March 19 to April 2, 1953) giving positions for each gauze section of the 10 -meter Recorder 7
8. Track of Albatross Ill cruise no. 48, (April 24 to May 8, 1953) giving positions for each gauze section of the surface Recorder 8
9. Track of Albatross III cruise no. 48, (April 24 to May 8, 1953) giving positions for each gauze section of the 10 -meter Recorder 8
10. Track of Albatross /I/ cruise no. 50, (May 25 to June 3, 1953) giving positions for each gauze section of the surface Recorder 9
11. Track of Albatross III cruise no. 50, (May 25 to June 3, 1953) giving positions for each gauze section of the 10 -meter Recorder 9
12. Distribution of surface temperature, Albatross $/ l /$ cruise no. 46 , March 19 to April 2, $1953 .$. 10
13. Distribution of surface temperature, Albatross $/ / / /$ cruise no. 48 , first coverage, April 24 to May 2, 1953 10
14. Distribution of surface temperature, Albatross $/ I /$ cruise no. 48 , second coverage, May 2 to 8 , 1953 11
15. Distribution of surface temperature, Albatross /II cruise no. 50, May 25 to June 3, 1953 11

TABLES

1. Species of fish eggs and larvae (with species code letters) caught during 1953, Albatross Ill cruise no. 46, March 19 to April 2; cruise no. 48, April 24 to May 8; cruise no. 50, May 25 to June 3 13
2. Date, time, and position for temperature and salinity records in relation to l-meter tows and Hardy Plankton Recorder gauze sections Albatross III cruise no. 46, March 19 to April 2, 1953 14
3. Date, time, and position for temperature and salinity records in relation to 1 -meter tows and Hardy Plankton Recorder gauze sections Albatross III cruise no. 48, April 24 to May 8, 1953 18
4. Date, time, and position for temperature and salinity records in relation to l-meter tows and Hardy Plankton Recorder gauze sections Albatrass Ill cruise no. 50, May 25 to June 3, 1953 24
5. Stages and sizes of fish eggs and larvae taken with 1 -meter net on Albatross $l l l$ cruise no. 46 , March 19 to April 2, 1953 28
6. Stages and sizes of fish eggs andlarvae taken with 1 -meter net on Albatross $/ / /$ cruise no. 48, April 24 to May 8, 1953 31
Page
7. Stages and sizes of fish eggs and larvae taken with 1 -meter net on Albotross I/I cruise no. 50, May 25 to June 3, 1953 34
8. Stages and sizes of fisheggs and larvae taken with the Hardy Recorder on Albatross //I cruise no. 46, March 19 to April 2, 1953 37
9. Stages and sizes of fisheggs and larvaetaken with the Hardy Recorder on Albatross lll cruise no. 48, April 24 to May 8, 1953 43
10. Stages and sizes of fisheggs and larvae taken with the Hardy Recorder on Albatross $/ I /$ cruise no. 50, May 25 to June 3, 1953 50
11. Gauze section data on Hardy Plankton Recorderstowed at surface and 10 meters, Albatross III cruise no. 46, March 19 to April 2, 1953. 57
12. Gauze section data on Hardy Plankton Recorderstowed at surface and 10 meters, Albatross III cruise no. 48, April 24 to May 8, 1953 59
13. Gauze section data on Hardy Plankton Recorderstowed at surface and 10 meters, Albatross III cruise no. 50, May 25 to June 3, 1953 61

DISTRIBUTION OF FISH EGGS AND LARVAE, TEMPERATURE, AND SALINITY IN THE GEORGES BANK-GULF OF MAINE AREA, 1953

by
Robert R. Marak ${ }^{2}$ and John B. Colton, Jr.
Fishery Research Biologists
Bureau of Commercial Fisheries
U. S. Fish and Wildlife Service
Woods Hole, Massachusetts

Abstract

Basic data on the distribution of fish eggs and larvae in the Georges Bank-Gulf of Maine area were collected on surveys made by the Bureau of Commercial Fisheries research vessel Albatross $/ I /$ during the spring of 1953. The data are presented in tabular and graphic form. The methods and operational procedures pertinent to these surveys are given. Plots and tables of surface temperature and salinity are also included.

INTRODUCTION

A program to study the early life history of haddock on Georges Bank, Browns Bank, and in the Gulf of Maine was started at the Bureau of Commercial Fisheries Biological Laboratory, Woods Hole, Massachusetts, in the spring of 1953. It was the purpose of this program to attempt to relate the pattern of drift of eggs and larvae to the success of the year class. Fish egg and larvae surveys were undertaken to locate centers of abundance of haddock eggs and larvae and to trace their movements during the early, and presumably critical, months of their existence in relation to time, space, and ecological conditions. The purposes of this report are to describe the methods used and to present basic data on the distribution of fish eggs and larvae, temperature, and salinity during the spring of 1953. To avoid confusion all young fish (prolarvae, postlarvae, juveniles) are referred to as larvae. A list of species of fish eggs and larvae (with species code letters used in the tables) collected during the surveys of 1953 is given in table 1.

Data for temperature and salinityobservations in relation to 1 -meter tows and Hardy Plankton Recorder gauze sections are given in tables 2 , 3 , and 4.

[^0]
COLLECTION OF DATA

Three cruises were made during the spring of 1953 by the Albatross III: cruise no. 46, March 19 to April 2; cruise no. 48, April 24 to May 8; and cruise no. 50, May 25 to June 3. The cruises were planned so the area of investigation would be covered twice in approximately 14 days to make possible the observation of any rapid changes that might affect the eggs and larvae.

The procedure involved continuous towing of Hardy Plankton Recorders (Hardy, 1936 and 1939), bathythermograph lowerings, surface temperature and salinity observations, driftbottle releases, and surface tows withal-meter net.

Cruise Plan

With the ship stopped, the number of the gauze division at the bottom of the tunnel was noted and the recorders lowered to the proper marks on the towing cables. A Loran fix was taken, and the ship was brought promptly to 10 knots (normal towing speed). Every hour a bathythermograph lowering was made and a surface temperature was taken by bucket thermometer. When time permitted, a water sample was taken for a salinity determination, concurrent with the surface-temperature observation. Drift bottles were released every 3 hours or approximately 30 miles apart. Twelve bottles were released at each station; 6 were ballasted with sand to float vertically with the necks just breaking the surface, thus minimizing the wind effect,
and the remainder unballasted. Positions of bottle releases and recoveries have been published by Bumpus and Day (1957). Every 12 hours, the ship was stopped, a fix taken, and both recorders checked. The highest number appearing on the gauze in the tunnel was noted, and the gauze wound manually to the next division. At this time, a surface tow was taken with a 1 -meter net. Every 48 hours, the gauze roll was removed, a new one loaded, and the paired towing straps replaced. Torsional fatigue rapidly reduced the breaking stress of the towing wire and paired straps and necessitated the precautions outlined. Details and specifications of the silk, wire rope, and so on, and methods of loading and handling the recorders can be obtained from the Oceanographic Laboratory, Scottish Marine Biological Association, Edinburgh, Scotland. Every 96 hours, 2 fathoms were cut from the outboard end of the towing cable, and the thimble replaced. After 8 days, the towing wires were turned end for end on the winch. At the end of 16 days, the towing wires were replaced.

Operation of the Hardy Plankton Recorder

One recorder was towed at the surface and one at 10 meters. A $1 / 2$-inch square nosepiece was used, and the propeller pitch was set for a gauze rate of roughly 2 inches per 5 miles of tow at an average towing speed of 10 knots. The gauze (60 meshes per inch silk) was made in 100 2-inch sections, allowing continuous towing
for 500 miles without reloading. The time neces sary to haul the recorders, advance or change the gauzes, take a l-meter net haul, and reset the recorders seldom exceeded $1 / 2$ hour.

One-Meter Net Tows

Qualitative samples of fish eggs and larvae for hatching and identification purposes were obtained by a l-meter net (No. O silk) towed on the surface (see figs. 1, 2, and 3) for 10-15 minutes at the slowest possible speed. The spawning seasons and size ranges of the eggs of haddock (Melanogrammus aeglefinus), cod (Gadus morhua), and witch flounder (Glyptocepholus cynoglossus) overlap. A few days before hatching, however, the pigment pattern characteristic of the larva appears, and the eggs of the three species can then be distinguished. A portion of the fish eggs was immediately separated from the other plankton and transferred to hatching jars placed in a constant-temperature bath maintained at approximately $8^{\circ} \mathrm{C}$. The remainder of the eggs, all larval fish, and a representative sample of other plankton were preserved in 5 -percent formalin.

The water in the hatching jars was changed once daily. The eggs were stirred and the temperature recorded three times a day. After the majority of the eggs had hatched, or reached a stage of development where they were readily identifiable, they were preserved in separate vials in 5 -percent formalin.

Figure 1.--Distribution of surface salinity and positions of 1-meter net tows, Albatross //I cruise no. 46, March 19 to April 2. 1953.

Figure 2.--Distribution of surface salinity and positions of 1 -meter net tows, Albatross //I cruise ne. 48, April 24 to May 8, 1953.

Figure 3.--Distribution of surface salinity and positions of 1-meter net tows, Albatross /// cruise no. 50, May 25 to June 3, 1953.

LABORATORY EXAMINATION OF SAMPLES

One-Meter Net Tows

At the completion of a cruise, the eggs and larvae collected in the surface hauls with the 1 -meter net were examined in detail. The latestage eggs and recently hatched larvae from the hatching jars were examined, and numbers and proportions of individuals of each species determined. All eggs preserved at the time of capture were measured, counted, and "staged", i.e., the stage of development determined. The larvae were counted and measured. Measurements of egg diameters and hatching length of the various species were made to the nearest 0.01 mm . with an ocular micrometer. The larger larvae were measured to the nearest millimeter. Some eggs were not staged because of their extreme opaqueness, and larvae in poor condition could not be accurately measured. The data for l-meter net tows taken on cruise nos. 46, 48, and 50 are included in tables 5-7.

Six stages, which divided the incubation period into approximately equal periods of time, were specified to enable us to estimate the age of eggs at various locations:

Stage I.--From fertilization to the formation of the early blastodermal cap.

Stage II.--From the completed blastodermal cap to the development of the segmentation cavity.

Stage III.--From the appearance of the early embryonic axis to the approach of the germinal ring to an equatorial position.

Stage IV.--From the equatorial position of the germinal ring to just before blastopore closure.

Stage V.--From blastopore closure (half circle) to $\overline{a l}$ most full circle (scattered pigmentation).

Stage VI.--From the formation of the characteristic pigment pattern to hatching.

Distinguishing features of embryonic development in the six stages and the age in hours and days for eggs developing at $38^{\circ} \mathrm{F}$. are shown in figure 4.

The species composition of eggs at each 1-meter net station served as a guide in determining the proportion of each of the species of eggs picked up by the recorders on runs in the general vicinity of these stations. Thus, if it were found that at a certain station 70 percent of the eggs were cod and 30 percent haddock, this ratio was used in the species allocation of eggs on the individual 2 -inch sections of gauze in this area. It was only necessary to do this for stages $I-V$ cod and haddock eggs, as
the stage VI eggs usually could be separated by pigmentation. This served as a check on the species composition as determined by the two sampling methods.

Little difficulty was encountered in the identification of other fish eggs. Their characteristic size, taxonomical and distributional (both in time and space) differences made separation relatively simple.

The identification of larval forms of fishoften was difficult because of the lack of definite pigment patterns at certain stages of development and because of the crushed condition of some specimens due to impact on the recorder gauzes. In the postlarval stages, especially of haddock, cod, and pollock, where the fish are undergoing a transition from the larval to the mature form, pigmentation patterns tend to fuse making identification extremely difficult. Larval fish from the time of hatching to about 10 mm . can usually be separated by their distinctive pigmentation pattern. Fry of about 30 mm . and larger usually had assumed adult characteristics.

We found that vertebral counts, especially of the abdominal vertebrae, served as anexcellent means of separating postlarval gadoids.

After clearing and staining, using the technique described by Hollister (1934) with some modifications described by Clothier (1950), the following vertebral counts were made:

Total vertebrae.--Total number of vertebrae, excluding the urostyle (atlas through penultimate).

Abdominal vertebrae.--Anterior vertebrae (without haemal spines). In gadoids this is synonymous with the number of vertebrae without haemal arches.

Caudal vertebrae.--Posterior vertebrae (with haemal spines). In gadoids this is synonymous with the number of vertebrae having haemal arches.

This method of identification has proved extremely helpful in the classification of samples taken in the plankton recorder where there is a tendency for the specimens to be crushed or flattened beyond recognition. Fortunately, the vertebrae remain intact, and it is usually possible to make a count of abdominal vertebrae.

Hardy Plankton Recorder

In analyzing the material collected by the Hardy Plankton Recorders the following procedures were followed:

The gauzes were cut into divisions of four sections to facilitate handling and examination. The covering gauze was folded back, and both

Figure 4.--Stages of development of haddock and cod eggs from fertilization to hatching.
the gauzes were viewed with a specially designed traversing stereomicroscope using l0X magnification (fig. 5). With this magnification it was possible to cover a 2 -inch section of the filtering gauze and its corresponding section of covering gauze with two traverses of the microscope.

All fish eggs and larvae were counted and put in vials numbered similarly to the 2 -inch gauze section. All eggs, except those in very poor condition, were then staged, measured, and identified using a compound microscope. Because the majority of the eggs were flattened, exact measurements were impossible; therefore, the sizes are not listed in the tables. These measurements were used only foridentification purposes. Some eggs in an extremely
crushed condition were not staged. All larvae, except the badly crushed specimens, were measured and identified. The very small larvae were measured to the nearest 0.01 mm , and the larger ones to the nearest millimeter. Tables $8-10$ contain the surface and 10 -meter data collected by the Hardy Plankton Recorders during cruise nos. 46,48 , and 50 .

A track chart of the cruise was prepared, showing time and position of each Loran fix, locations of 1 -meter net tows, locations of drift-bottle releases, and start and finish of the recorder runs.

The distance traversed for each 2 -inch section of exposed gauze was obtained by dividing the total distance run by the number of 2 -inch

Figure 5.-- Traversing microscope used for examining Recorder gauzes.
sections exposed. The track charts were then completed showing locations where individual gauze sections were exposed in recorders both at the surface and at 10 meters (figs. 6-11). Tables 2, 3, and 4 give date, time, and position for reference gauze sections. The section equivalent varied slightly with individual recorders and among distances covered (see tables 11-13). Because the section equivalent varied, the number of eggs and larvae were converted to numbers per 5 miles of tow.

Throughout our work we use numbers per 5 miles of tow as a unit of abundance. In this distance at normal towing speeds, the recorder with a $1 / 2$-inch square opening will theoretically filter 0.30 cubic meters of water per mile. To convert numbers per miles to numbers per cubic meter, it is necessary to multiply by a factor of 0.66 .

All numbers listed in tables $8-10$ have been converted to numbers per 5 miles of tow and rounded to the nearest whole number.

It will be realized, from the tables $8-10$, that the numbers of eggs and larvae in individual samples were very low. Experience has shown,
however, that the samples provide excellent material for quantitative studies of distribution and of fluctuations in abundance. This has been demonstrated by Colton, Honey, and Temple (1961), Colton and Marak (in press), Colton and Temple (1961), and Henderson (1954).

Temperature and Salinity

Only surface temperatures were used in the graphic presentation in this report as they were generally found to be indicative of temperatures in the depth of water studied, 10 meters to surface. Observed temperatures were rounded to the nearest whole ${ }^{\circ}$ F., and salinity values were rounded to nearest $0.5 \% 0$ (figs. 1, 2, 3, 12, 13, and 14). Actual temperature and salinity figures may be found in tables 2,3 , and 4.

Drift Bottles

A detailed analysis of the data obtained from the drift bottles released on these cruises during the spring of 1953 has been reported by Day (1958).

Figure 6.--Track of Albotross /II cruise no. 46. (March 19 to April 2, 1953) giving positions for each gauze section of the surface Recorder.

Figure 7.--Track of Albatross $/ / /$ cruise no.
46, (March 19 to April 2, 1953) giving positions for each gauze section of the $10-$ meter Recorder.

Figure 8.--Track of Albatross $/ 1 /$ cruise no. 48. (April 24 to May 8, 1953) giving positions for each gauze section of the surface Recorder.

Figure 9.--Track of Albatross III cruise no. 48. (April 24 to May 8, 1953) giving positions for each gauze section of the 10 -meter Recorder.

Figure 10.--Track of Albatross $/ I /$ cruise no.
50, (May 25 to June 3, 1953) giving positions for each gauze section of the surface Recorder.

Figure 11.--Track of Albatrass III cruise no. 50. (May 25 to June 3, 1953) giving positions for each gauze section of the 10 -meter Recorder.

Figure 12.--Distribution of surface temperature. Albatross /II cruise no. 46. March 19 to April 2, 1953.

Figure 13.--Distribution of surface temperature, Albatross $/ / /$ cruise no. 48, first coverage, April 24 to May 2, 1953.

Figure 14.--Distribution of surface temperature. Albatross III cruise no. 48, second coverage, May 2 to 8, 1953.

Figure 15.--Distribution of surface temperature, Albatross /II cruise no. 50, May 25 to June 3, 1953.

LITERATURE CITED

BUMPUS, DEAN F., and C. GODFREY DAY.
1957. Drift bottle records for Gulf of Maine and Georges Bank, 1931-56. U. S. Fish and Wildlife Service, Special Scientific Report--Fisheries No. 242,61 p.

C LOTHIER, C. R.
1950. A key to some Southern California fishes based on vertebral characters. California Division of Fish and Game, Fish Bulletin No. 79, 83 p.

COLTON, J. B., JR., K. A. HONEY, and R. F. TEMPLE.
1961. The effectiveness of sampling methods used to study the distribution of larval herring in the Gulf of Maine. Journal du Conseil Permanent International pour 1'Exploration de la Mer, vol. 26, no. 2, p. 180-190.

COLTON, J. B., JR., and R. R. MARAK. In press. Use of the Hardy Plankton Recorder in a fishery research program. Hull Bulletins of Marine Ecology.

COLTON, J. B., JR., and R. F. TEMPLE.
1961. The enigma of Georges Bank spawning. Limnology and Oceanography, vol. 6, no. 3, p. 280-291.

DAY, C. GODFREY.
1958. Surface circulation in the Gulf of Maine as deduced from drift bottles. U.S. Fish and Wildlife Service, Fishery Bulletin 151, vol. 58, p. 443-472.

HARDY, A. C.
1936. The continuous plankton recorder. Discovery Reports, vol. 11, p. 457-510.
1939. Ecological investigations with the continuous plankton recorder: object, plan and methods. Hull Bulletins of Marine Ecology, vol. 1, no. 1, p. 1-57.

HENDERSON, G. T. D.
1954. Continuous plankton records: The young fish and fish eggs 1932-39 and 1946-49. Hull Bulletins of Marine Ecology, vol. 3, no. 24, p. 215-252.

HOLLISTER, GLORIA.
1934. Clearing and dyeing fish for bone study. Zoologica, vol. 12, no. 10, p. 89-101.

Table 1.--Species of fish eggs and larvae (with species codeletters) caught during 1953, Albatross III cruise no. 46, March 19 to April 2; cruise no. 48, April 24 to May 8, cruise no. 50, May 25 to June 3

Species code letters	Common name	Scientific name
A	American plaice (dab)	Hippoglossoides platessoides
AL	Alligatorfish	Aspidophoroides monopterygius
AM	American sand lance	Ammodytes americanus
AR	Atlantic argentine	Argentina silus
BL	Bluefish	Pomatomus saltatrix
BU	Butterfish	Poronotus triacanthus
C	Atlantic cod	Gadus morhua
CN	Cunner	Tautogolabrus adspersus
CU	Cusk	Brosme brosme
E	American eel	Anguilla rostrata
G	Goosefish	Lophius americanus
H	Haddock	Melanogrammus aeglefinus
HE	Atlantic herring	Clupe a harengus harengus
M	Atlantic mackerel	Scomber scombrus
MH	Atlantic menhaden	Brevoortia tyrannus
P	Pollock	Pollachius virens
R	Redfish	Sebastes marinus
RH	Squirrel hake	Urophycis chuss
RO	Fourbeard rockling	Enchelyopus cimbrius
S	Scup (porgy)	Stenotomus chrysops
SC	Longhorn sculpin	Myoxocephalus octodecemspinosus
SH	Silver hake	Merluccius bilinearis
SY	Shanny	Stichaeidae (Family)
U	Unidentified	
W	Wrymouth	Cryptacanthodes maculatus
WE	Weakfish	Cynoscion regalis
WF	Witch flounder	Glyptocephalus cynoglossus
WH	White hake	Urophycis tenuis
WI	Windowpane	Scophthalmus aquosus
WO	Atlantic wolffish	Anarhichas lupus
Y	Yellowtail flounder	Limanda ferruginea

Table 2.--Date, time, and position for temperature and salinity records in relation to 1 -meter tows and Hardy Plankton Recorder gauze sections Albatross III cruise no. 46, March 19 to April 2, 1953

Date	Time	Lat itude N.	$\begin{gathered} \text { Longi- } \\ \text { tude } \\ \text { W. } \end{gathered}$	$\begin{gathered} 1 \text {-meter } \\ \text { tow } \end{gathered}$	Surface gauze section	$\begin{aligned} & 10-\text { meter } \\ & \text { gauze } \\ & \text { section } \end{aligned}$	Surface		10meter tem-perature
							$\begin{gathered} \text { Salin- } \\ \text { ity } \\ \hline \end{gathered}$	Tem-perature	
					loading 1	loading 1	$\%$	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.
Mar. 19	1500	$41^{\circ} 15^{\prime}$	$71^{\circ} 01^{\prime}$	--	loang	- 1	32.10	41.1	
Mar. 19	1700	$40^{\circ} 56^{\prime}$	$71^{\circ} 00{ }^{\prime}$	--	5	4	32.07	41.4	--
Mar. 19	1900	$40^{\circ} 38^{\prime}$	$71^{\circ} 031$	--	8	6	32.19	39.9	--
Mar. 19	2100	$40^{\circ} 20^{\prime}$	$71^{\circ} 01^{\prime}$	--	10	9	. 10	42.9	--
Mar. 19	2300	$40^{\circ} 00{ }^{\prime}$	$70^{\circ} 58^{\prime}$	--	15	11	32.27	44.7	--
Mar. 20	0100	$40^{\circ} 00^{\prime}$	$70^{\circ} 351$	--	18	14	--	44.3	--
Mar. 20	0509	$39^{\circ} 58^{\prime}$	$70^{\circ} 03^{\prime}$	1	24	22	32.62	46.6	
Mar. 20	0700	$39^{\circ} 581$	$69^{\circ} 43^{\prime}$	--	27	25	,	43.2	43.2
Mar. 20	0900	$39^{\circ} 59^{\prime}$	$69^{\circ} 19^{\prime}$	--	30	28	--	44.8	44.8
Mar. 20	1100	$39^{\circ} 59.5^{\prime}$	$68^{\circ} 54^{\prime}$	--	34	31	--	44.4	44.5
Mar. 20	1300	$40^{\circ} 00^{\prime}$	$68^{\circ} 27^{\prime}$	--	38	34	--	45.5	45.7
Mar. 20	1500	$40^{\circ} 15^{\prime}$	$68^{\circ} 15^{\prime}$	--	41	36	--	42.2	42.3
Mar. 20	1630	$40^{\circ} 24.5{ }^{\prime}$	$68^{\circ} 06^{\prime}$	2	46	38	32.80	42.1	42.1
Mar. 20	1900	$40^{\circ} 34^{\prime}$	$67^{\circ} 531$	--	48	44	,	41.3	
Mar. 20	2100	$40^{\circ} 48^{\prime}$	$67^{\circ} 40^{\prime}$	--	51	46	--	41.5	41.5
Mar. 20	2300	$41^{\circ} 03^{\prime}$	$67^{\circ} 29^{1}$	--	55	21	32.82	41.8	41.9
Mar. 21	0100	$41^{\circ} 18^{\prime}$	$67^{\circ} 16^{1}$	--	59	52	.	41.0	41.0
Mar. 21	0300	$41^{\circ} 36{ }^{\prime}$	$67^{\circ} 14^{1}$	--	62	54	--	40.4	40.6
Mar. 21	0500	$41^{\circ} 52^{\prime}$	$67^{\circ} 11^{\prime}$	3	64	56	--	41.0	41.0
Mar. 21	0700	$42^{\circ} 01^{\prime}$	$67^{\circ} 11^{\prime}$	--	67	59	32.89	41.2	41.2
Mar. 21	0900	$42^{\circ} 17^{\prime}$	$67^{\circ} 14^{\prime}$	--	71	62	--	40.8	40.7
Mar. 21	1100	$42^{\circ} 351$	$67^{\circ} 16^{\prime}$	--	74	64	32.61	40.9	40.9
Mar. 21	1300	$42^{\circ} 55^{\prime}$	$67^{\circ} 15^{\prime}$	--	77	67	--	40.9	40.9
Mar. 21	1500	$43^{\circ} 15^{\prime}$	$67^{\circ} 14^{\prime}$	--	82	70	--	41.7	41.7
Mar. 21	1700	$43^{\circ} 35^{\prime}$	$67^{\circ} 13^{1}$	--	86	73	--	41.8	41.8
Mar. 21	1910	$43^{\circ} 40^{\prime}$	$67^{\circ} 13^{\prime}$	4	87	74	32.96	41.1	41.2
Mar. 21	2100	$43^{\circ} 41^{\prime}$	$67^{\circ} 37{ }^{\prime}$	--	loading 2	$\underset{2}{\text { loading } 2}$	--	40.2	40.2
Mar. 21	2300	$43^{\circ} 41^{\prime}$	$68^{\circ} 01^{\prime}$	--	7	6	32.79	40.9	40.9
Mar. 22	0100	$43^{\circ} 39^{\prime}$	$68^{\circ} 29^{\prime}$	--	10	8	--	39.8	39.8
Mar. 22	0300	$43^{\circ} 38^{\prime}$	$68^{\circ} 58^{\prime}$	--	14	11	--	40.0	40.0
Mar. 22	0500	$43^{\circ} 33^{\prime}$	$69^{\circ} 18^{\prime}$	--	16	14	--	40.8	40.8
Mar. 22	0700	$43^{\circ} 26^{\prime}$	$69^{\circ} 48^{\prime}$	5	20	16	32.33	40.8	40.8
Mar. 22	0900	$43^{\circ} 21^{\prime}$	$70^{\circ} 02^{\prime}$	--	24	23	--	40.8	40.8
Mar. 22	1100	$43^{\circ} 09^{\prime \prime}$	$70^{\circ} 22^{\prime}$	--	27	25	32.01	40.6	40.6
Mar. 22	1300	$43^{\circ} 01^{\prime}$	$70^{\circ} 26^{\prime}$	6	30	27	--	41.0	40.3
Mar. 22	1500	$43^{\circ} 01^{\prime}$	$69^{\circ} 59^{\prime}$	--	33	29	--	40.6	40.6
Mar. 22	1700	$43^{\circ} 01^{\prime}$	$69^{\circ} 31{ }^{1}$	--	37	32	--	40.9	40.9
Mar. 22	1900	$43^{\circ} 00^{\prime}$	$69^{\circ} 05^{\prime}$	-	40	35	--	40.6	40.4
Mar. 22	2040	$43^{\circ} 00{ }^{\prime}$	$68^{\circ} 50^{1}$	7	42	36	--	40.8	40.8
Mar. 22	2300	$43^{\circ} 01^{\prime}$	$68^{\circ} 16^{\prime}$	--	47	41	32.37	40.6	40.7
Mar. 23	0100	$43^{\circ} 01^{\prime}$	$67^{\circ} 47^{\prime}$	--	51	43	--	40.5	40.3
Mar. 23	0300	$43^{\circ} 01^{\prime \prime}$	$67^{\circ} 20^{\prime}$	--	54	46	--	38.7	38.8
Mar. 23	0500	$43^{\circ} 01^{\prime \prime}$	$66^{\circ} 55^{\prime}$	--	57	48	--	38.3	38.3
Mar. 23	0700	$43^{\circ} 02^{\prime}$	$66^{\circ} 26^{\prime}$	--	62	51	--	39.7	--
Mar. 23	0915	$43^{\circ} 01^{\prime}$	$66^{\circ} 01^{\prime}$	8	66	58	--	37.4	37.4

Table 2.--Date, time, and position for temperature and salinity records in relation to 1 -meter tows and Hardy Plankton Recorder gauze sections Albatross III cruise no. 46, March 19 to April 2, 1953--Continued

Date	Time	Latitude N.	Longitude W .	$\begin{gathered} \text { I-meter } \\ \text { tow } \end{gathered}$	Surface gauze section	$\begin{aligned} & 10-\text { meter } \\ & \text { gauze } \\ & \text { section } \end{aligned}$	Surface		10- meter tem-perature
							Salinity	Tem-perature	
Mar 23	1100	$43^{\circ} 001$	$65^{\circ} 381$		--		\%	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.
Mar. 23	1300	$42^{\circ} 59^{\prime}$	$65^{\circ} 071$	--	72	64		35.5	
Mar. 23	1500	$42^{\circ} 46^{1}$	$64^{\circ} 58^{\prime}$	--	75	66	--	37.0	36.5
Mar. 23	1700	$42^{\circ} 26^{\prime}$	$64^{\circ} 58^{\prime}$	--	78	69	32.20	35.5	35.5
Mar. 23	1900	$42^{\circ} 14^{\prime}$	$65^{\circ} 08^{\prime}$	--	82	71	32.35	36.1	.
Mar. 23	2100	$42^{\circ} 14^{\prime}$	$65^{\circ} 351$	9	85	74	.	36.5	--
Mar. 23	2130	$42^{\circ} 13^{\prime}$	$65^{\circ} 41^{\prime}$	--	85	75	--	35.9	--
Mar. 23	2300	$42^{\circ} 11^{\prime}$	$65^{\circ} 54^{\prime}$	--	87	76	32.33	39.9	38.0
Mar. 24	0100	$42^{\circ} 13^{\prime}$	$66^{\circ} 23^{\prime}$	--	91	79	.	39.0	39.1
Mar. 24	0300	$42^{\circ} 15^{\prime}$	$66^{\circ} 50^{\prime}$	--	95	82	--	40.9	40.9
Mar. 24	0500	$42^{\circ} 17^{\prime}$	$67^{\circ} 19^{\text {b }}$	--	99	85	--	41.0	41.0
Mar. 24	0652	$42^{\circ} 19^{\prime}$	$67^{\circ} 34^{\prime}$	10	100	86	32.56	40.4	40.4
Mar. 24	1000	$42^{\circ} 191$	$67^{\circ} 50{ }^{\prime}$	--	$\underset{3}{\text { loading }} 3$	$\underset{2}{\text { loading } 3}$	32.49	40.5	40.5
Mar. 24	1100	$42^{\circ} 181$	$68^{\circ} 01^{\prime}$	--	3	3	32.42	40.5	40.5
Mar. 24	1300	$42^{\circ} 18^{1}$	$68^{\circ} 29^{\prime}$	--	9	7	-	41.0	41.0
Mar. 24	1500	$42^{\circ} 16^{\prime}$	$68^{\circ} 541$	--	12	10	- -	41.6	41.7
Mar. 24	1700	$42^{\circ} 16^{\prime}$	$69^{\circ} 20^{\prime}$	--	16	13	--	41.9	--
Mar. 24	1900	$42^{\circ} 15^{\prime}$	$69^{\circ} 46^{\prime}$	11	20	16	32.46	41.1	41.1
Mar. 25	0500	$42^{\circ} 151$	$70^{\circ} 02^{\prime}$	--	20	17	32.20	40.0	40.0
Mar. 25	0700	$42^{\circ} 00^{\prime}$	$69^{\circ} 55^{\prime}$	--	25	20	32.18	39.9	.
Mar. 25	0835	$41^{\circ} 48^{\prime}$	$69^{\circ} 45^{\prime}$	--	27	22	32.18	40.3	40.3
Mar. 25	0930	$41^{\circ} 47^{\prime}$	$69^{\circ} 32^{\prime}$	--	28	23	32.42	41.0	41.0
Mar. 25	1030	$41^{\circ} 46^{\prime}$	$69^{\circ} 21^{\prime}$	--	30	25	32.67	42.4	42.4
Mar. 25	1130	$41^{\circ} 46^{\prime}$	$69^{\circ} 06^{\prime}$	--	32	26	32.65	42.2	42.2
Mar. 25	1230	$41^{\circ} 46^{\prime}$	$68^{\circ} 55^{\prime}$	--	33	27	--	42.3	42.2
Mar. 25	1330	$41^{\circ} 46^{\prime}$	$68^{\circ} 42^{\prime}$	--	34	28	--	42.0	42.0
Mar. 25	1430	$41^{\circ} 47^{\prime}$	$68^{\circ} 31^{1}$	- -	36	29	--	42.1	42.1
Mar. 25	1530	$41^{\circ} 48^{\prime}$	$68^{\circ} 20^{\prime}$	--	37	31	--	42.5	42.5
Mar. 25	1630	$41^{\circ} 52^{\prime}$	$68^{\circ} 08^{\prime}$	--	39	32	32.50	42.3	.
Mar. 25	1730	$41^{\circ} 56{ }^{\prime}$	$67^{\circ} 57{ }^{\prime}$	--	40	33	32. 50	42.7	42.7
Mar. 25	1830	$42^{\circ} 02^{\prime}$	$67^{\circ} 49^{\prime}$	--	41	34	32. 46	42.0	41.9
Mar. 27	0715	$41^{\circ} 47^{\prime}$	$66^{\circ} 58^{\prime}$	12	47	40	32.67	41.4	41.6
Mar. 27	0720	$41^{\circ} 47{ }^{\prime}$	$66^{\circ} 58^{\prime}$	13	47	40		41.4	41.6
Mar. 27	0840	$41^{\circ} 48^{\prime}$	$66^{\circ} 46^{\prime}$	--	49	41		41.1	41.1
Mar. 27	0940	$41^{\circ} 48^{\prime}$	$66^{\circ} 34^{\prime}$	--	50	42	32.60	41.2	41.2
Mar. 27	1030	$41^{\circ} 47^{\prime}$	$66^{\circ} 20^{\prime}$	--	53	44	--	41.9	41.9
Mar. 27	1130	$41^{\circ} 46^{\prime}$	$66^{\circ} 08^{\prime}$	- -	55	45	32.06	40.7	40.9
Mar. 27	1230	$41^{\circ} 45^{\prime}$	$65^{\circ} 56^{\prime}$	--	57	46		38.6	37.9
Mar. 27	1330	$41^{\circ} 43^{\prime}$	$65^{\circ} 45^{\prime}$	--	58	47	31.74	39.4	39.7
Mar. 27	1800	$41^{\circ} 191$	$66^{\circ} 12^{\prime}$	14	60	49	31.61	38.5	38.3
Mar. 27	1930	$41^{\circ} 17{ }^{\prime}$	$66^{\circ} 26^{\prime}$	--	61	50	.	40.3	41.0
Mar. 27	2100	$41^{\circ} 16^{\prime}$	$66^{\circ} 45^{\prime}$	--	64	52	32.53	43.0	42.2
Mar. 27	2230	$41^{\circ} 17^{\prime}$	$67^{\circ} 04^{\prime}$	--	67	54	32.72	42.0	41.8
Mar. 27	2330	$41^{\circ} 16^{\prime}$	$67^{\circ} 16^{\prime}$	--	69	55	32.64	41.8	41.8

Table 2. - Date, time, and position for temperature and salinity records in relation to 1 -meter tows and Hardy Plankton Recorder gauze sections Albatross III cruise no. 46, March 19 to April 2, 1953--Continued

Date	Time	Lat itude N.	Longitude W.	$\begin{gathered} 1 \text {-meter } \\ \text { tow } \end{gathered}$	Surface gauze section	$\begin{aligned} & 10 \text {-meter } \\ & \text { gauze } \\ & \text { section } \end{aligned}$	Surface		$\begin{aligned} & 10- \\ & \text { meter } \\ & \text { tem- } \\ & \text { pera- } \\ & \text { ture } \end{aligned}$
							Salin- ity	Tem-perature	
							\%	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.
Mar. 28	0100	$41^{\circ} 15^{\prime}$	$67^{\circ} 35^{\prime}$	--	71	58		41.8	41.8
Mar. 28	0300	$41^{\circ} 15^{\prime}$	$68^{\circ} 01^{\prime}$	--	75	60	--	41.8	41.8
Mar. 28	0500	$41^{\circ} 15^{\prime}$	$68^{\circ} 28^{1}$	--	79	63	--	42.0	42.0
Mar. 28	0700	$41^{\circ} 16^{\prime}$	$68^{\circ} 54^{\prime}$	--	82	66	32.76	42.7	42.7
Mar. 28	0915	$41^{\circ} 18^{\prime}$	$69^{\circ} 20^{\prime}$	15	loading 4 1	69	32.76	42.2	42.2
Mar. 28	1300	$41^{\circ} 00^{\prime}$	$69^{\circ} 16^{\prime}$	--	5	4	--	42.7	42.3
Mar. 29	0350	$40^{\circ} 35^{\prime}$	$69^{\circ} 09^{\prime}$	--	11	10	32.59	43.0	42.5
Mar. 29	0500	$40^{\circ} 35^{\prime}$	$68^{\circ} 50^{\prime}$	--	14	12	--	43.5	43.0
Mar. 29	0700	$40^{\circ} 39^{\prime}$	$68^{\circ} 33^{\prime}$	--	17	14	32.66	41.8	41.8
Mar. 29	0900	$40^{\circ} 45^{\prime}$	$68^{\circ} 11^{\prime}$	--	21	17	32.66	43.2	43.2
Mar. 29	1100	$40^{\circ} 47^{\prime}$	$67^{\circ} 47^{\prime}$	--	26	19	32.61	42.7	42.7
Mar. 29	1300	$40^{\circ} 47^{\prime}$	$67^{\circ} 24^{\prime}$	--	30	22	- -	42.0	42.1
Mar. 29	1500	$40^{\circ} 46^{\prime}$	$67^{\circ} 02^{\prime}$	--	34	24	--	39.7	40.3
Mar. 29	1700	$40^{\circ} 45^{\prime}$	$66^{\circ} 41^{1}$	--	37	27	--	45.0	44.8
Mar. 29	1805	$40^{\circ} 46^{\prime}$	$66^{\circ} 35^{\prime}$	16	40	32	33.22	44.7	--
Mar. 29	1900	$40^{\circ} 53^{\prime}$	$66^{\circ} 34^{\prime}$	--	41	33	32.66	42.7	43.9
Mar. 29	2000	$41^{\circ} 02^{\prime}$	$66^{\circ} 34^{\prime}$	--	43	34	31.98	39.7	39.9
Mar. 29	2100	$41^{\circ} 12^{\prime}$	$66^{\circ} 34^{1}$	--	45	35	31.75	39.1	39.3
Mar. 29	2200	$41^{\circ} 23^{\prime}$	$66^{\circ} 32^{\text { }}$	--	47	37	32.31	42.0	42.0
Mar. 29	2300	$41^{\circ} 34^{\prime}$	$66^{\circ} 29^{\prime}$	--	50	39	32.37	41.6	41.8
Mar. 29	2400	$41^{\circ} 43^{\prime}$	$66^{\circ} 27^{\prime}$	--	52	40	--	42.3	42.3
Mar. 30	0100	$41^{\circ} 52^{\prime}$	$66^{\circ} 24^{\prime}$	--	54	42	32.72	41.7	41.8
Mar. 30	0200	$42^{\circ} 00^{\prime}$	$66^{\circ} 20^{\prime}$	--	55	43	--	41.8	41.8
Mar. 30	0300	$42^{\circ} 08^{\prime}$	$66^{\circ} 19^{\prime}$	--	57	45	--	42.0	42.0
Mar. 30	0400	$42^{\circ} 15^{\prime}$	$66^{\circ} 15^{\prime}$	--	59	46	--	42.0	41.9
Mar. 30	0500	$42^{\circ} 25^{\prime}$	$66^{\circ} 12^{\prime}$	--	61	48	--	40.9	41.0
Mar. 30	0600	$42^{\circ} 35^{\prime}$	$66^{\circ} 11^{\prime}$	--	63	49	--	38.1	38.1
Mar. 30	0630	$42^{\circ} 38^{\prime}$	$66^{\circ} 12^{1}$	17	64	49	31.53	37.6	37.7
Mar. 30	0800	$42^{\circ} 40^{\prime}$	$66^{\circ} 31^{\prime}$	--	69	53	32.54	41.5	41.4
Mar. 30	0900	$42^{\circ} 42^{\prime}$	$66^{\circ} 47{ }^{\prime}$	--	72	55	32.24	41.7	41.6
Mar. 30	1000	$42^{\circ} 41^{\prime}$	$66^{\circ} 58^{\prime}$	--	74	56	32.56	41.7	41.6
Mar. 30	1100	$42^{\circ} 43^{\prime}$	$67^{\circ} 11^{\prime}$	--	76	58	32. 51	41.6	41.6
Mar. 30	1300	$42^{\circ} 45^{\prime}$	$67^{\circ} 37^{\prime}$	--	80	61	--	40.8	40.8
Mar. 30	1500	$42^{\circ} 47^{\prime}$	$68^{\circ} 04^{\prime}$	--	85	65	--	40.9	41.0
Mar. 30	1700	$42^{\circ} 45^{\prime}$	$68^{\circ} 29^{\prime}$	--	89	68	32.	41.4	41.3
Mar. 30	1800	$42^{\circ} 43^{\prime}$	$68^{\circ} 43^{\prime}$	--	$\stackrel{92}{\text { loading } 5}$	70	32.40	41.5	41.6
Mar. 30	1900	$42^{\circ} 41^{\prime}$	$68^{\circ} 54^{\prime}$	18	2	72	32.51	41.2	41.2
Mar. 30	2100	$42^{\circ} 40^{\prime}$	$69^{\circ} 11^{\prime}$	--	5	73	3252	41.5	41. 6
Mar. 30	2300	$42^{\circ} 39^{\prime}$	$69^{\circ} 35^{\prime}$	--	9	76	32.52	41.7	41.7
Mar. 31	0100	$42^{\circ} 38^{\prime}$	$70^{\circ} 031$	--	14	80	--	41.2	-
Mar. 31	0300	$42^{\circ} 32^{\prime}$	$70^{\circ} 20^{\prime}$	--	18	82	--	41.2	41.1
Mar. 31	0500	$42^{\circ} 15^{\prime}$	$70^{\circ} 05^{\prime}$	--	21	85	32.37	41.0	41.3
Mar. 31	0700	$42^{\circ} 00^{\prime}$	$69^{\circ} 45^{\prime}$	--	25	89	32.37 32.46	41.5	41.6 41.7
Mar. 31	0815	$42^{\circ} 00^{\prime}$	$69^{\circ} 35^{\prime}$	19	29	90	32.46	41.7	41.7

Table 2.--Date, time, and position for temperature and salinity records in relation to 1 -meter tows and Hardy Plankton Recorder gauze sections Albatross III cruise no. 46, March 19 to April 2, 1953--Continued
$\left.\begin{array}{l|c|c|c|c|c|c|c|c|c}\hline \text { Date } & \text { Time } & \begin{array}{c}\text { Lat- } \\ \text { itude } \\ \text { N. }\end{array} & \begin{array}{c}\text { Longi- } \\ \text { tude } \\ \text { W. }\end{array} & \begin{array}{c}\text { l-meter } \\ \text { tow }\end{array} & \begin{array}{c}\text { Surface } \\ \text { gauze } \\ \text { section }\end{array} & \begin{array}{c}\text { lo-meter } \\ \text { gauze } \\ \text { section }\end{array} & \begin{array}{c}\text { Salin- } \\ \text { ity }\end{array} & \begin{array}{c}\text { Tem- } \\ \text { pera- } \\ \text { ture }\end{array} \\ \text { tem- } \\ \text { pera- } \\ \text { ture }\end{array}\right]$

Table 3.--Date, time and position for temperature and salinity records in relation to 1 -meter tows and Hardy Plankton Recorder gauze sections Albatross III cruise no. 48, April 24 to May 8, 1953

Date	Time	Latitude N.	Longitude W.	$\begin{gathered} 1 \text {-meter } \\ \text { tow } \end{gathered}$	Surface gauze section	$\begin{aligned} & 10-\text { meter } \\ & \text { gauze } \\ & \text { section } \end{aligned}$	Surface		$10-$ meter tem-perature
							Salinity	Tem-perature	
					loading 1	loading 1	\%	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.
April 24	1610	$41^{\circ} 171$	$71^{\circ} 00^{\prime}$	--	1	1	31.41	46.0	45.0
April 24	1800	$41^{\circ} 001$	$71^{\circ} 00^{\prime}$	--	4	3	30.35	44.6	44.4
April 24	2000	$40^{\circ} 43^{\prime}$	$70^{\circ} 53^{\prime}$	--	7	6	--	44.0	44.0
April 24	2400	$40^{\circ} 06^{\prime}$	$71^{\circ} 00{ }^{\prime}$	--	14	12	--	47.1	47.8
April 25	0200	$40^{\circ} 02^{\prime}$	$70^{\circ} 391$	--	18	15	33.03	46.5	46.4
April 25	0410	$39^{\circ} 59^{\prime}$	$70^{\circ} 12^{\prime}$	--	22	18	,	45.7	45.5
April 25	0600	$40^{\circ} 01^{\prime}$	$69^{\circ} 48^{\prime}$	--	25	21	32.57	44.6	44.0
April 25	0800	$40^{\circ} 01^{\prime \prime}$	$69^{\circ} 24^{\prime}$	1	28	24	--	44.5	44.3
April 25	0820	$40^{\circ} 01^{\prime}$	$69^{\circ} 21^{\prime}$	--	30	26	--	44.0	44.0
April 25	1000	$40^{\circ} 00^{\prime}$	$69^{\circ} 02^{\prime}$	--	32	28	--	44.4	44.2
April 25	1200	$40^{\circ} 00^{\prime}$	$68^{\circ} 35^{\prime}$	--	36	31	--	45.8	45.9
April 25	1300	$40^{\circ} 05^{\prime}$	$68^{\circ} 26^{\prime}$	--	37	33	32.58	44.7	44.3
April 25	1400	$40^{\circ} 12^{\prime}$	$68^{\circ} 13^{\prime}$	--	39	34	--	44.5	44.3
April 25	1500	$40^{\circ} 20^{\prime}$	$68^{\circ} 0{ }^{1}$	--	41	36	--	44.1	44.0
April 25	1600	$40^{\circ} 28^{\prime}$	$68^{\circ} 02^{\prime}$	--	42	37	32.59	44.3	44.3
April 25	1700	$40^{\circ} 36^{\prime}$	$67^{\circ} 56^{\prime}$	--	44	39	--	44.0	43.7
April 25	1800	$40^{\circ} 46^{\prime}$	$67^{\circ} 48^{\prime}$	--	46	40	--	43.5	43.4
April 25	1900	$40^{\circ} 54^{\prime}$	$67^{\circ} 41^{\prime}$	--	48	42	--	44.2	44.2
April 25	2000	$41^{\circ} 04^{\prime}$	$67^{\circ} 28^{\prime}$	2	50	44	--	44.0	44.0
April 25	2100	$41^{\circ} 07{ }^{\prime}$	$67^{\circ} 25^{\prime}$	--	53	47	--	43.0	42.6
April 25	2200	$41^{\circ} 15^{\prime}$	$67^{\circ} 171$	--	55	48	--	44.1	44.1
April 25	2300	$41^{\circ} 24^{\prime}$	$67^{\circ} 14^{1}$	--	56	50	--	44.3	44.3
April 25	2400	$41^{\circ} 33^{\prime}$	$67^{\circ} 12^{\prime}$	--	58	51	--	44.0	44.0
April 26	0100	$41^{\circ} 54^{\prime}$	$67^{\circ} 13^{\prime}$	--	62	54	32.69	44.0	44.1
April 26	0200	$41^{\circ} 55^{\prime}$	$67^{\circ} 14{ }^{1}$	--	62	55	--	43.3	43.3
April 26	0300	$42^{\circ} 04^{\prime}$	$67^{\circ} 15^{\prime}$	--	64	56	--	42.7	42.7
April 26	0400	$42^{\circ} 14^{\prime}$	$67^{\circ} 15^{\prime}$	--	65	58	32.57	42.8	42.7
April 26	0500	$42^{\circ} 24^{\prime}$	$67^{\circ} 16^{\prime}$	--	67	59	--	43.2	43.1
April 26	0600	$42^{\circ} 31^{\prime}$	$67^{\circ} 16^{\prime}$	--	69	60	32.63	42.9	43.0
April 26	0800	$42^{\circ} 50^{\prime}$	$67^{\circ} 16^{\prime}$	--	72	63	--	43.8	43.8
April 26	0900	$42^{\circ} 58^{\prime}$	$67^{\circ} 16{ }^{1}$	--	74	65	--	42.9	42.9
April 26	1000	$43^{\circ} 04^{\prime}$	$67^{\circ} 13^{\prime}$	3	75	67	--	43.6	43.5
April 26	1100	$43^{\circ} 11^{\prime}$	$67^{\circ} 14^{\prime}$	--	77	69	--	43.5	43.5
April 26	1200	$43^{\circ} 25^{\prime}$	$67^{\circ} 15^{\prime}$	--	79	71	--	42.7	42.6
April 26	1300	$43^{\circ} 351$	$67^{\circ} 161$	--	81	72	32.37	42.6	42.6
April 26	1410	$43^{\circ} 39^{\prime}$	$67^{\circ} 281$	--	83	74	32.38	43.0	43.3
April 26	1600	$43^{\circ} 40^{1}$	$67^{\circ} 48^{\prime}$	--	85	76	32.01	42.1	42.0
April 26	1800	$43^{\circ} 40^{\prime}$	$68^{\circ} 14^{\prime}$	--	89	79	31.97	42.8	42.0
April 26	2000	$43^{\circ} 39^{1}$	$68^{\circ} 50^{\prime}$	--	93	83	--	43.0	43.0
April 26	2200	$43^{\circ} 39^{\prime}$	$69^{\circ} 13^{\prime}$	--	96 loading 2	$\stackrel{86}{\text { loading } 2}$	--	42.5	42.4
April 26	2400	$43^{\circ} 39^{\prime}$	$69^{\circ} 35^{\prime}$	4	1	1	--	43.3	42.8
April 27	0200	$43^{\circ} 31{ }^{\prime}$	$69^{\circ} 50^{\prime}$	--	3	3	30.39	43.3	42.0
April 27	0300	$43^{\circ} 30^{\prime}$	$69^{\circ} 54{ }^{1}$	--	4	4	29.83	43.4	42.4
April 27	0400	$43^{\circ} 25^{\prime}$	$70^{\circ} 02^{1}$	--	5	5	--	43.2	43.1
April 27	0500	$43^{\circ} 11^{\prime}$	$70^{\circ} 18^{\prime}$	--	9	7	--	43.3	42.3
April 27	0600	$43^{\circ} 09^{\prime}$	$70^{\circ} 22^{\prime}$	--	9	8	30.23	43.4	42.7

Table 3.--Date, time and position for temperature and salinity records in relation to 1 -meter tows and Hardy Plankton Recorder gauze sections Albatross $/ I /$ cruise no. 48, April 24 to May 8, 1953--Continued

Date	Time	Latitude N.	Longitude W.	$\begin{aligned} & 1 \text {-meter } \\ & \text { tow } \end{aligned}$	Surface gauze section	$\begin{gathered} 10 \text {-meter } \\ \text { gauze } \\ \text { section } \end{gathered}$	Surface		$10-$ meter tem-perature
							Salinity	Tem-perature	
							\%	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.
April 27	0720	$43^{\circ} 00^{\prime}$	$70^{\circ} 34^{\prime}$	--	11	10	29.25	44.3	43.7
April 27	0800	$43^{\circ} 01^{\prime \prime}$	$70^{\circ} 23^{\prime}$	--	13	11	- -	43.4	42.5
April 27	1000	$43^{\circ} 01^{\prime \prime}$	$69^{\circ} 48^{1}$	--	17	15	--	44.5	--
April 27	1200	$43^{\circ} 00^{\prime}$	$69^{\circ} 22^{\prime}$	5	20	18	--	44.0	43.1
April 27	1325	$42^{\circ} 58^{\prime}$	$69^{\circ} 14^{1}$	--	21	18	31.03	43.7	42.6
April 27	1430	$42^{\circ} 58^{\prime}$	$69^{\circ} 00{ }^{1}$	--	24	25	--	43.4	42.6
April 27	1600	$42^{\circ} 591$	$68^{\circ} 33^{\prime}$	--	28	28	--	42.9	42.8
April 27	1800	$43^{\circ} 00^{\prime}$	$68^{\circ} 171$	--	29	29	32.42	43.0	43.0
April 27	2000	$43^{\circ} 00^{\prime}$	$67^{\circ} 59^{1}$	--	32	31	32.42	43.0	43.0
April 27	2200	$43^{\circ} 00{ }^{\prime}$	$67^{\circ} 13^{\prime}$	--	38	36	--	43.0	42.8
April 27	2400	$43^{\circ} 00^{\prime}$	$66^{\circ} 42^{1}$	--	43	40	--	43.5	43.5
April 28	0200	$43^{\circ} 02^{\prime}$	$66^{\circ} 13^{1}$	--	46	43	32.27	41.9	41.9
April 28	0300	$43^{\circ} 02^{\prime}$	$66^{\circ} 081$	--	47	44	--	41.6	41.6
April 28	0400	$43^{\circ} 01^{\prime}$	$65^{\circ} 571$	--	48	45	32.44	42.2	42.2
April 28	0500	$43^{\circ} 01^{\prime \prime}$	$65^{\circ} 42^{1}$	--	50	47	,	39.7	39.8
April 28	0600	$43^{\circ} 02^{\prime}$	$65^{\circ} 30^{\prime}$	--	52	48	31.32	38.9	39.4
April 28	0700	$43^{\circ} 02^{\prime}$	$65^{\circ} 12^{1}$	--	54	50	--	39.9	39.8
April 28	0820	$43^{\circ} 03^{\prime}$	$65^{\circ} 03^{\prime}$	6	55	51	- -	39.3	39.3
April 28	1000	$42^{\circ} 52^{\prime}$	$64^{\circ} 57^{\prime}$	--	57	56	- -	39.9	40.6
April 28	1100	$42^{\circ} 42^{\prime}$	$64^{\circ} 55^{\prime}$	--	59	57	--	40.1	40.1
April 28	1200	$42^{\circ} 34^{\prime}$	$64^{\circ} 55^{\prime}$	--	60	58	--	38.4	38.4
April 28	1300	$42^{\circ} 26^{\prime}$	$64^{\circ} 53^{\prime}$	--	61	59	--	38.6	38.6
April 28	1445	$42^{\circ} 12^{\prime}$	$64^{\circ} 53^{\prime}$	--	63	61	31.80	40.8	40.8
April 28	1600	$42^{\circ} 12^{\prime}$	$65^{\circ} 13^{\prime}$	--	66	63	- -	42.7	42.7
April 28	1700	$42^{\circ} 11^{\prime}$	$65^{\circ} 20^{\prime}$	--	67	64	--	41.8	
April 28	1800	$42^{\circ} 14^{\prime}$	$65^{\circ} 40^{\prime}$	--	69	66	31.27	38.8	--
April 28	1910	$42^{\circ} 13^{\prime}$	$65^{\circ} 52^{\prime}$	--	70	67	,	43.0	43.0
April 28	2100	$42^{\circ} 14^{\prime}$	$66^{\circ} 09^{\prime}$	--	72	70	--	43.3	43.3
April 28	2300	$42^{\circ} 16^{\prime}$	$66^{\circ} 24^{\prime}$	7	76	71	--	43.3	43.3
April 29	0100	$42^{\circ} 15^{\prime}$	$66^{\circ} 45^{\prime}$	--	78	73	32.66	43.0	--
April 29	0200	$42^{\circ} 14^{\prime}$	$67^{\circ} 00^{\prime}$	--	80	75	--	43.2	43.2
April 29	0300	$42^{\circ} 14^{\prime}$	$67^{\circ} 08^{1}$	--	81	76	--	42.7	42.6
April 29	0400	$42^{\circ} 14^{\prime}$	$67^{\circ} 20^{\prime}$	--	83	77	--	43.0	43.0
April 29	0500	$42^{\circ} 13^{\prime}$	$67^{\circ} 25^{\prime}$	--	84	78	--	43.0	43.0
April 29	0600	$42^{\circ} 13^{\prime}$	$67^{\circ} 361$	--	85	79	32.69	43.2	43.2
April 29	0815	$42^{\circ} 13^{\prime}$	$67^{\circ} 52^{\prime}$	--	87	80	. 6	43.1	43.1
April 29	0915	$42^{\circ} 13^{\prime}$	$68^{\circ} 061$	--	89	82	--	43.2	43.2
April 29	1015	$42^{\circ} 13^{\prime}$	$68^{\circ} 24^{\prime}$	--	92	84	--	43. 3	43.2
April 29	1155	$42^{\circ} 12^{\prime}$	$68^{\circ} 30^{\prime}$	--	$\begin{gathered} 92 \\ \text { loading } 3 \end{gathered}$	$\begin{gathered} 85 \\ \text { loading } 3 \end{gathered}$	--	43.5	43.5
April 29	1330	$42^{\circ} 11^{\prime}$	$68^{\circ} 37{ }^{1}$	8	loading 1	1	32.57	43.5	43.5
April 29	1530	$42^{\circ} 12^{\prime}$	$68^{\circ} 47^{\prime}$		2	2	32. 5	43.3	43.2
April 29	1630	$42^{\circ} 12^{\prime}$	$69^{\circ} 03^{\prime}$	--	4	4	--	43.4	43.4
April 29	1800	$42^{\circ} 12^{\prime}$	$69^{\circ} 20^{\prime}$	--	6	6	32.05	43.5	43.3
April 29	1900	$42^{\circ} 13^{\prime}$	$69^{\circ} 381$	--	8	8	,	43.7	43.7
April 29	2000	$42^{\circ} 13^{\prime}$	$69^{\circ} 51^{\prime}$	--	10	9	--	43.6	43.8
April 29	2200	$42^{\circ} 14^{\prime}$	$70^{\circ} 24^{\prime}$	--	14	13	29.83	44.6	

Table 3.--Date, time and position for temperature and salinity records in relation to 1 -meter tows and Hardy Plankton Recorder gauze sections Albatross III cruise no. 48, April 24 to May 8, 1953--Continued

Date	Time	Latitude N.	Longitude W .	$\begin{aligned} & 1 \text {-meter } \\ & \text { tow } \end{aligned}$	Surface gauze section	$\begin{aligned} & 10 \text {-meter } \\ & \text { gauze } \\ & \text { section } \end{aligned}$	Surface		10meter tem-perature
							Salinity	Tem-perature	
							\%	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.
April 29	2350	$42^{\circ} 14^{\prime}$	$70^{\circ} 31{ }^{1}$	9	15	14	- -	44.8	44.2
April 29	2400	$42^{\circ} 14^{\prime}$	$70^{\circ} 21^{\prime}$	--	19	18	--	44.8	44.8
April 30	0100	$42^{\circ} 10^{\prime}$	$70^{\circ} 15^{1}$	--	19	19	--	44.6	44.6
April 30	0130	$42^{\circ} 11^{\prime}$	$70^{\circ} 12^{\prime}$	--	20	19	--	44.3	44.2
April 30	0200	$42^{\circ} 08^{\prime}$	$70^{\circ} 03^{\prime}$	--	21	20	30.88	44.3	44.1
April 30	0230	$42^{\circ} 071$	$70^{\circ} 00^{\prime}$	--	21	21	-	44.2	44.2
April 30	0530	$41^{\circ} 44^{\prime}$	$69^{\circ} 50^{\prime}$	--	26	25	--	44.1	44.1
April 30	0700	$41^{\circ} 44^{\prime}$	$69^{\circ} 27{ }^{\prime}$	--	28	27	--	43.6	43.6
April 30	0800	$41^{\circ} 43^{\prime}$	$69^{\circ} 13^{\prime}$	--	30	29	--	43.8	43.3
April 30	0900	$41^{\circ} 46^{\prime}$	$69^{\circ} 02^{1}$	--	32	30	--	43.8	43.3
April 30	1000	$41^{\circ} 45^{\prime}$	$68^{\circ} 40^{\prime}$	--	34	33	--	44.2	43.9
April 30	1100	$41^{\circ} 45^{\prime}$	$68^{\circ} 35^{\prime}$	--	35	33	--	44.2	43.9
April 30	1200	$41^{\circ} 471$	$68^{\circ} 20^{\prime}$	10	37	35	--	43.7	43.0
April 30	1245	$41^{\circ} 47{ }^{\prime}$	$68^{\circ} 17{ }^{\prime}$	--	37	38	--	44.4	44.4
April 30	1400	$41^{\circ} 46^{\prime}$	$68^{\circ} 02^{\prime}$	--	40	39	32.61	44.4	44.2
April 30	1500	$41^{\circ} 45^{\prime}$	$67^{\circ} 50^{\prime}$	--	42	41	--	44.1	44.1
April 30	1600	$41^{\circ} 44^{\prime}$	$67^{\circ} 361$	--	44	43	--	44.4	44.4
April 30	1700	$41^{\circ} 43^{\prime}$	$67^{\circ} 22^{1}$	--	45	44	--	44.4	44.2
April 30	1800	$41^{\circ} 42^{\prime}$	$67^{\circ} 08{ }^{\prime}$	--	47	46	--	44.2	44.3
April 30	2000	$41^{\circ} 42^{\prime}$	$66^{\circ} 431$	--	51	49	--	44.3	44.3
April 30	2100	$41^{\circ} 44^{\prime}$	$66^{\circ} 31{ }^{\prime}$	--	53	51	--	43.5	43.7
April 30	2200	$41^{\circ} 47^{\prime}$	$66^{\circ} 21^{\prime}$	--	54	52	--	42.7	42.5
April 30	2300	$41^{\circ} 48^{\prime}$	$66^{\circ} 05^{\prime}$	--	56	54	--	43.0	43.2
April 30	2400	$41^{\circ} 47{ }^{\prime}$	$65^{\circ} 49^{\prime}$	11	58	56	--	43.6	43.2
May 1	0110	$41^{\circ} 46^{\prime}$	$65^{\circ} 42^{1}$	--	59	56	--	45.8	45.1
May 1	0200	$41^{\circ} 391$	$65^{\circ} 42^{1}$	--	63	60	33.08	46.7	46.6
May 1	0300	$41^{\circ} 31^{\prime}$	$65^{\circ} 50^{1}$	--	64	61	--	46.3	46.7
May 1	0450	$41^{\circ} 17^{\prime}$	$65^{\circ} 59^{\prime}$	--	67	63	32.73	44.6	43.8
May 1	0600	$41^{\circ} 16^{\prime}$	$66^{\circ} 16^{\prime}$	--	70	65	--	44.5	43.9
May 1	0900	$41^{\circ} 16^{\prime}$	$66^{\circ} 56^{\prime}$	--	75	70	--	44.5	44.5
May 1	1100	$41^{\circ} 18^{\prime}$	$67^{\circ} 23^{\prime}$	--	79	73	--	45.8	--
May 1	1300	$41^{\circ} 17{ }^{\prime}$	$67^{\circ} 48^{\prime}$	--	82	76	32.58	45.3	45.3
May 1	1400	$41^{\circ} 16^{\prime}$	$68^{\circ} 01^{\prime}$	--	85	78	--	45.1	45.0
May 1	1500	$41^{\circ} 16^{\prime}$	$68^{\circ} 11^{\prime}$	--	86	79	--	44.4	44.2
May 1	1600	$41^{\circ} 11^{\prime}$	$68^{\circ} 21^{\prime}$	--	87	80	--	44.1	44.1
May 1	1800	$41^{\circ} 08^{\prime}$	$68^{\circ} 39^{\prime}$	--	90	82	--	43.5	43.5
May 1	1930	$41^{\circ} 071$	$68^{\circ} 52^{\prime}$	--	$\begin{gathered} 92 \\ \text { loading } 4 \end{gathered}$	$\begin{gathered} 84 \\ \text { loading } 4 \end{gathered}$	--	43.9	44.0
May 1	2140	$41^{\circ} 11^{\prime}$	$69^{\circ} 15^{\prime}$	12	1	1	32.34	43.2	43.2
May 2	0130	$40^{\circ} 46^{\prime}$	$69^{\circ} 11^{1}$	--	5	5	--	43.3	43.4
May 2	0330	$40^{\circ} 43^{1}$	$68^{\circ} 50^{\prime}$	--	8	8	--	43.5	43.5
May 2	0530	$40^{\circ} 40^{\prime}$	$68^{\circ} 39^{\prime}$	--	9	9	--	43.2	43.2
May 2	0700	$40^{\circ} 39^{\prime}$	$68^{\circ} 10^{\prime}$	--	13	13	32.65	44.2	44.3
May 2	0900	$40^{\circ} 43^{\prime}$	$67^{\circ} 47^{\prime}$	--	16	16	--	44.5	44.5
May 2	1110	$40^{\circ} 471$	$67^{\circ} 32{ }^{\prime}$	13	18	20	32.61	44.5	44.5
May 2	1300	$40^{\circ} 48^{\prime}$	$67^{\circ} 11^{\prime}$	--	22	22	--	44.5	44.5
May 2	1500	$40^{\circ} 48^{\prime}$	$66^{\circ} 44^{\prime}$	--	26	25	--	45.0	44.9
May 2	1600	$40^{\circ} 48^{\prime}$	$66^{\circ} 29^{\prime}$	--	28	27	33.21	48.4	48.8

Table 3.--Date, time and position for temperature and salinity records in relation to 1 -meter tows and Hardy Plankton Recorder gauze sections Albatross $1 / l /$ cruise no. 48 , April 24 to May 8, 1953--Continued

Date	Time	Latitude N.	Longitude W .	$\begin{gathered} 1 \text {-meter } \\ \text { tow } \end{gathered}$	Surface gauze section	$\begin{gathered} 10 \text {-meter } \\ \text { gauze } \\ \text { section } \end{gathered}$	Surface		10- meter tem- pera- ture
							Salinity	$\begin{aligned} & \text { Tem- } \\ & \text { pera- } \\ & \text { ture } \end{aligned}$	
							$\%$	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.
May 2	1700	$40^{\circ} 56{ }^{\prime}$	$66^{\circ} 29^{\prime}$	--	29	28	--	44. 5	44.6
May 2	1800	$41^{\circ} 05^{\prime}$	$66^{\circ} 28^{\prime}$	--	30	29	--	44.4	44.3
May 2	1900	$41^{\circ} 13^{\prime}$	$66^{\circ} 28^{\prime}$	--	32	30	--	43.5	43.5
May 2	2000	$41^{\circ} 22^{\prime}$	$66^{\circ} 27^{\prime}$	--	33	31	--	43.5	43.5
May 2	2100	$41^{\circ} 31^{\prime}$	$66^{\circ} 27^{\prime}$	--	35	32	32.72	43.5	43.5
May 2	2200	$41^{\circ} 41^{\prime}$	$66^{\circ} 26^{\prime}$	--	37	34	-	43.2	43.2
May 2	2300	$41^{\circ} 52^{\prime}$	$66^{\circ} 26^{\prime}$	--	39	36	--	43.2	43.0
May 2	2400	$42^{\circ} 02^{\prime}$	$66^{\circ} 25^{\prime}$	--	40	37	--	43.3	43.3
May 3	0100	$42^{\circ} 09^{\prime}$	$66^{\circ} 22^{1}$	14	42	40	--	42.7	--
May 3	0200	$42^{\circ} 18^{\prime}$	$66^{\circ} 18^{\prime}$	--	44	42	--	40.8	40.9
May 3	0300	$42^{\circ} 28^{\prime}$	$66^{\circ} 14^{\prime}$	--	46	43	--	43.0	43.0
May 3	0400	$42^{\circ} 37^{\prime}$	$66^{\circ} 10^{\prime}$	--	47	45	--	39.8	39.9
May 3	0500	$42^{\circ} 46^{\prime}$	$66^{\circ} 07^{\prime}$	--	49	46	--	39.7	40.0
May 3	0600	$42^{\circ} 55^{\prime}$	$66^{\circ} 04^{\prime}$	--	50	48	--	40.8	40.8
May 3	0700	$43^{\circ} 02^{\prime}$	$66^{\circ} 03^{\prime}$	--	51	49	31.61	40.5	41.1
May 3	0800	$43^{\circ} 13^{\prime}$	$66^{\circ} 02^{1}$	--	54	51	--	40.3	41.1
May 3	0845	$43^{\circ} 19^{\prime}$	$66^{\circ} 01^{\prime}$	--	55	51	31.29	41.1	41.1
May 3	0945	$43^{\circ} 20^{\prime}$	$66^{\circ} 17^{\prime}$	--	56	53	--	42.2	42.0
May 3	1100	$43^{\circ} 21^{\prime}$	$66^{\circ} 38^{\prime}$	--	59	56	--	42.7	42.1
May 3	1230	$43^{\circ} 22^{\prime}$	$67^{\circ} 04^{\prime}$	--	63	59	32.44	44.2	42.4
May 3	1305	$43^{\circ} 22^{\prime}$	$67^{\circ} 01^{\prime}$	15	63	59	32.42	44.9	44.1
May 3	1500	$43^{\circ} 22^{\prime}$	$67^{\circ} 24^{\prime}$	--	66	62	- -	44.7	43.3
May 3	1700	$43^{\circ} 21^{\prime}$	$67^{\circ} 51^{\prime}$	--	69	65	--	44.2	42.4
May 3	1900	$43^{\circ} 19^{\prime}$	$68^{\circ} 15^{\prime}$	--	73	68	--	43.5	43.5
May 3	2100	$43^{\circ} 18^{\prime}$	$68^{\circ} 40^{\prime}$	--	76	71	--	43.4	42.9
May 3	2300	$43^{\circ} 18^{\prime}$	$69^{\circ} 07^{\prime}$	--	79	73	--	44.0	43.8
May 4	0100	$43^{\circ} 17^{\prime}$	$69^{\circ} 35^{\prime}$	--	82	76	--	44.5	44.3
May 4	0300	$43^{\circ} 17^{\prime}$	$70^{\circ} 04^{\prime}$	--	86	80	--	44.4	44.4
May 4	0500	$43^{\circ} 17^{\prime}$	$70^{\circ} 31^{\prime}$	--	89	82	--	44.4	44.3
May 4	0700	$42^{\circ} 53^{\prime}$	$70^{\circ} 33^{\prime}$	--	94	86	30.26	44.7	44.6
May 4	0830	$42^{\circ} 42.51$	$70^{\circ} 33.5{ }^{\prime}$	16	95 loading 5	$\begin{gathered} 87 \\ \text { loading } 5 \end{gathered}$	28.50	45.3	44.9
May 4	1050	$42^{\circ} 41^{\prime}$	$70^{\circ} 11^{\prime}$	--	3	3	--	45.3	44.0
May 4	1210	$42^{\circ} 40^{\prime}$	$70^{\circ} 00^{\prime}$	--	4	4	--	45.2	42.7
May 4	1300	$42^{\circ} 40^{\prime}$	$69^{\circ} 50^{\prime}$	--	6	5	- -	45.3	43.0
May 4	1500	$42^{\circ} 39^{\prime}$	$69^{\circ} 23^{\prime}$	--	9	8	--	45.5	43.7
May 4	1700	$42^{\circ} 39^{\prime}$	$68^{\circ} 50^{\prime}$	--	13	12	--	44.7	44.6
May 4	1900	$42^{\circ} 40^{\prime}$	$68^{\circ} 26^{\prime}$	--	16	15	32.47	44.2	44.2
May 4	2100	$42^{\circ} 41^{\prime}$	$68^{\circ} 00.5^{\prime}$	--	20	18	--	44.3	44.3
May 4	2300	$42^{\circ} 41^{\prime}$	$67^{\circ} 29^{\prime}$	--	24	21	32. 46	43.8	43.8
May 5	0100	$42^{\circ} 40^{\prime}$	$67^{\circ} 02^{\prime}$	--	27	24	--	43.9	44.3
May 5	0300	$42^{\circ} 39^{\prime}$	$66^{\circ} 32^{\prime}$	--	31	28	--	43.9	43.9
May 5	0500	$42^{\circ} 43^{\prime}$	$65^{\circ} 57^{\prime}$	17	36	31	--	40.5	40.5
May 5	0600	$42^{\circ} 42^{\prime}$	$65^{\circ} 53^{\prime}$	- -	38	35	32.10	41.9	41.9
May 5	0800	$42^{\circ} 37{ }^{\prime}$	$65^{\circ} 30^{\prime}$	--	41	37	- -	40.7	40.7
May 5	0900	$42^{\circ} 34^{\prime}$	$65^{\circ} 18^{\prime}$	--	43	39	--	40.7	40.7
May 5	1000	$42^{\circ} 31^{\prime}$	$65^{\circ} 07^{\prime}$	--	45	40	--	41.3	41.2

Table 3.--Date, time and position for temperature and salinity records in relation to 1 -meter tows and Hardy Plankton Recorder gauze sections Albatross III cruise no. 48, April 24 to May 8, 1953--Continued

Date	Time	Latitude N.	Longitude W.	$\begin{aligned} & 1 \text {-meter } \\ & \text { tow } \end{aligned}$	Surface gauze section	$\begin{gathered} 10 \text {-meter } \\ \text { gauze } \\ \text { section } \end{gathered}$	Surface		$\begin{aligned} & \text { lo- } \\ & \text { meter } \\ & \text { tem- } \\ & \text { pera- } \\ & \text { ture } \end{aligned}$
							Salinity	Tem-perature	
							$\%$	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.
May 5	1030	$42^{\circ} 30^{\prime}$	$65^{\circ} 00^{\prime}$	--	46	41	--	40.9	40.9
May 5	1100	$42^{\circ} 26^{\prime}$	$65^{\circ} 00{ }^{\prime}$	--	47	42	--	41.1	40.9
May 5	1200	$42^{\circ} 19^{\prime}$	$65^{\circ} 00{ }^{\prime}$	--	48	43	--	41.0	41.0
May 5	1400	$42^{\circ} 00.5{ }^{\prime}$	$65^{\circ} 00^{\prime}$	--	51	45	--	45.4	45.3
May 5	1600	$42^{\circ} 00.51$	$65^{\circ} 25^{\prime}$	--	55	48	--	45.0	44.8
May 5	1800	$42^{\circ} 00.51$	$65^{\circ} 46^{\prime}$	--	58	51	--	42.9	43.3
May 5	1915	$42^{\circ} 00.51$	$66^{\circ} 00^{\prime}$	18	59	55	--	42.5	42.9
May 5	2100	$42^{\circ} 00^{\prime}$	$66^{\circ} 24^{\prime}$	--	63	57	32.69	43.4	43.0
May 5	2200	$42^{\circ} 001$	$66^{\circ} 38^{\prime}$	--	65	59	--	43.4	43.5
May 5	2300	$42^{\circ} 00{ }^{\prime}$	$66^{\circ} 53^{\prime}$	--	67	60	--	43.7	43.8
May 5	2400	$42^{\circ} 001$	$67^{\circ} 06^{\prime}$	--	68	62	32.57	43.9	43.8
May 6	0200	$42^{\circ} 00{ }^{\prime}$	$67^{\circ} 35^{\prime}$	--	72	65	--	44.2	44.2
May 6	0400	$42^{\circ} 01^{\prime}$	$68^{\circ} 00^{\prime}$	--	75	68	--	44.6	44.6
May 6	0600	$42^{\circ} 00.51$	$68^{\circ} 29^{\prime}$	--	78	71	--	44.5	44.3
May 6	0700	$42^{\circ} 00{ }^{\prime}$	$68^{\circ} 42^{\prime}$	--	80	72	32.47	44.2	44.1
May 6	0835	$41^{\circ} 59{ }^{\prime}$	$68^{\circ} 54^{\prime}$	19	83	73	--	44.2	44.0
May 6	0945	$41^{\circ} 58^{\prime}$	$69^{\circ} 071$	--	84	77	--	45.4	44.4
May 6	1045	$41^{\circ} 571$	$69^{\circ} 19^{\prime}$	--	86	78	--	45.0	43.8
May 6	1215	$41^{\circ} 55^{\prime}$	$69^{\circ} 35^{\prime}$	--	88	80	31.19	46.0	44.3
May 6	1225	$41^{\circ} 55^{\prime}$	$69^{\circ} 42{ }^{\prime}$	--	89	81	--	45.5	44.5
May 6	1400	$41^{\circ} 42{ }^{\prime}$	$69^{\circ} 36{ }^{\prime}$	--	92	83	--	46.0	44.1
May 6	1600	$41^{\circ} 31{ }^{\prime}$	$69^{\circ} 21^{\prime}$	--	96	86	--	45.3	44.1
May 6	1800	$41^{\circ} 38^{\prime}$	$68^{\circ} 54^{\prime}$	20	$\begin{gathered} 99 \\ \text { loading } 6 \end{gathered}$	$\begin{gathered} 89 \\ \text { loading } 6 \end{gathered}$	--	44.3	44.0
May 6	2000	$41^{\circ} 37{ }^{\prime}$	$68^{\circ} 41^{\prime}$	--	2	2	--	44.8	45.1
May 6	2200	$41^{\circ} 271$	$68^{\circ} 16^{\prime}$	--	6	5	32.52	44.4	44.2
May 6	2400	$41^{\circ} 25^{\prime}$	$67^{\circ} 521$	--	9	7	--	45.6	45.1
May 7	0200	$41^{\circ} 25^{\prime}$	$67^{\circ} 25^{\prime}$	--	13	10	--	45.3	45.3
May 7	0400	$41^{\circ} 28^{\prime}$	$67^{\circ} 02^{\prime}$		16	13	--	44.8	44.8
May 7	0600	$41^{\circ} 32{ }^{\prime}$	$66^{\circ} 34^{\prime}$	--	20	16	--	44.5	43.7
May 7	0705	$41^{\circ} 31{ }^{\prime}$	$66^{\circ} 19^{\prime}$	21	21	18	32.65	44.0	42.8
May 7	0830	$41^{\circ} 30^{\prime}$	$66^{\circ} 01^{1}$	--	25	20	32.86	46.2	45.8
May 7	0930	$41^{\circ} 25^{\prime}$	$66^{\circ} 10^{\prime \prime}$	--	26	25	--	44.5	44.0
May 7	1000	$41^{\circ} 22^{\prime}$	$66^{\circ} 16^{\prime}$	--	27	26	--	44.3	44.3
May 7	1030	$41^{\circ} 19^{\prime}$	$66^{\circ} 21^{\prime}$	--	28	27	--	45.6	43.9
May 7	1100	$41^{\circ} 16^{\prime}$	$66^{\circ} 26^{\prime}$	--	29	28	--	46.1	45.4 44.8
May 7	1300	$41^{\circ} 06{ }^{\prime}$	$66^{\circ} 52^{\prime}$	--	33	30	--	46.0	44.8
May 7	1500	$40^{\circ} 59^{\prime}$	$67^{\circ} 14^{\prime}$	--	36	33	--	45.8 46.0	44.7 45.7
May 7	1700 1900	$40^{\circ} 49^{\prime}$ $40^{\circ} 38^{\prime}$	$67^{\circ} 14^{\prime}$ $68^{\circ} 03$	--	40	36 39	--	46.0 46.3	45.7 45.6
May 7 May 7	1900 2100	$40^{\circ} 38{ }^{\prime}$ $40^{\circ} 41^{\prime}$	$68^{\circ} 03^{\prime}$ $68^{\circ} 13^{\prime}$	22	43	39 40	32.53	46.3 46.2	45.6 45.2
May 7	2300	$40^{\circ} 39^{\prime}$	$68^{\circ} 24^{\prime}$	--	48	44	--	45.6	45.6
May 7	2400	$40^{\circ} 38^{\prime}$	$68^{\circ} 49^{\prime}$	--	51	48	--	46.1	45.0

Table 3.--Date, time and position for temperature and salinity records in relation to 1 -meter tows and Hardy Plankton Recorder gauze sections Albatross III cruise no. 48, April 24 to May 8, 1953--Continued

Date	Time	Latitude N.	Longitude W.	$\begin{gathered} 1 \text {-meter } \\ \text { tow } \end{gathered}$	Surface gauze section	$\begin{gathered} 10 \text {-meter } \\ \text { gauze } \\ \text { section } \end{gathered}$	Surface		$10-$ meter tem-perature
							Salinity	Tem-perature	
							\%	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.
May 8	0200	$40^{\circ} 36.5{ }^{\prime}$	$69^{\circ} 33^{\prime}$	--	57	53	--	45.2	44.8
May 8	0400	$40^{\circ} 361$	$69^{\circ} 49{ }^{\prime}$	--	59	55	--	45.9	45.6
May 8	0600	$40^{\circ} 37{ }^{\prime}$	$69^{\circ} 59.5^{\prime}$	--	61	57	--	47.4	45.9
May 8	0800	$40^{\circ} 461$	$70^{\circ} 05^{\prime}$	--	64	59	--	46.5	45.8
May 8	1000	$41^{\circ} 04^{\prime}$	$70^{\circ} 15^{\prime}$	--	68	63	--	47.8	47.9
May 8	1200	$41^{\circ} 071$	$70^{\circ} 37{ }^{\prime}$	--	71	66	31.41	49.9	49.5
May 8	1235	$41^{\circ} 071$	$70^{\circ} 43^{\prime}$	23	71	66	31.41	49.3	46.6

Table 4.--Date, time, and position for temperature and salinity records in relation to 1 -meter tows and Hardy Plankton Recorder gauze sections Albatross III cruise no. 50, May 25 to June 3, 1953

Date	Time	Latitude N.	Longitude W.	$\begin{gathered} 1-\text { meter } \\ \text { tow } \end{gathered}$	Surface gauze section	$\begin{gathered} 10 \text {-meter } \\ \text { gauze } \\ \text { section } \end{gathered}$	Surface		$10-$ meter tem-perature
							Salinity	$\begin{aligned} & \text { Tem- } \\ & \text { pera- } \\ & \text { ture } \end{aligned}$	
					loading 1	loading 1	\%	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.
May 25	1535	$41^{\circ} 17^{\prime}$	$71^{\circ} 01^{1}$	--	3	,	--	55.3	52.7
May 25	1700	$41^{\circ} 05.5{ }^{\prime}$	$71^{\circ} 01^{\prime}$	--	5	2	--	55.1	53.0
May 25	1800	$40^{\circ} 55{ }^{\prime}$	$71^{\circ} 001$	--	7	4	--	54.0	52.8
May 25	1900	$40^{\circ} 44^{\prime}$	$70^{\circ} 59^{\prime}$	--	9	6	--	54.5	53.9
May 25	2000	$40^{\circ} 37{ }^{\prime}$	$70^{\circ} 59^{\prime}$	--	11	8	32.10	54.2	53.5
May 25	2100	$40^{\circ} 24^{\prime}$	$70^{\circ} 58^{\prime}$	--	13	10	--	53.6	52.7
May 25	2300	$40^{\circ} 07{ }^{\prime}$	$70^{\circ} 58^{\prime}$	--	16	12	--	53.8	53.8
May 26	0005	$39^{\circ} 57{ }^{\prime}$	$70^{\circ} 59^{\prime}$	--	18	14	--	57.2	56.9
May 26	0100	$39^{\circ} 50^{\prime}$	$70^{\circ} 58^{\prime}$	--	19	15	--	55.8	55.7
May 26	0300	$39^{\circ} 56^{\prime}$	$70^{\circ} 36{ }^{\prime}$	--	22	18	--	50.0	49.9
May 26	0430	$39^{\circ} 58^{\prime}$	$70^{\circ} 24.51$	1	25	24	--	50.3	50.3
May 26	0630	$40^{\circ} 03^{\prime}$	$70^{\circ} 04^{\prime}$	--	27	26	--	50.2	50.2
May 26	0830	$40^{\circ} 11^{\prime}$	$69^{\circ} 41^{\prime}$	--	31	29	--	50.2	49.9
May 26	1000	$40^{\circ} 16^{\prime}$	$69^{\circ} 26^{\prime}$	--	33	31	--	50.8	50.3
May 26	1200	$40^{\circ} 24^{\prime}$	$69^{\circ} 03^{\prime}$	--	36	34	32.60	52.3	48.5
May 26	1400	$40^{\circ} 30^{\prime}$	$68^{\circ} 38^{\prime}$	--	41	37	--	50.8	49.8
May 26	1600	$40^{\circ} 331$	$68^{\circ} 10^{\prime}$	--	45	41	--	50.3	49.3
May 26	1700	$40^{\circ} 33{ }^{\prime}$	$68^{\circ} 06^{\prime}$	2	47	45	--	50.7	48.5
May 26	1900	$40^{\circ} 38^{\prime}$	$67^{\circ} 46^{1}$	--	50	47	--	50.5	49.5
May 26	2100	$40^{\circ} 46^{\prime}$	$67^{\circ} 23^{\prime}$	--	53	50	--	50.4	50.0
May 26	2330	$40^{\circ} 371$	$66^{\circ} 53^{\prime}$	--	58	54	32.54	48.3	47.1
May 27	0130	$41^{\circ} 04^{\prime}$	$66^{\circ} 35.5^{\prime}$	--	60	56	--	51.3	51.4
May 27	0400	$41^{\circ} 16^{\prime}$	$66^{\circ} 34^{\prime}$	--	63	58	--	47.7	47.8
May 27	0600	$41^{\circ} 35{ }^{\prime}$	$66^{\circ} 35^{\prime}$	--	68	61	--	46.4	46.3
May 27	0800	$41^{\circ} 55^{\prime}$	$66^{\circ} 35{ }^{\prime}$	3	71	63	--	48.0	47.5
May 27	1000	$42^{\circ} 12^{\prime}$	$66^{\circ} 34^{\prime}$	--	74	67	--	49.3	48.9
May 27	1100	$42^{\circ} 23^{\prime}$	$66^{\circ} 31.5^{\prime}$	--	76	69	--	48.4	48.4
May 27	1200	$42^{\circ} 32{ }^{\prime}$	$66^{\circ} 29^{\prime}$	--	77	70	32.39	47.7	47.9
May 27	1300	$42^{\circ} 40^{\prime}$	$66^{\circ} 27^{\prime}$	--	79	71	--	46.5	46.7
May 27	1400	$42^{\circ} 49^{\prime}$	$66^{\circ} 25^{\prime}$	--	80	73	--	46.8	45.3
May 27	1500	$43^{\circ} 02^{\prime}$	$66^{\circ} 22^{\prime}$		82	75	--	45.0	45.0
May 27	1600	$43^{\circ} 09^{\prime}$	$66^{\circ} 19^{\prime}$	--	84	76	--	45.6	45.4
May 27	1700	$43^{\circ} 16^{1}$	$66^{\circ} 15^{\prime}$	--	85	77	--	45.6	43.7
May 27	1800	$43^{\circ} 24.5{ }^{\prime}$	$66^{\circ} 12{ }^{\prime}$	--	87	78	--	45.6	44.9
May 27	2000	$43^{\circ} 291$	$66^{\circ} 31^{\prime}$	4	89	80	--	45.8	44.8
May 27	2200	$43^{\circ} 31^{\prime}$	$66^{\circ} 44.5^{\prime}$	--	loading 2 2	loading 2 1	32.22	48.4	47.8
May 27	2400	$43^{\circ} 31{ }^{\prime}$	$67^{\circ} 131$	--	6	4	--	46.4	45.9
May 28	0200	$43^{\circ} 30^{\prime}$	$67^{\circ} 40^{\prime}$	--	9	7	--	50.8	50.1
May 28	0400	$43^{\circ} 29.51$	$68^{\circ} 02^{\prime \prime}$	--	13	9	--	50.0	48.8
May 28	0600	$43^{\circ} 291$	$68^{\circ} 34^{\prime}$	--	17	13	--	48.2	46.2
May 28	0800	$43^{\circ} 28^{\prime}$	$68^{\circ} 59^{\prime}$	--	20	15	--	50.6	49.6
May 28	0900	$43^{\circ} 28^{\prime}$	$69^{\circ} 12^{\prime}$	5	22	17	31.91	50.6	49.9
May 28	1115	$43^{\circ} 28^{\prime}$	$69^{\circ} 37{ }^{\prime}$	--	26	21	--	52.2	52.0
May 28	1200	$43^{\circ} 271$	$69^{\circ} 48^{\prime}$	--	28	23	--	51.8	50.4
May 28	1400	$43^{\circ} 24^{\prime}$	$70^{\circ} 11^{\prime}$	--	31	25	--	52.9	51.3
May 28	1600	$43^{\circ} 071$	$70^{\circ} 21^{\prime}$	--	34	28	--	53.9	52.4

Table 4.--Date, time, and position for temperature and salinity records in relation to 1 -meter tows and Hardy Plankton Recorder gauze sections Albatross III cruise no. 50,
May 25 to June 3, 1953--Continued

Date	Time	Latitude N.	Longitude W .	$\begin{gathered} 1-\text { meter } \\ \text { tow } \end{gathered}$	Surface gauze section	10-meter gauze section	Surface		10meter tem-perature
							Salinity	$\begin{aligned} & \text { Tem- } \\ & \text { pera- } \\ & \text { ture } \end{aligned}$	
							\%	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.
May 28	1800	$42^{\circ} 47.51$	$70^{\circ} 27^{\prime}$	--	38	32	- -	53.5	52.0
May 28	2000	$42^{\circ} 271$	$70^{\circ} 30^{\prime}$	--	43	35	--	55.5	54.8
May 28	2135	$42^{\circ} 11.5^{\prime}$	$70^{\circ} 27^{\prime}$	6	45	37	29.84	54.0	52.0
May 28	2400	$42^{\circ} 09^{\prime}$	$70^{\circ} 05^{\prime}$	--	48	41	--	54.2	53.4
May 29	0200	$42^{\circ} 09^{\prime}$	$69^{\circ} 38^{\prime}$	--	52	45	--	52.4	52.3
May 29	0400	$42^{\circ} 08^{\prime}$	$69^{\circ} 15^{\prime}$	--	55	47	--	53.0	51.0
May 29	0600	$42^{\circ} 07.5^{\prime}$	$68^{\circ} 49^{\prime}$	--	59	50	--	51.5	51.4
May 29	0800	$42^{\circ} 07.5{ }^{\prime}$	$68^{\circ} 25^{\prime}$	--	63	53	--	52.3	52.4
May 29	0900	$42^{\circ} 08^{\prime}$	$68^{\circ} 12^{\prime}$	--	65	55	--	51.8	50.7
May 29	1000	$42^{\circ} 07.5^{\prime}$	$67^{\circ} 58^{\prime}$	--	66	56	31.65	52.3	52.3
May 29	1200	$42^{\circ} 07.5{ }^{\prime}$	$67^{\circ} 34^{\prime}$	7	70	59	--	52.1	51.8
May 29	1400	$42^{\circ} 10.5{ }^{\prime}$	$67^{\circ} 11^{\prime}$	--	74	64	--	48.9	48.7
May 29	1600	$42^{\circ} 10^{\prime}$	$66^{\circ} 41^{\prime}$	--	78	67	--	50.2	49.4
May 29	1800	$42^{\circ} 08^{\prime}$	$66^{\circ} 15^{\prime}$	--	82	70	--	49.5	48.5
May 29	1900	$42^{\circ} 13^{\prime}$	$66^{\circ} 10^{\prime}$	--	83	71	--	50.2	49.2
May 29	2000	$42^{\circ} 23^{\prime}$	$66^{\circ} 10^{\prime}$	--	85	73	--	50.0	49.6
May 29	2055	$42^{\circ} 32^{\prime}$	$66^{\circ} 10^{\prime}$	--	87	74	--	47.8	49.5
May 29	2130	$42^{\circ} 40^{\prime}$	$66^{\circ} 07{ }^{\prime}$	--	88	75	--	47.3	46.5
May 29	2230	$42^{\circ} 36^{\prime}$	$65^{\circ} 57{ }^{\prime}$	--	89	76	--	48.0	47.3
May 29	2400	$42^{\circ} 371$	$65^{\circ} 38{ }^{1}$	--	92 loading 3	$\begin{aligned} & 78 \\ & \text { loading } 3 \end{aligned}$	--	46.5	
May 30	0200	$42^{\circ} 37{ }^{\prime}$	$65^{\circ} 30^{\prime}$	8	1	loading	--	46. 3	46.1
May 30	0400	$42^{\circ} 36^{\prime}$	$65^{\circ} 05^{\prime}$	--	4	4	--	45.3	45.4
May 30	0600	$42^{\circ} 23^{\prime}$	$65^{\circ} 13^{\prime}$	--	8	6	--	47.5	48.0
May 30	0800	$42^{\circ} 061$	$65^{\circ} 27{ }^{\prime}$	--	11	9	--	49.5	49.6
May 30	0900	$41^{\circ} 58^{\prime}$	$65^{\circ} 34^{\prime}$	--	13	10	32.51	49.5	49.7
May 30	1000	$41^{\circ} 55^{\prime}$	$65^{\circ} 41^{\prime}$	--	15	11	--	50.2	49.0
May 30	1100	$41^{\circ} 461$	$65^{\circ} 51^{\prime}$		17	13	--	50.5	46.3
May 30	1200	$41^{\circ} 46^{\prime}$	$66^{\circ} 02^{\prime}$	--	18	14	32.42	50.9	49.1
May 30	1300	$41^{\circ} 47{ }^{\prime}$	$66^{\circ} 13^{\prime}$	--	19	16	,	50.8	49.1
May 30	1400	$41^{\circ} 47{ }^{\prime}$	$66^{\circ} 29^{\prime}$	9	21	17	--	48.0	47.9
May 30	1500	$41^{\circ} 47^{\prime}$	$66^{\circ} 34^{\prime}$	--	23	23	--	48.8	47.9
May 30	1600	$41^{\circ} 46^{\prime}$	$66^{\circ} 45^{\prime}$	--	25	24	--	48.8	47.7
May 30	1700	$41^{\circ} 44^{\prime}$	$66^{\circ} 56^{\prime}$	--	26	25	--	47.5	46.3
May 30	1800	$41^{\circ} 45^{\prime}$	$67^{\circ} 07.5^{1}$	--	28	27	--	47.5	47.4
May 30	1900	$41^{\circ} 46^{\prime}$	$67^{\circ} 19^{\prime}$	--	30	28	--	48.3	47.4
May 30	2000	$41^{\circ} 47^{\prime}$	$67^{\circ} 30.51$	--	31	29	--	49.0	49.2
May 30	2100	$41^{\circ} 47{ }^{\prime}$	$67^{\circ} 49^{\prime}$	--	33	31	32.48	48.7	48.7
May 30	2200	$41^{\circ} 47{ }^{\prime}$	$68^{\circ} 08^{\prime}$	--	36	33	--	48.1	48.2
May 30	2300	$41^{\circ} 47{ }^{\prime}$	$68^{\circ} 16^{\prime}$	--	37	34	--	48.9	48.1
May 31	0005	$41^{\circ} 47{ }^{\prime}$	$68^{\circ} 25^{\prime}$	--	38	35	--	50.7	49.7
May 31	0100	$41^{\circ} 47{ }^{\prime}$	$68^{\circ} 43^{1}$	--	40	37	--	50.8	51.4
May 31	0200	$41^{\circ} 47^{\prime}$	$69^{\circ} 00^{1}$	--	43	39	--	52.8	51.8
May 31	0300	$41^{\circ} 46^{\prime}$	$69^{\circ} 08^{\prime}$	10	45	42	--	52.2	51.3
May 31	0400	$41^{\circ} 44^{\prime}$	$69^{\circ} 19^{\prime}$	--	46	43	--	52.8	50.8
May 31	0500	$41^{\circ} 42.5{ }^{\prime}$	$69^{\circ} 31^{\prime}$	--	48	44	--	53.5	53.1
May 31	0600	$41^{\circ} 41.5{ }^{\prime}$	$69^{\circ} 40^{\prime}$	--	49	45	--	53.9	52.3

Table 4.--Date, time, and position for temperature and salinity records in relation to 1 -meter tows and Hardy Plankton Recorder gauze sections Albatross III cruise no. 50, May 25 to June 3, 1953--Continued

Date	Time	Latitude N.	Longitude W.	$\begin{aligned} & 1 \text {-meter } \\ & \text { tow } \end{aligned}$	Surface gauze section	$\begin{gathered} 10-\text { meter } \\ \text { gauze } \\ \text { section } \end{gathered}$	Surface		10meter tem-perature
							Salinity	$\begin{aligned} & \text { Tem- } \\ & \text { pera- } \\ & \text { ture } \end{aligned}$	
							\%	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.
May 31	0700	$41^{\circ} 41^{\prime}$	$69^{\circ} 48^{\prime}$	--	50	46	--	53.7	53.5
May 31	0800	$41^{\circ} 43^{\prime}$	$69^{\circ} 40^{\prime}$	--	52	47	--	51.2	49.3
May 31	0900	$41^{\circ} 25^{\prime}$	$69^{\circ} 32{ }^{\prime}$	--	53	49	31.22	51.7	50.3
May 31	1015	$41^{\circ} 23^{\prime}$	$69^{\circ} 20^{\prime}$	11	55	50	--	51.7	49.0
May 31	1100	$41^{\circ} 24^{\prime}$	$69^{\circ} 12^{\prime}$	--	57	52	--	53.6	52.1
May 31	1200	$41^{\circ} 26^{\prime}$	$69^{\circ} 021$	--	58	53	32.17	52.7	52.0
May 31	1300	$41^{\circ} 27{ }^{\prime}$	$68^{\circ} 48^{\prime}$	--	60	54	--	52.3	51.1
May 31	1400	$41^{\circ} 27{ }^{\prime}$	$68^{\circ} 37{ }^{\prime}$	--	62	56	--	50.5	49.6
May 31	1500	$41^{\circ} 27{ }^{\prime}$	$68^{\circ} 24^{\prime}$	--	64	57	--	51.5	49.1
May 31	1600	$41^{\circ} 24^{\prime}$	$68^{\circ} 09{ }^{\prime}$	--	66	59	--	51.5	48.3
May 31	1700	$41^{\circ} 20^{\prime}$	$67^{\circ} 56^{\prime}$	--	69	60	--	50.1	48.8
May 31	1800	$41^{\circ} 19^{\prime}$	$67^{\circ} 41^{\prime}$	--	71	62	--	49.8	49.5
May 31	1900	$41^{\circ} 18^{\prime}$	$67^{\circ} 331$	12	73	65	--	49.5	48.4
May 31	2000	$41^{\circ} 18^{\prime}$	$67^{\circ} 22^{\prime}$	--	74	66	--	48.9	48.8
May 31	2100	$41^{\circ} 18^{\prime}$	$67^{\circ} 11^{\prime}$	--	76	67	32.60	48.2	48.0
May 31	2155	$41^{\circ} 18^{\prime}$	$67^{\circ} 01^{\prime}$	--	77	69	--	50.2	48.1
May 31	2300	$41^{\circ} 191$	$66^{\circ} 47{ }^{\prime}$		79	70	32.66	49.7	48.7
May 31	2400	$41^{\circ} 20^{\prime}$	$66^{\circ} 36{ }^{\prime}$	--	81	71	32.66	49.0	48.3
June 1	0100	$41^{\circ} 211$	$66^{\circ} 24^{\prime}$	--	82	73	--	49.7	47.6
June 1	0205	$41^{\circ} 20^{\prime}$	$66^{\circ} 12^{\prime}$	--	84	74	--	50.2	49.7
June 1	0305	$41^{\circ} 15^{\prime}$	$66^{\circ} 18^{\prime}$	--	85	75	--	50.7	50.7
June 1	0405	$41^{\circ} 051$	$66^{\circ} 24^{\prime}$	--	87	77	--	50.8	50.7
June 1	0500	$40^{\circ} 58^{\prime}$	$66^{\circ} 311$	--	90	79	--	50.0	50.1
June 1	0600	$40^{\circ} 50^{\prime}$	$66^{\circ} 40^{\prime}$	--	91	80	--	59.1	59.1
June 1	0700	$40^{\circ} 42^{\prime}$	$66^{\circ} 49^{\prime}$	--	93	81	--	59.0	59.0
June 1	0800	$40^{\circ} 33^{1}$	$66^{\circ} 59^{\prime}$	13	$\begin{gathered} 96 \\ \text { loading } 4 \end{gathered}$	84 loading 4	--	52.4	52.4
June 1	0945	$40^{\circ} 29^{\prime}$	$67^{\circ} 03^{\prime}$	--	3	1	33.93	56.0	55.4
June 1	1100	$40^{\circ} 291$	$67^{\circ} 19^{\prime}$	--	5	,		54.4	54.3
June 1	1200	$40^{\circ} 291$	$67^{\circ} 34^{\prime}$	--	7	4	32.63	51.8	51.4
June 1	1300	$40^{\circ} 29^{\prime}$	$67^{\circ} 47{ }^{\prime}$	--	9	5	--	53.0	55.2
June 1	1400	$40^{\circ} 29^{\prime}$	$68^{\circ} 01^{\prime}$	--	12	7	--	53.9	52.1
June 1	1500	$40^{\circ} 30^{\prime}$	$68^{\circ} 14^{\prime}$	--	13	8	--	55.0	54.0
June 1	1600	$40^{\circ} 30^{\prime \prime}$	$68^{\circ} 24^{\prime}$	--	15	9	--	55.3	53.1
June 1	1700	$40^{\circ} 30^{\prime}$	$68^{\circ} 371$	--	17	11	--	55.5	53.5
June 1	1805	$40^{\circ} 291$	$68^{\circ} 51^{\prime}$	--	19	12	--	55.0	54.6
June 1	1905	$40^{\circ} 28^{\prime}$	$69^{\circ} 01^{\prime}$	--	20	14	--	54.7	52.5
June 1	2000	$40^{\circ} 28^{\prime}$	$69^{\circ} 13^{\prime}$	--	22	15	5	54.5	54.0
June 1	2130	$40^{\circ} 27.5^{\prime}$	$69^{\circ} 27{ }^{\prime}$	14	27	21	32.55	53.1	51.0
June 1	2300	$40^{\circ} 27{ }^{\prime}$	$69^{\circ} 46^{\prime}$	--	29	23	--	53.0	52.7
June 1	2400	$40^{\circ} 26.5{ }^{\prime}$	$69^{\circ} 59^{\prime}$	--	31	24	--	52.5	50.7
June 2	0205	$40^{\circ} 25.5{ }^{\prime}$	$70^{\circ} 23^{\prime}$	--	34	27	--	52.3 52.7	51.8 52.4
June 2	0300	$40^{\circ} 25{ }^{\prime}$	$70^{\circ} 351$	--	36	28 30	--	52.7 52.3	52.4 50.5
June 2	0400	$40^{\circ} 24.5{ }^{\prime}$	$70^{\circ} 471$	--	38 39	30 31	--	52.3 52.5	50.5 52.5
June 2	0500	$40^{\circ} 24.5{ }^{\prime}$	$70^{\circ} 59{ }^{\prime}$ $71^{\circ} 11^{\prime}$	--	39 41	31 32	--	52.5 53.0	52.5 52.0
June 2 June 2	0600 0700	$40^{\circ} 24^{\prime}$ $40^{\circ} 24^{\prime}$	$71^{\circ} 111^{\prime}$ $71^{\circ} 24^{\prime}$	--	41	31 34	--	54.0 54.0	52.0
June 2	0700	$40^{\circ} 24^{\prime}$	$71^{\circ} 24^{\prime}$	--	43	34	--	54.0	

Table 4.--Date, time, and position for temperature and salinity records in relation to 1 -meter tows and Hardy Plankton Recorder gauze sections Albatross III cruise no. 50, May 25 to June 3, 1953--Continued

Date	Time	Lat itude N.	Longitude W .	$\begin{aligned} & 1 \text {-meter } \\ & \text { tow } \end{aligned}$	Surface gauze section	$\begin{gathered} 10 \text {-meter } \\ \text { gauze } \\ \text { section } \end{gathered}$	Surface		10- meter tem- pera- ture
							$\begin{aligned} & \text { Salin- } \\ & \text { ity } \end{aligned}$	Tem-perature	
							\%	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.
June 2	0800	$40^{\circ} 25^{1}$	$71^{\circ} 38{ }^{1}$	--	44	35	--	54.4	54.2
June 2	0900	$40^{\circ} 25^{\prime}$	$71^{\circ} 50^{1}$	15	46	36	31.88	55.0	54.8
June 2	1100	$40^{\circ} 26^{\prime}$	$72^{\circ} 09^{1}$	--	52	41	--	55.3	54.2
June 2	1200	$40^{\circ} 26^{\prime}$	$72^{\circ} 21^{1}$	--	54	42	--	55.7	54.1
June 2	1300	$40^{\circ} 27^{\prime}$	$72^{\circ} 34^{\prime}$	--	55	44	--	56.2	54.7
June 2	1400	$40^{\circ} 27^{\prime}$	$72^{\circ} 46.5^{\prime}$	--	57	45	--	56.0	54.3
June 2	1500	$40^{\circ} 31^{\prime}$	$72^{\circ} 58^{\prime}$	--	59	46	--	56.5	53.0
June 2	1600	$40^{\circ} 35^{\prime}$	$72^{\circ} 48^{\prime}$	--	61	48	--	56.2	53.0
June 2	1700	$40^{\circ} 38^{\prime}$	$72^{\circ} 36{ }^{\prime}$	--	63	49	--	56.5	53.6
June 2	1800	$40^{\circ} 41.51$	$72^{\circ} 24^{1}$	--	65	51	--	56.8	52.5
June 2	1900	$40^{\circ} 43^{\prime}$	$72^{\circ} 18^{\prime}$	16	69	55	--	56.0	54.8
June 2	2000	$40^{\circ} 46.5$	$72^{\circ} 07{ }^{1}$	--	70	56	--	55.5	53.3
June 2	2100	$40^{\bullet} 49.5$	$71^{\circ} 56^{1}$	--	72	57	30.10	55.0	53.2
June 2	2200	$40^{\circ} 53.5$	$71^{\circ} 45^{\prime}$	--	74	59	.	54.0	52.4
June 2	2300	$40^{\circ} 47.5^{\prime}$	$71^{\circ} 34^{1}$	--	76	60	--	54.9	54.5
June 2	2400	$41^{\circ} 00^{\prime}$	$71^{\circ} 22^{\prime}$	--	78	62	31.59	55.2	53.4
June 3	0100	$40^{\circ} 59.51$	$71^{\circ} 10^{1}$	--	80	63	-	54.8	52.6
June 3	0200	$40^{\circ} 59^{\prime}$	$70^{\circ} 57.5^{1}$	--	82	65	--	54.8	53.1
June 3	0305	$41^{\circ} 03^{\prime}$	$70^{\circ} 54.51$	--	84	66	--	55.1	53.8
June 3	0400	$41^{\circ} 12.5{ }^{\prime}$	$70^{\circ} 59.51$	17	86	68	--	55.0	54.2

Table 5.--Stages and sizes of fish eggs and larvae taken with l-meter net on Albatross III cruise no. 46, March 19 to April 2, 1953

Tow			Species	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { eggs } \end{gathered}$	Modal stage	Number of larvae	Average diameter or length	Range
No.	Date	Time						
1	Mar. 20	0400	-	-	-	-	$m \mathrm{~m}$.	$m m$.
							-	-
	Mar. 20	1650	$\mathrm{H}-\mathrm{C}$	7	V	-	1.56	1.52-1.58
			* H	-	-	13	4.74	4.49-4.96
			*	-	-	2	4.59	4.21-4.96
3	Mar. 21	0520	H-C	10	V	-	1.53	1.43-1.61
			* H	-	-	2	4.32	3.74-4.90
			* C	-	-	9	4.82	4.08-5.64
4	Mar. 21	1730	-	-	-	-	-	-
5	Mar. 22	0745	-	-	-	-	-	-
6	Mar. 22	1210	$\mathrm{H}-\mathrm{C}$	3	IV	-	1.54	1.51-1.57
			A	10	II	-	2.44	2.31-2.68
			* ${ }^{\text {C }}$		-	1	3.94	-
			*	-	-	19	5.59	4.59-6.12
			P	-	-	2	16.5	16-17
7	Mar. 22	2030	P	-	-	1	25	-
			HE	-	-	7	36.1	31-40
			W	-	-	4	21.5	20-23
			WO	-	-	1	58	-
8	Mar. 23	0900			V			1. 50-1.63
			*H	-	-	2	4.70	4.49-4.91
			* C	-	-	4	4.57	4.15-4.96
9	Mar. 23	2140	H-C	6	V	-	1.54	1.50-1.63
			* H	-	-	3	4.52	4.52-4.73
			* A	-	-	2	5.27	5.10-5.44
10	Mar . 24	0630	-	-	-	-	-	-
11	Mar. 25	0500	$\mathrm{H}-\mathrm{C}$	9	V	-	1.58	1.43-1.70
			* H	-	-	4	4.46	4.13-4.77
			* ${ }^{\text {c }}$	-	-	1	4.37	-
			* ${ }^{\text {A }}$	-	-	1	5.92	-
			HE	-	-	1	41	-
			E	-	-	1	59	-

Table 5.--States and sizes of fish eggs and larvae taken with l-meter net on Albatross III cruise no. 46, March 19 to April 2, 1953--Continued

Tow			Species	Number of eggs	Modal state	Number of larvae	Average diameter or length	Range
No.	Date	Time						
12	Mar. 25	1815	$\begin{gathered} * \mathrm{H} \\ * \mathrm{C} \\ \mathrm{P} \\ \mathrm{E} \end{gathered}$	-	-	31	$\begin{aligned} & m m \\ & 4.47 \end{aligned}$	mm.
								4.32-4.69
							4.76	-
				-	-	2	24.0	$21-27$
				-	-	1	59	
13	Mar. 27	0720	H-C	72	V		1.53	$1.44-1.65$
			A	3	II	-	2.44	2.33-2.61
			*H	-	-	11	4.38	3.57-5.20
			* C	-	-	22	4.94	4.28-5.71
			*A	-	-	2	5.62	5.30-5.95
14	Mar. 27	1815	$\begin{gathered} \mathrm{H}-\mathrm{C} \\ \mathrm{~A} \\ * \mathrm{H} \end{gathered}$	31	$\begin{aligned} & \text { VI } \\ & \text { VI } \end{aligned}$	-	1.52	1.48-1.56
							2.12	-
					-	1	4.00	-
15	Mar. 28	0930	$\begin{aligned} & \mathrm{H}-\mathrm{C} \\ & * \mathrm{H} \\ & \mathrm{SC} \end{aligned}$	2--	V	-	1.56	1.56
					-	8	4.27	3.57-4.66
					-	2	14	-
16	Mar. 29	1800	-	-	-	-	-	-
17	Mar. 30	0630	$\begin{gathered} \mathrm{H}-\mathrm{C} \\ \mathrm{~A} \\ \text { * } \mathrm{H} \end{gathered}$	14	V	-	1.55	1.43-1.63
				3	V	-	2.55	2.45-2.62
				-	-	3	4.00	3.47-4.91
18	Mar. 30	1900	$\begin{array}{r} E \\ H E \end{array}$	-	-	82	$\begin{aligned} & 58.0 \\ & 39.0 \end{aligned}$	$\begin{aligned} & 55-62 \\ & 37-41 \end{aligned}$
19	Mar. 31	0800	P	-	-	1	25	-
20	Mar 31	2130	$\begin{aligned} & \mathrm{H}-\mathrm{C} \\ & * \mathrm{H} \\ & * \mathrm{C} \\ & * \mathrm{~A} \end{aligned}$	74	V	-	1.54	$\begin{aligned} & 1.44-1.80 \\ & 3.88-4.79 \\ & 4.35-5.44 \\ & 5.85-5.92 \end{aligned}$
				-	-	48	4.47	
				-	-	10	4.90	
				-	-	2	5.89	
21	Apr. 1	0950	$\begin{gathered} \mathrm{H}-\mathrm{C} \\ \mathrm{~A} \\ \mathrm{Y} \\ * \mathrm{H} \\ * \mathrm{C} \\ * \mathrm{~A} \\ * \mathrm{Y} \end{gathered}$	8931----	V V V - -	---411411	$\begin{aligned} & 1.54 \\ & 2.45 \\ & 0.96 \\ & 4.61 \\ & 4.91 \\ & 5.92 \\ & 2.96 \end{aligned}$	$\begin{array}{r} 1.38-1.67 \\ 2.31-2.60 \\ - \\ 4.25-5.03 \\ 4.59-5.71 \end{array}$

Table 5.--Stages and sizes of fish eggs and larvae taken with l-meter net on Albatross III cruise no. 46, March 19 to April 2, 1953--Continued

Tow			Species	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { eggs } \end{gathered}$	Modal state	Number of larvae	Average diameter or length	Range
No.	Date	Time						
22	Apr. 1	1930	-	-	-	-	$m m$.	mm .
23	Apr. 2	0750	$\begin{aligned} & \mathrm{H}-\mathrm{C} \\ & * \mathrm{H} \\ & * \mathrm{C} \end{aligned}$	15	V	$\begin{array}{r} - \\ 15 \\ 7 \end{array}$	$\begin{aligned} & 1.52 \\ & 4.29 \\ & 4.43 \end{aligned}$	$\begin{aligned} & 1.43-1.65 \\ & 3.55-4.82 \\ & 4.12-4.82 \end{aligned}$

*Hatched aboard ship.

Table 6.--Stages and sizes of fish eggs and larvae taken with l-meter net on Albatross III cruise no. 48, April 24 to May 8, 1953

Tow			Species	Number of eggs	Modal stage	Number of larvae	Average diameter or length	Range
No.	Date	Time						
1	Apr. 25	0815	* ${ }^{\text {A }}$	-	-	2	$\begin{gathered} m m \\ 5.06 \end{gathered}$	$\begin{gathered} m m . \\ 4.98-5.14 \end{gathered}$
2	Apr. 25	2045	WH	-	-	1	41	-
			HE	-	-	9	37.2	35-39
			E	-	-	4	57.3	52-61
			SC	-	-	2	14.5	14-15
			H	-	-	19	5.20	3.80-6.50
			C	-	-	5	7.8	6-12
			A	-	-	4	9.4	7-12
3	Apr. 26	0915	*RO	-	-	3	2.04	2.00-2.06
			P	-	-	1	19	-
4	Apr. 26	2350	H-C	6	II	-	1.54	1.46-1.62
			A	52	V	-	2.39	2.22-2.60
			* H	-	-	5	4.02	3.74-4.28
			* ${ }^{\text {C }}$	-	-	3	4.29	4.12-4.53
			* ${ }^{\text {A }}$	-	-	89	5.54	4.44-6.05
			* CU	-	-	1	4.03	-
			P	-	-	4	27.5	25-30
			WO	-	-	1	55	-
5	Apr. 27	1315	* H	-	-	1	3.74	-
			* ${ }^{\text {C }}$	-	-	2	4.09	4.00-4.18
			*A	-	-	11	5.63	5.41-5.92
			*RO	-	-	1	2.12	-
6	Apr. 28	0900	-	-	-	-	-	-
7	Apr. 28	2120	P	-	-	5	26.4	22-32
			HE	-	-	5	43.3	39-46
			WH	-	-	1	50	-
8	Apr. 29	1330	*RO	-	-	1	2.00	-
9	Apr. 29	2345	H-C	2	V	-	1.36	1.31-1.41
			RO	3	V	-	0.89	0.88-0.90
			*H	-	-	8	4.21	3.47-4.49
			* C	-	-	4	4.40	4.22-4.69
			*A	-	-	5	5.47	5.10-5.88
			*RO	-	-	5	2.13	2.01-2.18

Table 6.--Stages and sizes of fish eggs and larvae taken with l-meter net on Albatross III cruise no. 48, April 24 to May 8, 1953--Continued

Tow			Species	Number of eggs	Modal stage		Average diameter or length	Range
No.	Date	Time						
			$\begin{aligned} & \text { *Y } \\ & \text { AM } \\ & S Y \\ & S C \end{aligned}$	-	-	$\begin{array}{r} 2 \\ 18 \\ 1 \\ 1 \end{array}$	$\begin{aligned} & \quad m m . \\ & 2.69 \\ & 17.9 \\ & 32 \\ & 10 \end{aligned}$	$\begin{gathered} m m . \\ 2.45-2.92 \\ 11-25 \end{gathered}$
10	Apr. 30	1300	$\begin{array}{r} R O \\ * R O \\ * Y \end{array}$	29 - -	V	29	$\begin{aligned} & 0.89 \\ & 2.15 \\ & 2.24 \end{aligned}$	$\begin{gathered} 0.86-0.92 \\ 1.97-2.31 \\ - \end{gathered}$
11	May 1	0100	$\begin{gathered} \mathrm{H}-\mathrm{C} \\ * \mathrm{CU} \\ * \mathrm{RO} \\ \mathrm{P} \\ \mathrm{WH} \\ \mathrm{BU} \end{gathered}$	1	V	$\begin{aligned} & - \\ & 6 \\ & 3 \\ & 1 \\ & 7 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.52 \\ & 3.69 \\ & 2.05 \\ & 26 \\ & 36.4 \\ & 27 \end{aligned}$	$\begin{gathered} 3.20-4.28 \\ 2.03-2.06 \\ -. \\ 13-45 \end{gathered}$
12	May 1	2130	$\begin{array}{r} H \\ * H \\ * R O \\ * Y \\ A M \end{array}$	2	VI	$\begin{array}{r} - \\ 3 \\ 1 \\ 3 \\ 11 \end{array}$	$\begin{gathered} 1.56 \\ 4.11 \\ 2.09 \\ 2.83 \\ 54.9 \end{gathered}$	$\begin{gathered} 1.52-1.59 \\ 3.96-4.31 \\ - \\ 2.54-3.20 \\ 44-61 \end{gathered}$
13	May 2	1100	$\begin{gathered} \mathrm{H}-\mathrm{C} \\ \mathrm{Y} \\ * \mathrm{H} \\ * \mathrm{~A} \\ * \mathrm{Y} \\ \mathrm{H} \\ \mathrm{C} \end{gathered}$	12 14 -	V	$\begin{array}{r} - \\ 9 \\ 4 \\ 25 \\ 8 \\ 21 \end{array}$	$\begin{aligned} & 1.44 \\ & 0.94 \\ & 3.80 \\ & 5.06 \\ & 2.72 \\ & 6.90 \\ & 6.92 \end{aligned}$	$\begin{aligned} & 1.27-1.55 \\ & 0.86-1.01 \\ & 3.40-4.15 \\ & 4.12-5.48 \\ & 2.06-3.33 \\ & 6.04-8.10 \\ & 6.04-7.52 \end{aligned}$
14	May 3	0030	$\begin{array}{r} \mathrm{CU} \\ * \mathrm{CU} \\ \mathrm{p} \\ \mathrm{HE} \end{array}$	5	VI	$\begin{array}{r} - \\ 15 \\ 1 \\ 20 \end{array}$	$\begin{aligned} & 1.39 \\ & 4.29 \\ & 18 \\ & 45.3 \end{aligned}$	$\begin{gathered} 1.37-1.43 \\ 4.08-4.66 \\ - \\ 41-51 \end{gathered}$
15	May 3	1405	H	1	VI	-	1.46	-
16	May 4	0820	$\begin{array}{r} * H \\ * \mathrm{RO} \\ * \mathrm{Y} \\ * \mathrm{~A} \end{array}$	-	-	5 11 8 4	$\begin{aligned} & 4.01 \\ & 1.95 \\ & 2.80 \\ & 5.24 \end{aligned}$	$\begin{aligned} & 3.84-4.31 \\ & 1.68-2.12 \\ & 2.00-2.92 \\ & 4.95-5.56 \end{aligned}$

Table 6.--Stages and sizes of fish eggs and larvae taken with l-meter net on Albatross III cruise no. 48, April 24 to May 8, 1953--Continued

Tow			Species	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { eggs } \end{gathered}$	Modal stage	Number of larvae	Average diameter or length	Range
No.	Date	Time						
17	May 5	0600					$m m$.	7 m .
			H-C	92	V	-	1.51	1.42-1.65
			CU	4	V	-	1.36	1.30-1.42
			A	1	V	-	2.70	-
			* H	-	-	44	4.23	3.81-4.79
			* C	-	-	5	3.97	3.74-4.49
			* CU	-	-	6	3.96	3.26-4.79
			* A	-	-	1	5.78	-
18	May 5	1900	H-C	4	V	-	1.57	1.46-1.62
			CU	23	V	-	1.37	1.27-1.46
			RO	1	I	-	0.86	-
			* H	-	-	10	4.05	3.87-4.56
			* CU	-	-	18	3.99	3.65-4.34
19	May 6	0820	CU	2	VI	-	1.51	1.48-1.54
			RO	56	V	-	0.89	0.83-0.97
			* CU	-	-	1	4.59	-
			*RO	-	-	27	2.16	2.01-2.38
20	May 6	1800	H-C	3	VI	-	1.47	1.44-1.50
			CU	1	V	-	1.47	-
			RO	23	V	-	0.88	0.84-0.90
			*RO	-	-	14	2.13.	1.94-2.38
			P	-	-	9	21.9	21-23
			C	-	-	1	32	-
21	May 7	0815	CU	84	V	-		
			* CU	-	-	16	4.32	4.01-4.59
			P	-	-	2	16.5	16-17
			C	-	-	1	8	-
22	May 7	2030	H	-	-	3	4.87	4.08-6.04
			C	-	-	1	6.08	-
			RH	-	-	1	3.02	3.88-5.78
			Y		-	8	4.81	3.88-5.78

*Hatched aboard ship.

Table 7.--Stages and sizes of fish eggs and larvae taken with l-meter net on Albatross III cruise no. 50, May 25 to June 3, 1953

Tow			Species	Number of eggs	Modal stage	Number of larvae	Average diameter or length	Range
No.	Date	Time						
1	May 26	0430	A WH	-	-	29 2	$m m$. 8.4 18.0	$m m$. $6.50-13$ $13-23$
2	May 26	1715	-	-	-	-	-	-
3	May 27	0845	H-C	3	V	-	1.49	1.46-1.52
			CU	12	V	-	1.40	1.36-1.50
			RO	1	V	-	0.95	-
			Y	4	V	-	0.88	0.86-0.92
			* H	-	-	4	4.16	3.87-4.69
			* + U	-	-	14	4.08	3.90-4.50
			*RO	-	-	4	2.16	2.00-2.35
			*Y	-	-	11	2.91	2.41-3.36
4	May 27	2030	C	-	-	2	24.5	24-25
5	May 28	1045	M	2	III	-	1.16	1.16-1.17
			*M	-	-	2	3.57	3.33-3.81
			*RO	-	-	3	2.15	2.04-2.24
6	May 28	2215	M	4	V	-	1.21	1.14-1.24
			WF	1	-	-	1.36	-
			*M	-	-	5	3.45	3.30-3.80
			*WF	-	-	2	4.72	4.18-5.26
			*RO	-	-	3	2.10	2.06-2.12
			RH	-	-	1	6.40	-
			Y	-	-	1	13	-
			AM	-	-	45	24.9	10-40
7	May 29	1230	H-C	3	VI	-	1.38	1.36-1.41
			CU	4	VI	-	1.46	1.41-1.48
			Y	3	III	-	0.88	0.87-0.91
			RO	22	V	-	0.89	0.83-0.92
			*H	-	-	1	4.11	.
			* CU	-	-	2	4.65	4.05-4.08
			*Y	-	-	4	3.23	3.09-3.33
			*WF	-	-	2	5.44	5.37-5.51
8	May 30	0045	AL	-	-	1	22	-

Table 7.--Stages and sizes of fish eggs and larvae taken with l-meter net on Albatross III cruise no. 50, May 25 to June 3, 1953--Continued

Tow			Species	Number of eggs	Modal stage	Number of larvae	Average diameter or length	Range
No.	Date	Time						
9	May 30	1420					$m m$.	$m m$.
			$\mathrm{H}-\mathrm{C}$	23	V	-	1.44	1.33-1.59
			CU	1	V	-	1.36	-
			RO	3	V	-	0.86	0.83-0.89
			Y	106	V	-	0.89	0.83-0.98
			* H	-	-	21	3.83	3.52-4.31
			* CU	-	-	2	3.85	3.55-4.15
			*Y	-	-	130	2.60	2.25-3.01
10	May 31	0245	*RO	-	-	4	0.93	0.80-0.98
			R	-	-	6	6.10	5.40-6.52
			AM	-	-	1	35	-
11	May 31	1845	C	-	-	1	22	-
12	June 1	0845	SH	6	V	-	1.00	0.95-1.05
			* SH	-	-	42	3.01	2.73-3.30
13	June 1	2100	H	-	-	150	21.5	9-29
			WH	-	-	2	29	21-37
14	June 2	0945	SH	30	V	-	0.97	0.89-1.11
			RH	7	V	-	0.76	0.74-0.78
			RO	6	V	-	0.82	0.80-0.84
			M	6	V	-	1.20	1.16-1.29
			U	7	V	-	1.02	1.01-1.03
			*SH	-	-	22	2.99	2.65-3.47
			*RH	-	-	2	2.03	1.90-2.17
			*RO	-	-	2	2.01	-
			*M	-	-	6	3.72	3.23-4.28
			* U	-	-	4	2.27	2.11-2.38
			RO	-	-	13	5.54	3.75-8.23
			RH	-	-	1	11	-
			SY	-	-	1	8	-
15	June 2	1845	CN	60	V	-	0.91	0.82-1.01
			M	17	V	-	1.15	1.01-1.20
			WE	4	V	-	0.87	0.82-0.95
			U	4	V	-	0.74	0.70-0.76
			* ${ }^{\text {CN }}$	-	-	98	2.75	2.41-3.14
			*M	-	-	6	3.27	3.07-3.52

Table 7.--Stages and sizes of fish eggs and larvae taken with l-meter net on Albatross III cruise no. 50, May 25 to June 3, 1953--Continued

Tow			Species	Number of eggs	Modal stage	Number of larvae	Average diameter or length	Range
No.	Date	Time						
16	June 3	0445	*WE	-	-	3 1 54 1	$\begin{array}{r} m m . \\ 2.71 \\ 1.97 \\ 6.08 \\ 6.04 \end{array}$	$\begin{gathered} m m . \\ 2.53-2.92 \\ - \\ 2.80-13.62 \end{gathered}$
			CN	84	V	-	0.90	0.84-0.97
			M	18	V	-	1.12	0.95-1.29
			MH	1	V	-	1.75	
			U	14	V	-	0.83	0.76-0.88
			* CN	-	-	65	2.60	2.12-2.97
			*M	-	-	10	2.73	2.14-3.07
			* U	-	-	15	2.00	1.84-2.11
			SH	-	-	1	3.51	-
			SY	-	-	24	15.1	11-20

*Hatched aboard ship.

Table 8.--Stages and sizes of fish eggs and larvae taken with the Hardy Recorder on Albatross III cruise no. 46, March 19 to April 2, 1953

Surface

Loading number	Gauze section	Species	Number of eggs in indicated stage						Larvae			
			I	II	III	IV	V	VI	Species	Number	Length	Range
1											mm.	mm.
	1-6	-	-	-	-	-	-	-	-	-	-	-
	7	-	-	-	-	-	-	-	HE	1	37	-
	8	-	-	-	-	-	-	-	HE	1	50	-
	9-21	-	-	-	-	-	-	-	-	-	-	-
	23-43	-	-	-	-	-	-	-	-	-	-	-
	46-64	-	-	-	-	-	-	-	-	-	-	-
	66-87	-	-	-	-	-	-	-	-	-	-	-
2	1-16	-	-	-	-	-	-	-	-	-	-	-
	17	c	-	1	-	-	-	-	-	-	-	-
		A	-	1	-	-	-	-	-	-	-	-
	18	A	-	1	-	-	-	-	-	-	-	-
	19-20	-	-	-	-	-	-	-	-	-	-	-
	22-23	-	-	-	-	-	-	-	-	-	-	-
	24	RO	-	-	-	-	1	-	-	-	-	-
	25-26	-	-	-	-	-	-	-	-	-	-	-
	27	C	1	-	-	-	-	-	-	-	-	-
	28	C	1	-	-	-	-	-	-	-	-	-
	29-42	-	-	-	-	-	-	-	-	-	-	-
	$44-58$ 59	C	-	-	-	-	-	-	-	-	-	-
	60-64	-	-	-	-	-	-	-	-	-	-	-
	66-77	-	-	-	-	-	-	-	-	-	-	-
	78	H	-	1	1	1	-	-	-	-	-	-
	79-81	-	-	-	-	-	-	-	-	-	-	-
	82	H	-	2	-	-	-	-	-	-	-	-
	83	H	-	2	-	-	-	-	-	-	-	-
	84-85	-	-	-	-	-	-	-	-	-	-	-
	85-97	-	-	-	-	-	-	-	-	-	18	-
	$\begin{gathered} 98 \\ 99-100 \end{gathered}$	-	-	-	-	-	-	-	P	1	18	-
			-		-	-	-	-	-			
3	1-20	-	-	-	-	-	-	-	-	-	-	-
	22-23	-	-	-	-	-	-	-	-	-	-	-
	24	H	-	-	-	-	1	-	-	-	-	-
	25	${ }_{\mathrm{H}}^{\mathrm{H}}$	-	-	-	-	1	-	-	-	-	-
	26 $27-36$	$\xrightarrow{\text { H }}$	-	-	-	-	1	-	-	-	-	-
	37	H	-	-	-	-	1	-	-	-	-	-

Table 8.--Stages and sizes of fish eggs and larvae taken with the Hardy Recorder on Albatross Ill cruise no. 46, March 19 to April 2, 1953--Continued

Surface--Continued

Loading number	Gauze section	Species	Number of eggs in indicated stage						Larvae			
			I	II	III	IV	V	VI	Species	Number	Length	Range
3-Cont.											$m m$.	$m m$.
	38-41	-	-	-	-	-	-	-	-	-	-	-
	47	C	-	-	-	-	1	-	-	-	-	-
	48	H	-	-	-	-	-	1	-	-	-	-
		C	-	-	-	-	1	-	-	-	-	-
	49	H	-	-	-	-	2	-	-	-	-	-
		C	-	-	1	2	-	-	-	-	-	-
	50	H	-	-	-	-	1	-	-	-	-	-
	51	H	-	-	1	-	-	-	-	-	-	-
		C	-	-	1	-	-	-	-	-	-	-
	52	H	-	-	2	1	-	-	-	-	-	-
	53	H	-	-	3	-	1	-	-	-	-	-
	54	H	-	-	-	-	1	-	-	-	-	-
	55	H	-	-	-	1	-	-	-	-	-	-
	56	H	-	-	-	-	2	-	-	-	-	-
	57	H	-	-	-	-	1	-	-	-	-	-
	58	-	-	-	-	-	-	-	-	-	-	-
	60	H	-	-	-	1	-	-	-	-	-	-
	61	-	-	-	-	-	-	-	-	-	-	-
	62	H	-	-	-	-	1	-	-	-	-	
	63	H	-	-	-	-	2	-	-	-	-	-
	64-68	-	-	-	-	-	-	-	-	-	-	-
	69	H	-	-	-	-	1	-	-	-	-	-
	70	A	-	-	-	-	1	-	-	-	-	-
	71-73	-	-	-	-	-	-	-	-	-	-	-
	74	H	-	-	-	-	1	-	-	-	-	-
	75-80	-	-	-	-	-	-	-	-	-	-	-
	81	H	-	-	-	-	1	-	-	-	-	-
	82-83	-	-	-	-	-	-	-	-	-	-	-
	84	H	-	-	-	-	3	-	-	-	-	-
	85	-	-	-	-	-	-	-	-	-	-	-
4	1-5	-	-						-	-		-
	11-38	-	-	-	-	-	-	-		-	-	-
	40-44	-	-	-	-	-	-	-	-	-	-	-
	45	H	-	-	-	1	-	-	-	-	-	-
	46	-	-	-	-	-	-	-	-	-	-	-
	47	H	-	-	-	-	1	-	-	-	-	-
	48	H	-	-	1	1	-	-	-	-	-	-
	49	H	-	-	-	-	2	-	-	-	-	-

Table 8.--Stages and sizes of fish eggs and larvae taken with the Hardy Recorder on Albatross III cruise no. 46, March 19 to April 2, 1953--Continued

Surface--Continued

Loading number	Gauze section	Species	Number of eggs in indicated stage						Larvae			
			I	II	III	IV	V	VI	Species	Number	Length	Range
4-- Cont.											mm.	$m m$.
	49	C	-	-	-	-	1	-	-	-	-	-
	50	H	-	-	-	1	2	-	-	-	-	-
	51	H	-	-	-	-	3	-	-	-	-	-
	52	H	-	-	2	-	1	1	-	-	-	-
	53	H	-	-	-	2	1	-	-	-	-	-
	54	H	-	-	-	-	4	-	-	-	-	-
	55	H	-	-	-	1	1	-	-	-	-	-
	56	H	-	-	-	-	3	-	-	-	-	-
	57	-	-	-	-	-	-	-	-	-	-	-
	58	H	-	-	1	-	3	-	-	-	-	-
	59	H	-	-	1	-	-	-	-	-	-	-
	60	H	-	-	-	-	1	-	-	-	-	-
	61	H	-	-	1	-	-	-	-	-	-	-
	62-64	-	-	-	-	-	-	-	-	-	-	-
	66	H	-	-	-	-	3	-	-	-	-	-
	67-93	-	-	-	-	-	-	-	-	-	-	-
5	2-17	-	-	-	-	-	-	-	-	-	-	-
	18	H	-	-	-	-	1	-	-	-	-	-
	19	-	-	-	-	-	-	-	-	-	-	-
	20	H	-	-	-	-	1	-	-	-	-	-
	21	-	-	-	-	-	-	-	-	-	-	-
	22	H	-	-	-	1	-	-	-	-	-	-
	23	H	-	-	-	-	1	-	-	-	-	-
	24-29	-	-	-	-	-	-	-	-	-	-	-
	29-37	-	-	-	-	-	-	-	-	-	-	-
	38	-	-	-	-	-	-	-	W	1	25	-
	39-49	-	-	-	-	-	-	-	-	-	-	-
	50	H	-	-	-	2	-	-	-	-	-	-
	51	H	-	-	5	-	-	-	HE	1	44	-
	52	H	-	-	1	-	-	-	-	-	-	-
	53	H	-	-	3	-	-	-	HE	2	40	30-50
	56	H	-	-	-	-	3	-	-	-	-	-
		C	-	-	-	-	1	-	-	-	-	-
	57	H	-	-	-	-	4	-	HE	1	49	-
		C	-	-	-	-	1	-	-	-	-	-
	58	H	-	-	2	-	-	-	-	-	-	-
	59	H	-	-	2	-	-	1	-	-	-	-
	60	H	-	-	2	I	-	-	-	-	-	-

Table 8.--Stages and sizes of fish eggs and larvae taken with the Hardy Recorder on Albatross IIl cruise no. 46, March 19 to April 2, 1953--Continued

> Surface--Continued

Loading number	$\begin{aligned} & \text { Gauze } \\ & \text { section } \end{aligned}$	Species	Number of eggs in indicated stage						Larvae			
			I	II	III	IV	V	VI	Species	Number	Length	Range
5-Cont.											mm.	$m m$.
	61	H	-	-	1	1	1	1	-	-	-	-
	62	H	-	-	2	1	4	1	-	-	-	-
	63	H	-	1	1	1	1	-	-	-	-	-
	64	H	-	2	2	-	4	-	-	-	-	-
	65	H	-	-	-	1	-	-	-	-	-	-
	66	-	-	-	-	-	-	-	-	-	-	-
	67	H	-	-	-	1	2	-	-	-	-	-
	68	H	-	-	1	-	-	-	-	-	-	-
	69-72	-	-	-	-	-	-	-	-	-	-	-
	73	-	-	-	-	-	-	-	HE	1	-	-
	74-75	-	-	-	-	-	-	-	-	-	-	-
	76	H	-	-	-	-	1	-	-	-	-	-
	77	H	-	-	-	-	6	-	-	-	-	-
	78	H	-	-	-	-	1	-	-	-	-	-
	79	H	-	-	-	-	1	-	-	-	-	-
	80	H	-	-	-	-	-	6	-	-	-	-
		C	-	-	-	1	2	-	-	-	-	-
	81	H	-	-	-	-	2	-	-	-	-	-
		C	-	-	-	-	-	1	-	-	-	-
	82-83	-	-	-	-	-	-	-	-	-	-	-
	84	-	-	-	-	-	-	-	C	2	4.82	-
	85	H	-	-	-	-	1	-	C	1	4.61	-
	86	H	-	-	-	-	1	1	-	-	-	-
	87	A	-	-	-	-	-	1	-	-	-	-
	88	A	-	-	-	-	-	1	-	-	-	-
	89-90	-	-	-	-	-	-	-	-	-	-	-
	91	H	-	-	-	-	1	-	-	-	-	-
	98	-	-	-	-	-	-	-	HE	1	-	-
	99	-	-	-	-	-	-	-	HE	1	45	-
6	57	-	-	-	-	-	-	-	-	-	-	-
	58	-	-	-	-	-	-	-	C	1	4.76	-
	59-66		-	-	-	-	-	-	-	-	-	-
	67	H	-	-	-	-	1	-	-	-	-	-
	68-75	-	-	-	-	-	-	-	-	-	-	-
	76	H	-	-	-	-	1	-	-	-	-	-

Table 8.--Stages and sizes of fish eggs and larvae taken with the Hardy Recorder on Albatross III cruise no. 46, March 19 to April 2, 1953--Continued

10 Meters

Loading number	Gauze section	Species	Number of eggs in indicated stage						Larvae			
			I	II	III	IV	v	VI	Species	Number	Length	Range
1	1-74	-	-	-	-	-	-	-	-	-	$\stackrel{\text { mm. }}{ }$	mm.
2	1-86	-	-	-	-	-	-	-	-	-	-	-
3	1-16	-	-	-	-	-	-	-	-	-	-	-
	18-34	-	-	-	-	-	-	-	-	-	-	-
	40	C	-	-	-	-	2	-	-	-	-	-
	41	H	-	-	-	-	2	-	-	-	-	-
		c	-	-	-	-	4	-	-	-	-	-
	42-43		-	-	-	-	-	-	-	-	-	-
	44	H	-	-	-	-	1	-	-	-	-	-
	45-46	-	-	-	-	-	-	-	-	-	-	-
	47	H	-	-	-	-	2	-	-	-	-	-
	49-50	-	-	-	-	-	-	-	-	-	-	-
	51	H	-	-	-	-	1	-	-	-	-	-
	52-55	-	-	-	-	-	-	-	-	-	-	-
	56	H	-	-	-	-	1	-	-	-	-	-
	57-58	,	-	-	-	-	-	-	-	-	-	-
	59	H	-	-	-	-	1	-	c	1	4.52	-
	60-67	-	-	-	-	-	-	-	-	-	-	-
	68	H	-	I	-	-	-	-	-	-	-	-
	69	H	-	$=$	-	-	1	1	-	-	-	-
4	1	-	-	-	-	-	-	-	HE	1	33	-
	2	-	-	-	-	-	-	-	-		-	-
	3	-	-	-	-	-	-	-	HE	1	33	-
	4	-	-	-	-	-	-	-	-	-	-	-
	10-11	-	-	-	-	-	-	-	-	-	-	-
	12	-	-	-	-	-	-	-	HE	1	36	-
	13	-	-	-	-	-	-	-	HE	1	36	-
	14 15	-	-	-	-	-	-	-	R	1	6.04	-
	15 16	-	-	-	-	-	-	-	$\overline{-}$	-	-	-
	17	H	-	-	-	-	1	-	R	2	$\stackrel{5}{5.00}$	-
	18-21	-	-	-	-	-	-	-			-	-
	22	-	-	-	-	-	-	-	C	1	4.09	-
	23-27	-	-	-	-	-	-	-	-	-	-	-
	32-34	-	-	-	-	-	-	-	-	-	-	-
	35									1	6.51	

Table 8.--Stages and sizes of fish eggs and larvae taken with the Hardy Recorder on Albatross III cruise no. 46, March 19 to April 2, 1953--Continued

10 Meters--Continued

Loading number	Gauze section	Species	Number of eggs in indicated stage						Larvae			
			I	II	III	IV	V	VI	Species	Number	Length	Range
4-Cont.											mm.	mm.
	36-42	-	-	-	-	-	-	-	-	-	-	-
	43	H	-	-	-	-	1	-	-	-	-	-
	44-49	-	-	-	-	-	-	-	-	-	-	-
	51-70	-	-	-	-	-	-	-	-	-	-	-
	72-90	-	-	-	-	-	-	-	-	-	-	-
	1-18	-	-	-	-	-	-	-	-	-	-	-
	20-22	-	-	-	-	-	-	-	-	-	-	-
	23	H	-	-	-	-	2	-	-	-	-	-
	24	H	-	-	-	-	1	-	-	-	-	-
	25	H	-	-	1	-	4	-	-	-	-	-
	26	-	-	-	-	-	-	-	-	-	-	-
	27	H	-	-	-	-	1	-	-	-	-	-
	28-34	-	-	-	-	-	-	-	-	-	-	-
	35	H	-	-	-	-	2	-	-	-	-	-
	36	H	-	-	-	-	2	-	-	-	-	-
	37	H	-	-	2	-	17	1	-	-	-	-
	38	H	-	-	-	-	2	-	-	-	-	-
	40-43	-	-	-	-	-	-	-	-	-	-	-
	44	-	-	-	-	-	-	-	C	2	4.81	$\begin{aligned} & 4.57 \\ & 5.05 \end{aligned}$
	45	-	-	-	-	-	-	-	C	1	-	
	46	-	-	-	-	-	-	-	C	1	-	-
		-	-	-	-	-	-	-	H	1	4.71	-
	47-50	-	-	-	-	-	-	-	-	-	-	-
	51	-	-	-	-	-	-	-	P	1	-	-
	52-53	-	-	-	-	-	-	-	-	-	-	-

Table 9.--Stages and sizes of fish eggs and larvae taken with the Hardy Recorder on Albatross III cruise no. 48, April 24 to May 8, 1953

Surface

Loading number	Gauze section	Species	Number of eggs in indicated stage						Larvae			
			I	II	III	IV	V	VI	Species	Number	Length	Range
1											mm.	mm
		-	-	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	C	1	6.04	-
	3	-	-	-	-	-	-	-	-	-	-	-
	4	-	-	-	-	-	-	-	RO	1	2.75	-
	5-16	-	-	-	-	-	-	-	-	-	-	-
	17	RO	-	-	-	-	1	-	-	-	-	-
	18-28	-	-	-	-	-	-	-	-	-	-	-
	30-43	-	-	-	-	-	-	-	-	-	-	-
	44	-	-	-	-	-	-	-	C	1	12	-
	45	-	-	-	-	-	-	-	C	1	13	-
	46-48	-	-	-	-	-	-	-	-	-	-	-
	49	-	-	-	-	-	-	-	C	1	13	-
	50	-	-	-	-	-	-	-	-	-	-	-
	53	-	-	-	-	-	-	-	-	-	-	-
	54	-	-	-	-	-	-	-	C	1	13	-
	55	-	-	-	-	-	-	-	C	1	11	-
	56-58	-	-	-	-	-	-	-	-	-	-	-
	59	H	-	-	-	-	1	-	H	1	6.51	-
	60	-	-	-	-	-	-	-	-	-	-	-
	61	-	-	-	-	-	-	-	HE	1	40	-
	62	-	-	-	-	-	-	-	HE	2	43	-
	63-73	-	-	-	-	-	-	-	-	-	-	-
	75-93	-	-	-	-	-	-	-	-	-	-	-
	94	RO	-	1	-	-	-	-	-	-	-	-
	95-97	-	-	-	-	-	-	-	-	-	-	-
2	1-16	-	-	-	-	-	-	-	-	-	-	-
	17	A	-	-	-	-	1	-	-	-	-	-
	18-21	-	-	-	-	-	-	-	-	-	-	-
	23-42	-	-	-	-	-	-	-	-	-	-	-
	43	H	-	-	-	-	1	-	-	-	-	-
	44	H	-	-	-	-	3	-	-	-	-	-
	45	H	-	-	1	-	5	-	-	-	-	-
	46	H	-	-	1	-	-	-	-	-	-	-
	47	H	-	-	1	-	1	-	-	-	-	-
	48	H	-	-	-	-	2	-	-	-	-	-
	49	H	-	-	1	-	1	-	-	-	-	
	50-55	-	-	-	-	-	-	-	-	-	-	-
	56	-					-		-	-	-	-

Table 9.--Stages and sizes of fish eggs and larvae taken with the Hardy Recorder on Albatross III cruise no. 48, April 24 to May 8, 1953--Continued

Surface--Continued

Loading number	Gauze section	Species	Number of eggs in indicated stage						Larvae			
			I	II	III	IV	V	VI	Species	Number	Iength	Range
2--											$m m$.	mm.
	57	H	-	-	-	-	3	-	-	-	-	-
	58	H	-	-	-	-	1	-	-	-	-	-
	59	H	-	-	-	-	1	-	-	-	-	-
	60	-	-	-	-	-	-	-	-	-	-	-
	61	H	-	-	-	-	1	-	-	-	-	-
	62-64	-	-	-	-	-	-	-	-	-	-	-
	65	H	-	-	-	-	3	-	-	-	-	-
	66-67	-	-	-	-	-	-	-	-	-	-	-
	68	H	-	-	-	-	1	-	-	-	-	-
	69	H	-	-	1	-	-	-	-	-	-	-
	70	-	-	-	-	-	-	-	-	-	-	-
	71	H	-	-	-	-	1	-	-	-	-	-
	72		-	-	-	-	-	-	-	-	-	-
	74-93	-	-	-	-	-	-	-	-	-	-	-
3	1-2	-	-	-	-	-	-	-	-	-	-	-
	3	RO	-	-	-	-	1	-	-	-	-	-
	$4-11$		-	-	-	-		-	-	-	-	-
	12	H	-	-	-	1	-	-	-	-	-	-
	13-15	-	-	-	-	-	-	-	-	-	-	-
	17-28	-	-	-	-	-	-	-	-	-	-	-
	29	RO	-	-	-	-	1	-	-	-	-	-
	30-35	-	-	-	-	-	-	-	-	-	0	-
	36	-	-	-	-	-	-	-	P	1	20	-
	37	-	-	-	-	:	-	-	-	-	-	-
	39	$-$	-	-	-	\because	-	-	-	-	-	-
	40	RO	-	-	-	-	1	-	-	-	-	-
	41.4	$\overline{\mathrm{H}}$	-	-	-	--	\bar{I}	-	-	-	-	-
	45-51		-	-	-	-	-	-	-	-	-	-
	52	Y	-	-	-	-	1	-	-	-	-	-
	53-59	-	-	-	-	-	-	-	-	-	-	-
	62	H	-	-	-	-	1	-	-	-	-	-
	63-72		-	-	-	-	-	-	-	-	6. 0	
	$\begin{gathered} 73 \\ 74-89 \end{gathered}$	-	-	-	-	-	-	-	C	1	6.08	-
	$74-89$ 90	-	-	-	-	-	I	-	-	-	-	-
	91-94	-	-	-	-	-	-	-	-	-	-	-

Table 9.--Stages and sizes of fish eggs and larvae taken with the Hardy Recorder on Albatross III cruise no. 48, Apri工 24 to May 8, 1953--Continued

Surface--Continued

Loading number	Gauze Section	Species	Number of eggs in indicated stage						Larvae			
			I	II	III	IV	V	VI	Species	Number	Length	Range
4											mm.	$m m$.
	1-16	-	-	-	-	-	-	-	-	-	-	-
	17	Y	-	-	-	-	1	-	-	-	-	-
	18	-	-	-	-	-	-	-	-	-	-	-
	20	-	-	-	-	-	-	-	-	-	-	-
	21	Y	-	-	-	-	-	1	-	-	-	-
	22-40	-	-	-	-	-	-	-	-	-	-	-
	42-43	-	-	-	-	-	-	-	-	-	-	-
	44	H	-	-	-	-	1	-	-	-	-	-
	45	-	-	-	-	-	-	-	-	-	-	-
	46	H	-	-	-	-	1	1	-	-	-	-
	47-48	-	-	-	-	-	-	-	-	-	-	-
	49	H	-	-	-	-	1	-	-	-	-	-
	50	H	-	-	1	-	5	-	-	-	-	-
	51	-	-	-	-	-	-	-	-	-	-	-
	52	H	-	-	-	-	1	-	-	-	-	-
	53	-	-	-	-	-	-	-	-	-	-	-
	54	H	-	-	-	-	1	-	-	-	-	-
	55	H	-	-	-	-	1	-	-	-	-	-
	56-60	-	-	-	-	-	-	-	-	-	-	-
	61	H	-	-	-	-	1	-	-	-	-	-
	63-91	-	-	-	-	-	-	-	-	-	-	-
	92	-	-	-	-	-	-	-	U	1	24	-
	93-95	-	-	-	-	-	-	-	-	-	-	-
5	1-16	-	-	-	-	-	-	-	-	-	-	-
	17	-	-	-	-	-	-	-	AM	1	-	-
	18-23	-	-	-	-	-	-	-	-	-	-	-
	24	-	-	-	-	-	-	-	AM	1	-	-
	25-34	-	-	-	-	-	-	-	-	-	-	-
	35	H	-	-	1	-	2	-	-	-	-	-
	36	H	-	-	-	-	1	-	-	-	-	-
	38	H	-	-	-	-	5	-	-	-	-	-
	39	-	-	-	-	-	-	-	-	-	-	-
	40	H	-	-	-	1	1	-	-	-	-	-
	41-42	-	-	-	-	-	-	-	-	-	-	
	43	H	-	-	-	-	1	-	-	-	-	-
	14.4	H	-	-	-	1	1	-	-	-	-	-
	45	H	-	-	-	-	3	-	-	-	-	-
	46	-	-	-	-	-	-	-	-	-	-	-

Table 9.--Stages and sizes of fish eggs and larvae taken with the Hardy Recorder on Albatross III cruise no. 48, April 24 to May 8, 1953--Continued

Surface--Continued

Loading number	Gauze section	Species	Number of eggs in indicated stage						Larvae			
			I	II	III	IV	V	VI	Species	Number	Length	Range
4-- Cont.											$m m$.	$m m$.
	47	H	-	-	-	-	1	-	-	-	-	-
	48-49	-	-	-	-	-	-	-	-	-	-	-
	50	H	-	-	-	-	1	-	-	-	-	-
	51	-	-	-	-	-	-	-	-	-	-	-
	52	H	-	-	-	-	1	-	-	-	-	-
	53-59	-	-	-	-	-	-	-	-	-	-	-
	61	H	-	-	-	-	1	-	-	-	-	-
	62-63	-	-	-	-	-	-	-	--	-	-	-
	64	H	-	-	-	-	1	-	-	-	-	-
	65-67	-	-	-	-	-	-	-	-	-	-	-
	68	H	-	-	-	-	1	-	-	-	-	-
	69-81	-	-	-	-	-	-	-	-	-	-	-
	83-89	-	-	-	-	-	-	-	-	-	-	-
	90	-	-	-	-	-	-	-	AM	1	23	-
	91-92	-	-	-	-	-	-	-	-	-	-	-
	93	-	-	-	-	-	-	-	AM	1	31	-
	94-98	-	-	-	-	-	-	-	-	-	-	-
	99	H	-	-	-	-	1	-	-	-	-	-
		CU	-	-	-	-	1	-	-	-	-	-
6	1-3	-	-	-	-	-	-	-	-	-	-	-
	4	Y	-	-	-	-	1	-	-	-	-	-
	5-13	-	-	-	-	-	-	-	-	-	-	-
	14	-	-	-	-	-	-	-	Y	1	6.04	-
	15-19	-	-	-	-	-	-	-	-	-	-	-
	20	H	-	-	-	-	1	-	-	-	-	-
	21	-	-	-	-	-	-	-	-	-	-	-
	22	CU	-	-	-	-	1	-	-	-	-	-
	23	CU	-	-	-	-	1	-	-	-	-	-
	25	CU	-	-	-	-	1	-	-	-	-	-
	26-36	-	-	-	-	-	-	-	-	-	-	-
	37	-	-	-	-	-	-	-	H	1	9	-
	38-41	-	-	-	-	-	-	-	-		-	-
	42		-	-	-	-	-	-	Y	1	8	-
	43	-	-	-	-	-	-	-	Y	1	8	-
	44-45	-	-	-	-	-	-	-	-		-	-
	47	-	-	-	-	-	-	-	Y	1	8	-
	48	-	-	-	-	-	-	-	Y	1	8	-
	49		-			-	-	-	Y	1	13	-

Table 9．－－Stages and sizes of fish eggs and larvae taken with the Hardy Recorder on Albatross III cruise no．48，April 24 to May 8，1953－－Continued

Surface－－Continued

Loading number	Gauze section	Species	Number of eggs in indicated stage						Larvae			
			I	II	III	IV	V	VI	Species	Number	Length	Range
$6--$ Cont．											$m m$ ．	mm．
	50	CU	－	－	－	－	1	－	－	－	－	－
	51	－	－	－	－	－	－	－	－	－	－	－
	52	－	－	－	－	－	－	－	H	2	8.5	8－9
	53	－	－	－	－	－	－	－	C	1	13	－
	54－55	－	－	－	－	－	－	－	－	－	－	－
	56	－	－	－	－	－	－	－	C	1	15	－
	57－59	－	－	－	－	－	－	－	－	－	－	－
	60	CU	－	－	－	－	1	－	－	－	－	－
	61－71	－	－	－	－	－	－	－	－	－	－	－

10 Meters

ω	N	\vdash
1 1 1 1	1 1出出实1	田1 1 ○1，1 1 1
1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1 1
1 1 1 1	1111111	1 1 1 1 1 1 1 1
11111	1111111	1 1 1 1 1 1 1 1
1 1 1 1	111111	1 1 1 1 1 1 1 1
11111	1 1 WNN1	＋1111111111
1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1
い以゙岛，	1111111	
$\prime \vdash \cdot \vdash 1$	1111111	
$1 \text { 1 , 㤂 }$, 1 1 1 1 1	
1111.	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1

Table 9.--Stages and sizes of fish eggs and larvae taken with the Hardy Recorder on Albatross III cruise no. 48, April 24 to May 8, 1953--Continued

Surface--Continued

Loading number	$\begin{aligned} & \text { Gauze } \\ & \text { section } \end{aligned}$	Species	Number of eggs in indicated stage						Larvae			
			I	II	III	IV	V	vI	Species	Number	Length	Range
3--											пm.	
	38-54	-	-	-	-	-	-	-	-	-	-	-
	55	CU	-	-	-	-	1	-	-	-	-	-
	56	-	-	-	-	-	-	-	-	-	-	-
	59-68	-	-	-	-	-	-	-	-	-	-	-
	69	-	-	-	-	-	-	-	H	1	6.55	-
	70-85	-	-	-	-	-	-	-	-	-	-	-
	86	H	-	-	I	-	-	-	-	-	-	-
4	1-11	-	-	-	-	-	-	-	-	-	6	-
	12	-	-	-	-	-	-	-	H	1	6.10	-
	13	-	-	-	-	-	-	-	H	1	6.08	-
	14	-	-	-	-	-	-	-	-	-	-	-
	15	-	-	-	-	-	-	-	H	1	. 55	-
	16	-	-	-	-	-	-	-	H	3	6.55	-
	17	-	-	-	-	-	-	-	H	2	6.14	-
	20-27	-	-	-	-	-	-	-	-	-	-	-
	28	-	-	-	-	-	-	-	H	1	6.00	-
	29-36	-	-	-	-	-	-	-		-		-
	37	H	-	-	1	1	-	-	-	-	-	-
	40	H	-	-	2	-	-	-	-	-	-	-
	$41-42$	-	-	-	-	-	-	-	-	-	-	-
	43	-	-	-	-	-	-	-	H	1	6.00	-
	44	H	-	-	-	-	-	-	-	-	-	-
	45	H	-	-	-	-	1	-	-	-	-	-
	46	,	-	-	-	-	-	-	-	-	-	-
	47	H	-	-	-	-	1	-	-	-	-	-
	48	-	-	-	-	-	-	-	-	-	-	-
	49	H	-	-	-	-	1	-	-	-	-	-
	50-52	-	-	-	-	-	-	-	-	-	-	-
	53	-	-	-	-	-	-	-	U	2	6.14	-
	54-57	-	-	-	-	-	-	-	-	-	-	-
	58	H	-	1	1	-	2	-	-	-	-	-
	60-87	-	-	-	-	-	-	-	-	-	-	
5	I-29	-	-	-	-	-	-	-	-	-	-	-
	30	H	-	-	-	-	3	-	-	-	-	-
	31 35	-	-	-	-	-	-	-	$-$	-	-	-
	35	H	-	-	-	-	1	-	-	-	-	

Table 9.--Stages and sizes of fish eggs and larvae taken with the Hardy Recorder on Albatross III cruise no. 48, April 24 to May 8, 1953--Continued

Surface--Continued

Loading number	Gauze section	Species	Number of eggs in indicated stage						Larvae			
			I	II	III	IV	V	VI	Species	Number	Iength	Range
4-- Cont.											mm.	mm.
	36-40	-	-	-	-	-	-	-	-	-	-	-
	41	H	-	-	1	-	-	-	-	-	--	-
	42-45	-	-	-	-	-	-	-	-	-	--	-
	46	H	-	-	1	-	-	-	-	-	--	-
	47-52	-	-	-	-	-	-	-	-	-	--	-
	55	-	-	-	-	-	-	-	-	-	--	-
	56	H	-	-	1	-	-	-	-	-	--	-
	57-73	-	-	-	-	-	-	-	-	-	--	-
	76-89	-	-	-	-	-	-	-	-	-	--	-
6	1-4	-	-	-	-	-	-	-	-	-	--	-
	5	-	-	-	-	-	-	-	U	1	32	-
	6-15	-	-	-	-	-	-	-	-	-	-	-
	16	-	-	-	-	-	-	-	C	1	11	-
	17	-	-	-	-	-	-	-	-	-		-
	18	-	-	-	-	-	-	-	H	1	13	-
	19	-	-	-	-	-	-	-	-	-	-	-
	20	H	-	-	-	-	1	1	-	-	-	-
		CU	-	-	-	-	2	-	-	-	-	-
	24-28	-	-	-	-	-	-	-	-	-	-	-
	29	-	-	-	-	-	-	-	R	1	6.00	-
	30-35	-	-	-	-	-	-	-	-	-	-	-
	36	-	-	-	-	-	-	-	H	1	12	-
	37-38	-	-	-	-	-	-	-	-	-	-	-
	39	-	-	-	-	-	-	-	H	1	11	-
		-	-	-	-	-	-	-	C	2	7	-
	40	-	-	-	-	-	-	-	-	-	-	-
	44-45	-	-	-	-	-	-	-	-	-	-	-
	46	-	-	-	-	-	-	-	H	1	-	-
	47	-	-	-	-	-	-	-	H	2	5.95	-
	48	-	-	-	-	-	-	-	H	1	-	-
	49	-	-	-	-	-	-	-	H	2	6.57	6.00-
												7.15
	50-55	-	-	-	-	-	-	-	-	-	-	-
	56	-	-	-	-	-	-	-	C	1	4.58	-
	57-66	-	-	-	-	-	-	-	-	-	-	-

Table 10.--Stages and sizes of fish eggs and larvae taken with the Hardy Recorder on Albatross III cruise no. 50, May 25 to June 3, 1953

Surface

Loading number	Gauze section	Species	Number of eggs in indicated stage						Larvae			
			I	II	III	IV	V	VI	Species	Number	Length	Range
1											$m m$.	$m m$.
	3-4	-	-	-	-	-	-	-	-	-	-	-
	5	M	-	1	-	-	-	-	-	-	-	-
		CN	-	-	-	-	1	-	-	-	-	-
	6-7	-	-	-	-	-	-	-	-	-	-	-
	8	M	-	-	-	-	1	-	-	-	-	-
		CN	-	-	-	-	1	-	-	-	-	-
	9	WF	-	-	-	-	1	-	-	-	-	-
	10	-	-	-	-	-	-	-	-	-	-	-
	11	-	-	-	-	-	-	-	Y	1	7	-
	12-13	-	-	-	-	-	-	-	-	-	-	-
	14	M	-	1	-	-	-	-	-	-	-	-
	15-23	-	-	-	-	-	-	-	-	-	-	-
	25-45	-	-	-	-	-	-	-	-	-	-	-
	47	-	-	-	-	-	-	-	-	-	-	-
	48	-	-	-	-	-	-	-	Y	1	8	-
	49-64	-	-	-	-	-	-	-	-	-	-	-
	65	Y	-	-	-	-	1	-	-	-	-	-
	66-68	-	-	-	-	-	-	-	-	-	-	-
	69	Y	-	1	-	-	-	-	-	-	-	-
	70-75	-	-	-	-	-	-	-	-	-	-	-
	76-77	-	-	-	-	-	-	-	H	1	17	-
	78-89	-	-	-	-	-	-	-	-	-	-	-
	90	$\mathrm{C}-\mathrm{H}$	-	1	-	-	-	-	H	1	6.55	-
2	2-18	-	-	-	-	-	-	-	-	-	-	-
	19	-	-	-	-	-	-	-	HE	1	-	-
	20-23	-	-	-	-	-	-	-	-	-	-	-
	25-27	-	-	-	-	-	-	-	-	-	-	-
	28-29	RO	-	-	1	-	-	-	-	-	-	-
	30-31	M	-	1	-	-	-	-	-	-	-	-
	32-38	-	-	-	-	-	-	-	-	-	-	-
	39-40	M	-	1	-	-	-	-	-	-	-	-
		WF	-	-	-	-	1	-	-	-	-	-
	41	M	-	1	-	-	-	-	-	-	-	-
	42	Y	-	-	-	-	1	-	-	-	-	-
	43	M	-	-	-	-	3	-	-	-	-	-
	44	M	-	1	-	-	-	-	-	-	-	-
	45	M	-	2	-	-	-	-	-	-	-	-
	46	M	-	4	-	-	-	-	-	-	-	-

Table 10.--Stages and sizes of fish eggs and larvae taken with the Hardy Recorder on Albatross III cruise no. 50, May 25 to June 3, 1953--Continued

Surface--Continued

Loading number	Gauze section	Species	Number of eggs in indicated stage						Larvae			
			I	II	III	IV	V	VI	Species	Number	Length	Range
2-- Cont.											$m m$.	$m m$.
	47	RO	-	1	-	-	1	-	-	-	-	-
	48-69	-	-	-	-	-	-	-	-	-	-	-
	70	RO	-	-	-	-	1	-	-	-	-	-
	72-90	-	-	-	-	-	-	-	-	-	-	-
	91-92	CU	-	1	-	-	-	-	-	-	-	-
		Y	-	1	-	-	-	-	-	-	-	-
3	1-6	-	-	-	-	-	-	-	-	-	-	-
	7	RO	-	-	1	-	-	-	-	-	-	-
	8-21	-	-	-	-	-	-	-	-	-	-	-
	23-24	-	-	-	-	-	-	-	-	-	-	-
	25	-	-	-	-	-	-	-	$\mathrm{C}-\mathrm{H}$	2	-	-
	26-31	-	-	-	-	-	-	-	-	-	-	-
	32	-	-	-	-	-	-	-	C	1	-	-
	33-43	-	-	-	-	-	-	-	-	-	-	-
	45-71	-	-	-	-	-	-	-	-	-	-	-
	73-77	-	-	-	-	-	-	-	-	-	-	-
	78	-	-	-	-	-	-	-	C-H	1	-	-
	79-96	-	-	-	-	-	-	-	-	-	-	-
4	3	SH	-	-	-	1	2	-	-	-	-	-
	4	SH	-	-	-	-	1	-	-	-	-	-
	5	-	-	-	-	-	-	-	-	-	-	-
	6	SH	-	-	-	-	1	-	-	-	-	-
	7	SH	-	-	1	-	-	-	-	-	-	-
	8-16	-	-	-	-	-	-	-	-	-	-	-
	17	-	-	-	-	-	-	-	Y	1	9	-
	18-23	-	-	-	-	-	-	-	-	-	-	-
	27	-	-	-	-	-	-	-	Y	1	10	-
		-	-	-	-	-	-	-	H	1	35	-
	28-30	-	-	-	-	-	-	-	-	-	-	-
	31	-	-	-	-	-	-	-	Y	1	11	-
	32-35	-	-	-	-	-	-	-	-	-	-	-
	36	-	-	-	-	-	-	-	Y	2	7	6-9
	37-42		-	-	-	-	-	-	-	-	-	-
	43	G	-	-	-	-	1	-	-	-	-	-
	44	G	-	-	-	-	125	-	-	-	-	-
	45	G	-	-	-	14	-	-	-	-	-	-

Table 10.--Stages and sizes of fish eggs and larvae taken with the Hardy Recorder on Albatross III cruise no. 50, May 25 to June 3, 1953--Continued

Surface--Continued

Table lO.--Stages and sizes of fish eggs and larvae taken with the Hardy Recorder on Albatross III cruise no. 50, May 25 to June 3, 1953--Continued

Surface--Continued

Table 10.--Stages and sizes of fish eggs and larvae taken with the Hardy Recorder on Albatross III cruise no. 50, May 25 to June 3, 1953--Continued

Surface--Continued

Table 10.--Stages and sizes of fish eggs and larvae taken with the Hardy Recorder on Albatross III cruise no. 50, May 25 to June 3, 1953--Continued

10 Meters--Continued

Table 10.--Stages and sizes of fish eggs and larvae taken with the Hardy Recorder on Albatross III cruise no. 50, May 25 to June 3, 1953--Continued

10 Meters--Continued

Loading number	Gauze section	Species	Numbers of eggs in indicated stage						Larvae			
			I	II	III	IV	V	VI	Species	Number	Leng th	Range
$4--$ Cont.											mm .	$m m$.
	16	-	-	-	-	-	-	-	H	1	15	-
	21	-	-	-	-	-	-	-	H	1	35	-
	22	-	-	-	-	-	-	-	-	-	-	-
	23	-	-	-	-	-	-	-	$\mathrm{C}-\mathrm{H}$	1	-	-
	24-37	-	-	-	-	-	-	-	-	-	-	-
	40-42	-	-	-	-	-	-	-	-	-	-	-
	43	M	-	-	-	1	-	-	-	-	-	-
	44	-	-	-	-	-	-	-	-	-	-	-
	45	M	-	-	1	-	-	-	-	-	-	-
	46-49	-	-	-	-	-	-	-	-	-	-	-
	50	M	-	-	2	1	1	-	-	-	-	-
		CN	-	-	-	-	1	-	-	-	-	-
	51	M	-	-	1	-	3	-	-	-	-	-
		WE	-	-	-	1	-	-	-	-	-	-
	55	-	-	-	-	-	-	-	-	-	-	-
	56	M	-	-	-	1	-	-	-	-	-	-
		WE	-	-	1	-	-	-	-	-	-	-
	57	WE	-	1	-	-	-	-	-	-	-	-
	58-61	-	-	-	-	-	-	-	-	-	-	-
	62	-	-	-	-	-	-	-	SH	1	3.25	-
	63-64	-	-	-	-	-	-	-	-	-	-	-
	65	WI	-	-	-	-	1	-	-	-	-	-
	66	B	-	-	-	-	-	-	-	-	-	-
	67	BL	-	-	3	-	-	-	-	-	-	-
		M	-	-	-	-	2	-	-	-	-	-
	68	M	-	1	3	-	1	-	-	-	-	-
		BL	-	1	1	-	-	-	-	-	-	-
		S	-	1	-	-	-	-	-	-	-	-

Table ll.--Gauze section data on Hardy Plankton Recorders towed at surface and 10 meters, Albatross III cruise no. 46, March 19 to April 2, 1953

Loading number	Gauze section		Number of sections exposed	Distance travelled	Section equivalent	Conversion factor No. $/ 5 \mathrm{mi}$.
	Start	Finish				

Surface

1	$\begin{array}{r} 1 \\ 23 \\ 46 \\ 66 \end{array}$	$\begin{aligned} & 21 \\ & 43 \\ & 64 \\ & 87 \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \\ & 19 \\ & 22 \end{aligned}$	Miles 114.1 107.1 100.7 112.4	$\begin{aligned} & 5.43 \\ & 5.10 \\ & 5.30 \\ & 5.11 \end{aligned}$	$\begin{aligned} & 0.92 \\ & 0.98 \\ & 0.94 \\ & 0.98 \end{aligned}$
2	$\begin{array}{r} 1 \\ 22 \\ 44 \\ 66 \\ 85 \end{array}$	$\begin{array}{r} 20 \\ 42 \\ 64 \\ 85 \\ 100 \end{array}$	$\begin{aligned} & 20 \\ & 21 \\ & 21 \\ & 20 \\ & 16 \end{aligned}$	$\begin{array}{r} 116.1 \\ 113.2 \\ 122.1 \\ 121.3 \\ 84.4 \end{array}$	$\begin{aligned} & 5.81 \\ & 5.39 \\ & 5.81 \\ & 6.07 \\ & 5.28 \end{aligned}$	$\begin{aligned} & 0.86 \\ & 0.93 \\ & 0.86 \\ & 0.82 \\ & 0.95 \end{aligned}$
3	$\begin{array}{r} 1 \\ 22 \\ 47 \\ 60 \end{array}$	$\begin{aligned} & 20 \\ & 41 \\ & 58 \\ & 85 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 12 \\ & 26 \end{aligned}$	$\begin{array}{r} 103.1 \\ 120.2 \\ 55.0 \\ 141.9 \end{array}$	$\begin{aligned} & 5.16 \\ & 6.01 \\ & 4.58 \\ & 5.46 \end{aligned}$	$\begin{aligned} & 0.97 \\ & 0.83 \\ & 1.09 \\ & 0.92 \end{aligned}$
4	$\begin{array}{r} 1 \\ 11 \\ 40 \\ 66 \end{array}$	$\begin{array}{r} 5 \\ 38 \\ 64 \\ 93 \end{array}$	$\begin{array}{r} 5 \\ 28 \\ 25 \\ 28 \end{array}$	$\begin{array}{r} 22.8 \\ 120.2 \\ 114.6 \\ 119.6 \end{array}$	$\begin{aligned} & 4.56 \\ & 4.29 \\ & 4.58 \\ & 4.27 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 1.17 \\ & 1.09 \\ & 1.17 \end{aligned}$
5	$\begin{array}{r} 2 \\ 29 \\ 56 \\ 80 \end{array}$	$\begin{aligned} & 29 \\ & 53 \\ & 80 \\ & 99 \end{aligned}$	$\begin{aligned} & 28 \\ & 25 \\ & 25 \\ & 20 \end{aligned}$	$\begin{array}{r} 124.2 \\ 111.3 \\ 121.5 \\ 93.4 \end{array}$	$\begin{aligned} & 4.44 \\ & 4.45 \\ & 4.86 \\ & 4.67 \end{aligned}$	$\begin{aligned} & 1.13 \\ & 1.12 \\ & 1.03 \\ & 1.07 \end{aligned}$
6*	57	76	20	115.0	5.75	0.87

10 Meters

1	1	16	16	114.1	7.13	0.70
	22	38	17	107.1	6.30	0.79
	43	56	14	100.7	7.19	0.70
	59	74	16	112.4	7.03	0.67
	16	16	116.1	7.26	0.69	
	21	36	16	113.2	7.08	0.71
	38	53	16	122.1	7.63	0.67
	58	74	17	121.3	7.14	0.70
	75	86	12	84.4	7.03	0.71

See footnote at end of table.

Table 11.--Gauze section data on Hardy Plankton Recorders towed at surface and 10 meters, Albatross Ill cruise no. 46, March 19 to April 2, 1953--Continued

Loading number	Gauze section		Number of sections exposed	Distance travelled	Section equivalent	Conversion factor No. $/ 5 \mathrm{mi}$.
	Start	Finish				
10 Meters--Continued						
3	1	16	16	$\begin{aligned} & \text { Miles } \\ & 103.1 \end{aligned}$	6.44	0.78
	18	34	17	120.2	7.07	0.71
	40	47	8	55.0	6.88	0.73
	49	69	21	141.9	6.76	0.74
4	1	4	4	22.8	5.70	0.88
	10	27	18	120.2	6.68	0.75
	32	49	18	114.6	6.37	0.79
	51	70	20	119.6	5.98	0.84
	72	90	19	124.2	6.54	0.77
5				111.3	6.18	0.81
	20	38	19	121.5	6.39	0.78
	40	53	14	93.4	6.67	

*l0-meter Recorder brought to surface.

Table 12.--Gauze section data on Hardy Plankton Recorders towed at surface and 10 meters, Albatross III cruise no. 48, April 24 to May 8, 1953

Loading number	Gauze section		Number of sections exposed	Distance travelled	Section equivalent	Conversion factor No.$/ 5 \mathrm{mi}$.

Surface

1	$\begin{array}{r} 1 \\ 30 \\ 53 \\ 75 \end{array}$	$\begin{aligned} & 28 \\ & 50 \\ & 73 \\ & 97 \end{aligned}$	$\begin{aligned} & 28 \\ & 21 \\ & 21 \\ & 23 \end{aligned}$	$\begin{aligned} & \text { Mrles } \\ & 152.0 \\ & 121.9 \\ & 112.7 \\ & 140.1 \end{aligned}$	$\begin{aligned} & 5.43 \\ & 5.78 \\ & 5.37 \\ & 6.09 \end{aligned}$	$\begin{aligned} & 0.92 \\ & 0.87 \\ & 0.93 \\ & 0.82 \end{aligned}$
2	$\begin{array}{r} 1 \\ 23 \\ 56 \\ 74 \end{array}$	$\begin{aligned} & 21 \\ & 55 \\ & 72 \\ & 93 \end{aligned}$	$\begin{aligned} & 21 \\ & 33 \\ & 17 \\ & 20 \end{aligned}$	$\begin{aligned} & 118.4 \\ & 185.7 \\ & 107.6 \\ & 111.5 \end{aligned}$	$\begin{aligned} & 5.64 \\ & 5.63 \\ & 6.33 \\ & 5.58 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 0.89 \\ & 0.79 \\ & 0.90 \end{aligned}$
3	$\begin{array}{r} 1 \\ 17 \\ 39 \\ 62 \end{array}$	$\begin{aligned} & 15 \\ & 37 \\ & 59 \\ & 94 \end{aligned}$	$\begin{aligned} & 15 \\ & 21 \\ & 21 \\ & 33 \end{aligned}$	$\begin{array}{r} 84.4 \\ 118.5 \\ 117.3 \\ 181.8 \end{array}$	$\begin{aligned} & 5.63 \\ & 5.64 \\ & 5.59 \\ & 5.51 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 0.89 \\ & 0.90 \\ & 0.91 \end{aligned}$
4	$\begin{array}{r} 1 \\ 20 \\ 42 \\ 63 \end{array}$	$\begin{aligned} & 18 \\ & 40 \\ & 61 \\ & 95 \end{aligned}$	$\begin{aligned} & 18 \\ & 21 \\ & 20 \\ & 33 \end{aligned}$	$\begin{aligned} & 104.6 \\ & 124.5 \\ & 123.5 \\ & 188.8 \end{aligned}$	$\begin{aligned} & 5.81 \\ & 5.93 \\ & 6.18 \\ & 5.72 \end{aligned}$	$\begin{aligned} & 0.86 \\ & 0.84 \\ & 0.81 \\ & 0.87 \end{aligned}$
5	$\begin{array}{r} 1 \\ 38 \\ 61 \\ 83 \end{array}$	$\begin{aligned} & 36 \\ & 59 \\ & 81 \\ & 99 \end{aligned}$	36 22 21 17	$\begin{array}{r} 203.6 \\ 118.1 \\ 130.1 \\ 89.3 \end{array}$	$\begin{aligned} & 5.66 \\ & 5.37 \\ & 6.20 \\ & 5.25 \end{aligned}$	$\begin{aligned} & 0.88 \\ & 0.93 \\ & 0.81 \\ & 0.95 \end{aligned}$
6	$\begin{array}{r} 1 \\ 25 \\ 47 \end{array}$	$\begin{aligned} & 23 \\ & 45 \\ & 71 \end{aligned}$	$\begin{aligned} & 23 \\ & 21 \\ & 25 \end{aligned}$	$\begin{aligned} & 130.2 \\ & 116.8 \\ & 145.3 \end{aligned}$	$\begin{aligned} & 5.62 \\ & 5.56 \\ & 5.80 \end{aligned}$	$\begin{aligned} & 0.88 \\ & 0.90 \\ & 0.96 \end{aligned}$

10 Meters

1	1					
	26	44	24	152.0	6.33	0.79
	47	64	18	121.9	6.42	0.78
	67	87	21	112.7	6.26	0.80
2	1	18	18	140.1	6.67	0.75
	24	51	28	118.4	6.58	0.76
	55	68	18	185.7	6.63	0.75
	70	85	16	107.6	7.69	0.65
				115.5	6.97	0.72

Table 12.--Gauze section data on Hardy Plankton Recorders towed at surface and 10 meters, Albatross III cruise no. 48, April 24 to May 8, 1953--Continued

Table 13.--Gauze section data on Hardy Plankton Recorders towed at surface and 10 meters, Albatross Ill cruise no. 50, May 25 to June 3, 1953

Loading number	Gauze section		Number of sections exposed	Distance travelled	Section equivalent	Conversion factor No. $/ 5 \mathrm{mi}$.

Surface

1	$\begin{array}{r} 3 \\ 25 \\ 47 \\ 72 \end{array}$	$\begin{aligned} & 23 \\ & 45 \\ & 71 \\ & 90 \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \\ & 25 \\ & 19 \end{aligned}$	$\begin{gathered} \text { Miles } \\ 117.1 \\ 112.4 \\ 133.7 \\ 112.9 \end{gathered}$	$\begin{aligned} & 5.58 \\ & 5.35 \\ & 5.35 \\ & 5.94 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.93 \\ & 0.93 \\ & 0.84 \end{aligned}$
2	$\begin{array}{r} 2 \\ 25 \\ 46 \\ 72 \end{array}$	$\begin{aligned} & 23 \\ & 45 \\ & 70 \\ & 92 \end{aligned}$	$\begin{aligned} & 22 \\ & 21 \\ & 25 \\ & 21 \end{aligned}$	$\begin{aligned} & 118.8 \\ & 113.0 \\ & 130.7 \\ & 113.4 \end{aligned}$	$\begin{aligned} & 5.40 \\ & 5.38 \\ & 5.23 \\ & 5.40 \end{aligned}$	$\begin{aligned} & 0.93 \\ & 0.93 \\ & 0.96 \\ & 0.93 \end{aligned}$
3	$\begin{array}{r} 1 \\ 23 \\ 45 \\ 73 \end{array}$	$\begin{aligned} & 21 \\ & 43 \\ & 71 \\ & 96 \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \\ & 27 \\ & 24 \end{aligned}$	$\begin{aligned} & 116.9 \\ & 120.4 \\ & 143.2 \\ & 127.2 \end{aligned}$	$\begin{aligned} & 5.56 \\ & 5.73 \\ & 5.30 \\ & 5.30 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.87 \\ & 0.94 \\ & 0.94 \end{aligned}$
4	$\begin{array}{r} 3 \\ 27 \\ 50 \\ 69 \end{array}$	$\begin{aligned} & 23 \\ & 46 \\ & 65 \\ & 86 \end{aligned}$	$\begin{aligned} & 21 \\ & 20 \\ & 16 \\ & 18 \end{aligned}$	$\begin{array}{r} 109.9 \\ 115.6 \\ 82.0 \\ 88.9 \end{array}$	$\begin{aligned} & 5.23 \\ & 5.78 \\ & 5.13 \\ & 4.94 \end{aligned}$	$\begin{aligned} & 0.96 \\ & 0.87 \\ & 0.98 \\ & 1.01 \end{aligned}$

10 Meters

1	1	19	19	117.1	6.16	0.81
	24	41	18	112.4	6.24	0.80
	45	64	20	133.7	6.69	0.75
	66	81.	16	112.9	7.06	0.71
2	1.	18	18	118.8	6.60	0.76
	21	37	17	113.0	6.65	0.75
	40	59	20	130.7	6.54	0.77
	62	78	17	11.3 .4	6.67	0.75
3	1	17	17	116.9	6.88	0.73
	23	39	17	120.4	7.08	0.71
	42	62	21	143.2	6.82	0.73
	65	84	20	127.2	6.36	0.79
4	1	16	16	109.9	6.87	0.73
	21	37	17	115.6	6.80	0.74
	40	51	12	82.0	6.83	0.73
	55	68	14	88.9	6.35	0.79

[^0]: ${ }^{1}$ Temporarily detailed to Bureau of Commercial Fisheries Biological Laboratory, Auke Bay, Alaska.

