WINTER WATER TEMPERATURES AND AN ANNOTATED LIST OF FISHES---NANTUCKET SHOALS TO CAPE HATTERAS Albatross III CRUISE NO. 126

397

UNITED STATES DEPARTMENT OF THE INTERIOR

UNITED STATES DEPARTMENT OF THE INTERIOR, STEWART L. UDALL, SECRETARY Fish and Wildlife Service, Arnie J. Suomela, Commissioner Bureau of Commercial Fisheries, Donald L. McKernan, Director

WINTER WATER TEMPERATURES AND AN ANNOTATED LIST OF FISHES--NANTUCKET SHOALS TO CAPE HATTERAS

Albatross III Cruise no. 126

by

Robert L. Edwards and Robert Livingstone, Jr. and Paul E. Hamer

United States Fish and Wildlife Service. Special Scientific Report--Fisheries No. 397

> Washington, D. C. September 1961

M/V Albatross III

CONTENTS

Page

Introduction	1
Gear and operations	1
Fishing transects	2
Hydrographic transects	2
Surface temperatures	2
Bottom temperatures	2
Temperature profiles	2
Fish temperature preferences	
Annotated list of species	3
Literature cited	11
Appendix I. BT cast data	13
Appendix II, temperature profiles	17

FIGURES

M /	'V Albatross III	iece
1.	Cruise track of Albatross III Cruise no. 126. Solid circles indicate BT	
	drops and ringed circles indicate fishing stations. Eachfishing tran-	
	sect is identified with its code number and name. Letters are used to	
	indicate beginnings and endings of various profiles presented in Ap-	
	pendix II	2
2.	A typical deep tow, station 4-8	3
3.	Surface temperatures in degrees Fahrenheit on the Continental Shelf,	
	Nantucket Shoals to Cape Hatteras. Based on data collected January	
	23 to February 3, 1959	5
4.	Bottom temperatures in degrees Fahrenheit on the Continental Shelf,	
	Nantucket Shoals to Cape Hatteras. Based on data collected January	
	23 to February 3, 1959	5
5.	A big haul of spiny dogfish, station 9-3	6
6.	Counting and measuring Etrumeus, station 7-4	7
7.	Physiculus fulvus (Bean). Drawn from 160-mm. specimen	8
8.	A 45-cm. bluefin tuna, photographed immediately after capture	10
9.	Bluefish taken in the trawl on station 7-1	10

WINTER WATER TEMPERATURES AND AN ANNOTATED LIST OF FISHES--NANTUCKET SHOALS TO CAPE HATTERAS

Albatross III Cruise no. 126

by

Robert L. Edwards, Robert Livingstone, Jr. and Paul E. Hamer

Cruise no. 126 of the Albatross III was planned and conducted to gather information about the distribution of fishes across the Continental Shelf from Nantucket Shoals to Cape Hatteras during the late winter period when water temperatures generally are at their minimum. The shelf here has a general hydrographic similarity from north to south, well described by Bigelow (1933), that makes it a particularly worthwhile area in which to study the relation of fish distribution to water temperature, depth, and other factors of the environment. Since the fish of this portion of the shelf support several different, relatively important food and industrial fisheries, as well as an intensive marine sport fishery, Cruise no. 126 served to provide data valuable to several research programs.

This area has a distinctive fauna attributed in part to the thermal barrier present across the shelf at Cape Hatteras, as well as another such barrier, less marked, separating the waters of southern New England and the Gulf of Maine. No one species of marine fish is necessarily restricted to the shelf of the Middle Atlantic. However, several species of commercial importance are present here, and only here, in significant numbers. Among these are the scup, fluke, common sea robin, tilefish, sea bass, and tautog.

To the north, this area shares a number of species with the Gulf of Maine, especially during the winter months. Some of these are the yellowtail flounder, white hake, long-horned sculpin, eelpout, and winter flounder. Species entering from the south, especially during the periods of warmest water on the shelf, include some that habitually range even further south than Florida. Among these species are the bluefish, bluefin tuna, swordfish, American hake¹, filefish (several species), smooth dogfish, weakfish, and kingfish.

The Albatross III sailed from Woods Hole on January 21, 1959, and returned on February 3. This was, as it turned out, the last biological research cruise of the Albatross III. During this cruise a total of eight fishing transects, totaling 53 fishing stations, were made across the shelf as indicated in figure 1. One hundred and eighty-three bathythermograph casts were made, the positions for which, with associated sea and weather data, are given in Appendix I.

When time permitted, an effort was made to evaluate the ability of the Edo AN/UQN-1B echo sounder to differentiate various species of fish.

GEAR AND OPERATIONS

A standard No. 36 otter trawl was used throughout, with the cod end and upper belly lined with 1/2-inch (stretched measure) cotton mesh to retain small fish. All of the tows were one-half hour each. The standard survey record card of the Bureau of Commercial Fisheries Biological Laboratory, Woods Hole, was used to record the data. All fish were counted and measured (fork length, to the nearest millimeter) except in those few cases where the numbers were excessive, at which time aliquots

Note.--Robert L. Edwards and Robert Livingstone. Jr., Fishery Rebearch Biologists, U. S. Fish and Wildlife Service. Bureau of Commercial Fisheries Biological Laboratory, Woods Hole, Massachusetts; and Paul E. Hamer, Fisheries Biologist, Department of Conservation and Economic Development, Trenton, New Jersey.

¹We prefer the vernacular name, "American hake," for Merluccius albidus, to call to mind its relation to the European hake, M. merluccius L., and to set it apart from other common deepwater hakes.

Figure 1.--Cruise track of *Albatross III* Cruise no. 126. Solid circles indicate BT drops and ringed circles indicate fishing stations. Each fishing transect is identified with its code number and name. Letters are used to indicate beginnings and endings of various profiles presented in Appendix II.

were sampled. All skates and sharks were measured (total length) and sexed. Samples of fish and invertebrates for laboratory studies were preserved. All fish that could not be precisely identified on board ship were preserved for determination in the laboratory.

FISHING TRANSECTS

Each fishing transect was planned to be completed in the daylight hours of 1 day. Bad weather interfered only once after a transect had been started. The very last transect (off Block Island) was not attempted because of foul weather. The general plan was to make seven stations on each transect, at 20, 40, 60, 80, 100, 150, and 200 fathoms. These depths were not considered rigid, however, and the stations were spaced so that each transect would include stations representative both of the extremes in depth and the extremes in temperature. Where the shelf was widest, New Jerseynorthward, the transects could not be extended into the shallower water because of the great amount of running time necessary to get from station to station. To the south, however, seven stations were easily completed within a day. The fishing station data are listed in table 1.

HYDROGRAPHIC TRANSECTS

Hydrographic work was limited to surface temperatures and to bathythermograph (BT) casts. The BT was used at the end of each fishing station and at regular intervals, usually every hour and occasionally every half hour. The bathythermographs were regularly checked against the surface thermometers, and the temperature unit was calibrated once aboard ship. The BT temperature data appeared to be reliable to within $\pm 0.3^{\circ}$ F. The temperature data were plotted daily, both to help the planning of the following day's work and to keep a check on the functioning of the bathythermographs.

SURFACE TEMPERATURES

Surface temperatures obtained on this cruise for this section of the Atlantic coast were different only in detail from temperatures reported by Bigelow (1933) for this time of year (fig. 3). Along the coast, surface temperatures were in the low 40's to the south and in the upper 30's off southern New England. Previous survey cruises off southern New England, especially *Albatross III* Cruise no. 86, January 22, 1957, found considerably colder surface water (middle 30's) further offshore than we observed on this trip. Around Cape Hatteras, the immediate influence of the Gulf Stream may be observed, dwindling to the northward.

BOTTOM TEMPERATURES

Bottom water temperatures observed on this cruise (fig. 4) correspond in general with those reported by Bigelow for this time of the year. Typically, there is a band of warmer water on the bottom along the outer edge of the Continental Shelf, as shown in figure 4 and in various transects (Appendix II). Bottom temperatures are colder both inshore and offshore of this band, as one would anticipate.

TEMPERATURE PROFILES

Temperature profiles (Appendix II, figs. A-1 to A-18) are presented for each bathythermograph transect. Even allowing for the \pm 0.3°F. variation in the BT recordings, there is a remarkably consistent pattern of temperature distribution across the shelf. This pattern includes a marked temperature inversion over much of the shelf in depths over 40 fathoms out to about the 100-fathom line. Moving from south to north, the warmer water becomes more and more restricted, and occasionally, as off the Hudson Canyon, is off the bottom (see fig. A-4). Whether or not such a warm water zone is also to be found during the winter off Georges Bank further to the north remains to be established.

Examination of these profiles along with the comparable sections illustrated in Bigelow (1933) show differences in detail worthy of

Figure 2.-- A typical deep tow, station 4-8.

comment. All our profiles show generally warmer conditions than illustrated by Bigelow for the years 1929, 1930, and 1931. In addition the inversion is more pronounced in our 1959 data.

ANNOTATED LIST OF SPECIES

In the following list, the collection data are presented for those species not listed in Appendix II, appendix tables 2-9. The stations and appropriate data are listed in table 1. As previously mentioned, all fish, or aliquots from each tow, were measured. Only those measurements are given in this list that the authors believe worthy of record at this time.

Hagfishes

Hagfish, Myzine glutinosa Linnaeus. Sta. 4-8, 1; and 9-6, 1 specimen.

Sharks

Chain dogfish, Scyliorhinus retifer (Garman). Sta. 3-3, 1; 4-4, 1; 4-7, 1; 5-7, 2; 6-4, 1; 6-5, 1; 6-6, 1; 9-4, 1; and 9-5, 1 specimen. Smooth dogfish, *Mustelus canis* (Mitchill). Sta. 7-1, 20; 7-3, 1; and 7-4, 1 specimen.

Spiny dogfish, Squalus acanthias Linnaeus. Collection data listed on fishing transect profiles. The results of this cruise indicate that spiny dogfish tend to school by sex and that the males are usually found in cooler water than the females (fig. 5).

Etmopterus, Etmopterus hillianus (Poey). Sta. 7-6, 2 specimens.

Angel shark, *Squatina dumeril* (Lesueur). Sta. 5-7, 1; 7-4, 7; 7-6, 2; and 9-1, 1 specimen.

Skates and Torpedoes

Torpedo, Torpedo nobiliana Bonaparte. Sta. 10-5, 1 specimen.

Barndoor skate, *Raja laevis* Mitchill. Collection data listed on fishing transect profiles.

Big skate, *Raja ocellata* Mitchill. Collection data listed on fishing transect profiles.

Brier skate, *Raja eglanteria* Bosc. Collection data listed on fishing transect profiles.

Table	1Li:	st of	fishing	stations	and	pertinent	data
-------	------	-------	---------	----------	-----	-----------	------

				Average			Speed	
	~ .			depth of		Bottom	over	
	Station	Posi	tion	tow in	BT slide	temperature	bottom	
Date	number	Latitude	Longitude	feet	number	(°F.)	(knots)	Remarks
1959								
Feb.3	1 - 1	39°58.8'N	70°19.0'W	210	172	1/ ±44	4.4	Martha's Vinevard transect
Feb 3	1 - 2	40°00 5'N	70°17 0'W	146	173	$\overline{2}/49$	3 8	···· · · · · · · · · · · · · · · · · ·
Feb 3	1 - 3	40°03 2'N	70°13 5'W	00	174	T'_{+50}	3 4	
Feb 3	1 _ 1	40º06 01N	70º14 51W	02	175	7/ 52	3.6	
reb.s	1 - 4	4000.011	70917 0111	03	170	3/ 52	3.0	
reb.s	1 - 5	40.09.9.1	70°17.0°W	04	170	2/ 00	3.0	
Feb.3	1 - 6	40°22.0'N	70°20.3'W	47	177	$\frac{2}{48}$	4.4	
	_							
Jan.23	3 - 1	39°24.0'N	73°29.0'W	25	36	45.7	3.6	Barnegat transect
Jan.23	3 - 2	39°04.1'N	73°05.0'W	45	37	51.3	5.2	
Jan. 23	3 - 3	38°56.0'N	72°53.3'W	62	39	51.7	4.4	
Jan.23	3 - 4	38°55.7'N	73°56.5'W	80	40	48.8	3.8	
Jan. 23	3 - 5	38°51.5'N	72°55.5'W	159	41	48.8	4.0	
Jan 24	4 - 1	38°18 5'N	74°19 3'W	20	54	48 7	5.0	Delaware transect
Jan 24	1 - 2	38º00 01N	74907 01W	42	55	52 5	5.0	Dord Haro Handeet
Jan, 24	4 2	20005 EIN	74901 5111	714	55	52.0	5.0	
Jan. 24	4 - 5	30 03.3'IN	79050 0HW	02	50	53.4	4.0	
Jan, 24	4 - 4	38-01.5'N	73-36,0'W	82	57	52.8	4.2	
Jan.24	4 - 5	37°58.5'N	73°56.0'W	104	58	52.0	4.6	
Jan.24	4 - 6	37°56.8'N	73°57.5'W	129	59	50.3	4.6	
Jan.24	4 - 7	37°55.0'N	73°58.5'W	147	60	46.7	5.0	
Jan.24	4 - 8	37°57.0'N	73°56.0'W	220	61	1/ ±46.0	5.0	
Jan.25	5 - 1	37°50.6'N	73°52.5'W	18	69	51.7	5.0	Winter guarter transect
Jan 25	5 - 2	37°40 7'N	74°30.0'W	37	71	55.3	5.4	(interrupted by bad weather)
Jan 25	5 - 3	37°38 0'N	74º24 0'W	48	72	53 4	5 2	(interrupted by see a benefit,
Jan 25	5 - 4	37934 5IN	74919 51W	130	73	10 2	3 2	
Jan. 20	5 - 1	27024 5IN	74916 0111	130	194	1/ +16 5	3.2	
Jan. SI	5-0	37-34,5'IN	74-10.0'W	438	124	1/ 140.5	4.0	
Jan. 31	5 - 7	37°36.5'N	74°16.5'W	92	125	49.0	4.0	
7 95	C 1	DCOLO OINT	REAL OUT	10	0.4	40.1	1.0	Gara Ghanlas transset
Jan. 25	6 - 1	36°50.0'IN	75°13.0'W	17	84	48.1	4.0	Cape Charles transect
Jan.25	6 - 2	36°46.5'N	74°52.2'W	24	86	55.7	3.2	
Jan.25	6 - 3	36°45.5'N	74°41.5'W	42	87	54.1	3.2	
Jan.25	6 - 4	36°45.5'N	74°40.0'W	77	88	49.7	4.4	
Jan.25	6 ~ 5	36°48.0'N	74°39.0'W	107	89	52.2	3.6	
Jan.25	6 - 6	36°46.5'N	74°38.0'W	173	90	46.2	4.0	
Jan.27	7 - 1	35°48.5'N	74°17.3'W	19	98	59.2	5.0	Albemarle transect
Jan. 27	7 - 2	35°46.5'N	75°03.0'W	26	99-100	59.4	4.4	
Jan.27	7 - 3	35°46.5'N	74°54.0'W	45	101-102	56,9	3.7	
Jan. 27	7 - 4	35°49.8'N	74°51.6'W	64	103	55.1		
Jan. 27	7 - 5	35°47.0'N	74°51 5'W	80	104	53.2	4.6	
Jan 27	7 - 6	35°45 0'N	74°50 3'W	192	105	50	4 4	
Jun. 21		00 10.0 11	11 00.0 11	102	100	00	1, 1	
Feb 1	9 - 1	38931 6IN	7 3 9 5 3 0111/	31	138	49	3.0	Cape May transect
Fob 1	0. 2	38030 UNI	73940 0137	12	130	59.2	3.0	Cape may transect
Feb. 1	9 - 2	30 20.0.IN	72026 4111	40	139	52.5	3.0	
rep.1	9 - 3	30'20,0'IN	13 30.4'W	02	140	52.8	4.0	
Feb.1	9 - 4	38-23,7'N	13-27.2'W	86	141	52.1	3.6	
Feb.1	9 - 5	38°24.2'N	73°24.7'W	118	142	52.0	3.4	
Feb.1	9 - 6	38°25.4'N	73°23.2'W	192	143	45.2	4.0	
Feb.1	9 - 7	38°33.2'N	73°14.0'W	152	144	48	3.6	
Feb.2	10 - 1	39°29.4'N	72°06,2'W	228		1/ 142	4.6	Hudson Canyon transect
Feb.2	10 - 2	39°31.3'N	72°06,0'W	178	155	44.5	4.0	
Feb.2	10 - 3	39°31.0'N	72°10.7'W	103	156	49.3	3.6	
Feb.2	10 - 4	39°32.2'N	72°09.3'W	92	157	51.0	3.8	
Feb 2	10 - 5	39°37 0'N	72°16 0'W	67	158	52.0	5.0	
Feb 2	10 - 6	39°46 0'N	72°25 0'W	46	159	47 8	4.0	
Feb 2	10 - 7	30°40 0IN	72038 2111	32	160	44 1	4 4	
1.60.2	10 - 1	00 40.0.W	12 00.2 11	52	100		1.7	

1/ Bottom temperatures for depths greater than 150 fathoms estimated by extropolating bathythermo-

graph data. 2/ Data considered reliable to nearest degree only.

Figure 3.--Surface temperatures in degrees Fahrenheit on the Continental Shelf, Nantucket Shoals to Cape Hatteras. Based on data collected January 23 to February 3, 1959.

Leopard skate, *Raja garmani* Whitley. Collection data listed on fishing transect profiles.

Little skate, *Raja erinacea* Mitchill. Sta. 1-1, 3; 9-1, 3; 9-3, 1; 10-6, 1; and 10-7, 2 specimens.

Smooth-tailed skate, Raja senta Garman. Sta. 10-1, 1 specimen.

Thorny skate, *Raja radiata* Donovan. Sta. 1-1, 1; and 10-1, 3 specimens.

Lantern Fishes and other "Deep-Sea Fishes"

Headlight fish, *Diaphus dumerilii* (Bleeker). Sta. 4-5, over 300 specimens averaging 75 mm. in length; sta. 7-6, 16; and 10-2, 1 specimen. The lower lobe of the caudal is black, facilitating separation of this species in the field

Madeira lantern fish, Lampanyctus maderensis (Lowe). Sta. 3-5, 1; and 7-6, 1 specimen. This species has the upper lobe of the caudal tipped with black.

Humboldt's lantern fish, Myctophum humboldti (Risso). Sta. 1-1, 1 specimen plus 2 others, almost certainly this species, that were apparently regurgitated by another fish. The latter specimens were each about 160 mm. in length.

Figure 4.--Bottom temperatures in degrees Fahrenheit on the Continental Shelf, Nantucket Shoals to Cape Hatteras. Based on data collected January 23 to February 3, 1959.

Pearlsides, Maurolicus pennanti (Walbaum). Sta. 4-5, I specimen.

Gonostoma, Gonostoma elongatum Gunther. Sta. 10-1, 3; and 10-2, 2 specimens. These and many other specimens from stomachs, presumably the same species averaged about 170 mm. in length.

Hatchet fish, *Polyipnus asteroides* Schultz. Sta. 5-6, 1 specimen about 55 mm. in length.

Paralepis, *Paralepis* sp. Sta. 7-6, 1 specimen. This appears to be an undescribed species.

Sorcerer, genus Venefica. Sta. 10-2, 1 specimen. Several examples, probably this genus as well, varying from 300 to 500 mm. were also taken from the stomachs of white hake on this station. The specimen listed was taken alive. It had been injured earlier in life and had lost perhaps one-third of its tail.

Green-eye, Chloropthalmus agassisii Bonaparte. Sta. 1-1, 8; 1-2, 1; 4-8, 12; 5-6, 5; 9-6, 1; and 10-2, 4 specimens. This determination should be considered tentative until present efforts at revision of this genus are completed.

Benthodesmus, Benthodesmus atlanticus Goode and Bean. Sta. 1-1, 1 specimen.

Figure 5.--A big haul of spiny dogfish, station 9-3.

Hypsicometes. Hypsicometes gobioides Goode. Sta. 10-2, 1; and 10-3, 1 specimen.

Hypoclydoma, Hypoclydonia bella (Goode and Bean). Sta. 5-6, 1; and 4-5, 3 specimens.

Lowe's polymixia, *Polymixia lowei* Gunther. Sta. 4-7, 1; and 6-5, 2 specimens.

Herrings

Round herring, *Etrumeus sadina* (Mitchill). Sta. 6-3, 600+; 7-2, 8; and 7-4, 500+. See figure 6 and remarks under bluefin tuna.

Herring, Clupea harengus Linnaeus. Sta. 10-5, 11 specimens.

Alewife, Pomolobus pseudoharengus (Nilson). Sta. 1-6, 4; and 10-6, 5 specimens.

Blueback, Pomolobus aestivalis (Mitchill). Sta. 4-2, 1 specimen.

Shad, Alosa sapidissima (Wilson). Sta. 4-3, 1; and 5-7, 2 specimens.

Hakes

Silver hake, *Merluccius bilinearis* (Mitchill). Collection data listed on fishing transect profiles.

American hake, Merluccius albidus (Mitchill). Collection data listed on fishing transect profiles. This fish has been called the "offshore" hake by Bigelow and Schroeder (1955). It appears to be very closely related to another Merluccius species in the eastern Atlantic called the European hake (M. merluccius). Since there are already many species of hakes in our offshore waters, we feel that American hake is to be preferred as a vernacular name.

If our interpretation of the echo sounder traces is correct, both this species and *M. bilinearis* must be very common in the offshore middle Atlantic

Figure 6.--Counting and measuring Etrumeus, station 7-4.

area. Several fishermen aboard the Albatross III during this cruise expressed the opinion that a dragger might very well catch these two whitings in commercial quantities, especially along that section of the shelf edge south of Hudson Canyon. There is no doubt that both species appear to be quite abundant between 100 and 250. fathoms.

White hake, *Urophycis tenuis* (Mitchill). Collection data listed on fishing transect profiles. The white hake taken late in afternoon invariably had eaten recently. Their food included squid, octopi, and several species of deep-sea fishes. The females had enlarged ovaries, which appeared to be ripening.

Red hake, Urophycis chuss (Walbaum). Collection data listed on fishing transect profiles. It was hoped that we might be able to define the winter habitat of the red hake during this cruise. This fish is abundant inshore during the summer months, where, in the New England area, it has supported the industrial fishery. We did not catch them at any time in such numbers that we felt we had located the winter center of abundance.

This species appeared to be most abundant in depths between 100 and 250 fathoms where the water temperature was between 47° and 50° F. During the summer months, also, red hake are most abundant in water having a temperature of about 48° F. Fishing transects made on other cruises during the winter months have demonstrated that red hake may be as abundant on the inshore side of the warm water at the shelf edge as on the offshore side. It is possible that this fish is not fully available to an otter trawl at this time; that is, the species may be a considerable distance off the bottom or widely spread out and not as concentrated as it is when inshore in the summer. In any event, it does appear that this fish prefers a year-round water temperature slightly less than 50°F.

Spotted hake, Urophycis regius (Walbaum). Collection data listed on fishing transect profiles.

Long-finned hake, *Urophycis chesteri* (Goode and Bean). Collection data listed on fishing transect profiles. Five larvae from sta. 5-6.

Hakeling, *Physiculus fulrus* (Bean). Sta. 1-1, 1; and 10-1, 1 specimen. Both specimens were alive when brought up. They were generally a very dark brownish black above and on the sides and an intense bluish black ventrally, especially about the area beneath which lies the abdominal cavity.

The drawing in Bigelow and Schroeder (1953) does not adequately convey the true profile of this fish. Mr. Frank Bailey kindly prepared figure 7, illustrating this species, from our material.

Four-bearded rockling, Enchyelyopus cimbrius (Linnaeus). Sta. 5-6, 1; and 7-5, 1 specimen.

Grenadiers

Three species of grenadiers were collected. The nomenclature used is that of Parr (1946).

Malacocephalus (Pawnurus) occidentalis, Goode and Bean. Sta. 6-5, 2 specimens, 221 and 255 mm. in length; and sta. 9-6, 1 specimen, a mature female, 372 mm. in length.

Nezumia bairdii (Goode and Bean). Sta. 1-1, 3 specimens; sta. 10-1, 12 specimens varying from 230 to 332 mm. in length; and sta. 10-2, 8 specimens, 6 of which were from 220 to 283 mm. in length with two very small specimens measuring 70 and 130 mm. in length.

Coelorhynchus carminatus (Goode). Sta. 1-1, 3 specimens, 242, 261 and 267 mm.; sta. 1-2, 2 specimens, 215 and 295 mm.; sta. 3-5, 2 specimens, 222 and 231 mm.; sta. 4-8, 6 specimens, varying from 170 to 250 mm. in length; sta. 5-6, 9, not measured; sta. 6-6, 3 specimens, 230, 248, and 272 mm.; sta. 9-6, 4 specimens varying in length from 219 to 272 mm.; sta. 10-1, 2 specimens, 200 and 256 mm.; and sta. 10-2, 6 specimens, 5 of which were from 205 to 248 mm. in length and one (tail broken) about 330 mm.

C. carminatus was obviously relatively common through the area, perhaps more abundant to the south, at least in the depths fished. N. bairdii was collected only north of the 39th parallel. Both Nezumia and Coelorhynchus were collected in greatest number in the deeper water.

The length frequency data indicates that we had sampled three age classes. There was little on the scales, however, to indicate that it might be possible to age specimens of Nezumia or Coelorhynchus. Specimens of Coelorhynchus and Nezumia over 300 mm. appeared to be clearly approaching maturity, leading us to believe that these specimens were one year older than the majority, which averaged about 250 mm. (Coelorhynchus) and 270 mm. (Nezumia). The two small specimens of Nezumia collected, 70 and 130 mm., strongly suggest that we had collected the first three consecutive age classes, depending upon when these fish spawn. If so, the growth rate would not be greatly different from that of the common species of hakes in the area.

The stomachs of most of the specimens were examined, and most were empty. The very few with food all contained crustaceans, predominately amphipods.

Flounders

Fluke, *Paralichthys dentatus* (Linnaeus). Collection data listed on fishing transect profiles.

Four-spot flounder, Paralichthys oblongus (Mitchill). Collection data listed on fishing transect profiles.

Grey sole, *Glyptocephalus cynoglossus* (Linnaeus). Collection data listed on fishing transect profiles.

Sand flounder, Lophosetta maculata (Mitchill). Sta. 4-1, 1; 5-1, 1; 6-1, 4; and 7-1, 1 specimen.

Gulf Stream flounder, *Citharichthys arctifrons* Goode. Sta. 4-4, 1; 4-6, 1; and 4-7, 1 specimen.

"Deepwater flounder", Monolene sessilicauda Goode. Sta. 1-3, 1; and 10-3, 1 specimen.

John Dories

John Dory, Zenopsis ocellata (Storer). Sta. 5-4, 1 specimen 428 mm. intotal length; and sta. 9-4,

Figure 7.--Physicalus fulvus (Bean). Drawn from 160-mm. specimen.

1 specimen of 230 mm. Also 2 specimens not measured, sta. 6-5, 1 and 6-6, 1.

Snipefishes

Snipefish, Macrorhamphosus scolopar (Linnaeus). Material tentatively referred to this species. Sta. 4-4, 2; and 10-5, 1 specimen.

Mackerels

Mackerel, Scomber scombrus Linnaeus. Sta. 3-1, 1; 3-2, 12; and 3-3, 2 specimens. All specimens were ca. 20 cm. in total length. These stations are on the inshore end of the Barnegat fishing transect. All of these specimens had a well developed "adipose eyelid."

Bluefin tuna, Thunnus thynnus (Linnaeus). Sta. 7-4, 13 specimens taken by hook and line, ranging from 43 to 49 cm. in fork length. Figure 8 is a photograph of a 45-cm. specimen. Frank Mather (Woods Hole Oceanographic Institution) kindly verified our identification.

These fish were observed on stations before and after 7-4. They came alongside on this particular station when we have several bushels of round herring in the cod end and a fair number escaping through the 1/2-inch cod end liner. This "chum" attracted the school of small tuna, estimated to contain at least 300 fish. The tuna bit readily on hooks baited with round herring and also avidly struck a yellowfeathered spoon.

Butterfishes

Butterfish, *Poronotus triacanthus* (Peck). Collection data listed on fishing transect profiles.

Bluefishes

Bluefish, *Pomatomus saltatrix* (Linnaeus). Sta. 7-1, 2 specimens (fig. 9).

Sea Basses

Sea bass, Centropristes striatus (Linnaeus). Collection data listed on fishing transect profiles.

Porgies

Scup, Stenotomus versicolor (Mitchill). Collection data listed on fishing transect profiles.

There were virtually no young-of-the-year scup in our collections. In the opinion of many of the fishery biologists, State and Federal, that had an interest in or occasion to observe the scup last summer (1958), the spawning, or the results thereof, had been an almost total failure. The results of our cruise bear this out.

Of further interest was the fact that the scup taken off New Jersey presented a different appearance to the eye than did those taken to the north and east. Some preliminary observations by two of us, Edwards and Hamer, had led us to believe that differences existed in the stocks that occurred off the coasts of New Jersey and southern New England during the summer months, at least, on the basis of a comparison of scales. The differences observed on this cruise were matters of differences in color. The fish taken north of the Hudson Canyon were darker and generally less colorful than those taken farther south. This color difference was particularly noticeable on the caudal fin. The fish taken off New Jersey had caudal fins that were, by comparison, brightly barred with alternate vertical bands of orange and blue.

Tilefishes

Tilefish, Lopholatilus chamaeleonticeps Goode and Bean. Sta. 1-4, 1 specimen.

Rockfishes

Black-bellied redfish, *Halicolenus dactylopterus* (De La Roche). Collection data listed on fishing transect profiles.

Sculpins

Long-horned sculpin, Myorocephalus octodecimspinosus (Mitchill). Sta. 3-2, 1 specimen.

Sea Robins

Common sea robin, *Prionotus carolinus* (Linnaeus). Collection data listed on fishing transect profiles.

Striped sea robin, Prionotus evolans (Linnaeus). Sta. 6-5, 1; 7-1, 13; and 7-2, 4 specimens.

Armored sea robin, *Peristedion miniatum* Goode. Collection data listed on fishing transect profiles.

Ocean Pouts

Eelpout, Macrozoarces americanus (Block and Schneider). Sta. 1-5, 5; 9-1, 2; and 10-5, 1 specimen.

Anglers

Angler, Lophius americanus Cuvier and Valenciennes. Collection data listed on fishing transect profiles.

Frogfishes

Dibranchus atlanticus Peters. Sta. 1-1, 1; 10-1, 3; and 10-2, 2 specimens. It was noticed that pupils of these specimens were black with very slight blue cast, whereas several specimens taken in approximately 200 fathoms southeast of Cape Hatteras had strikingly bright blue pupils.

Figure 8.--A 45-cm. bluefin tuna, photographed immediately after capture.

Figure 9.--Bhuefish taken in the trawl on station 7-1.

BIGELOW, Henry B.

- 1933. Studies of the waters on the Continental Shelf, Cape Cod to Chesapeake Bay. I. Papers in Physical Oceanography and Meteorology, vol. 2, no. 4, p. 1-120.
- BIGELOW, HENRY B., and WILLIAM C. SCHROEDER.
 - 1953. Fishes of the Gulf of Maine. U.S. Fish and Wildlife Service, Fishery Bulletin 74, vol. 53, 577 p.
- 1955. Occurrence off the Middle and North Atlantic United States of the offshore hake *Merluccius albidus* (Mitchill) 1818, and of the blue whiting *Gadus (micromesistius) poutassou* (Risso) 1826. Bulletin of Museum Comparative Zoology, (Harvard), vol. 113, no. 2, p. 205-226.
- PARR, A. E.
 - 1946. The Macrouridae of the western North Atlantic and central American seas. Bulletin of the Bingham Oceanographic Collection, vol. 10, article 1, 99 p.

Pub.	
with H.O.	time zone
accordance	 126, + 5
necessary in	III Cruise no
ded where	Albatross
asts (data co	oservations)
I for bathythermograph c	nual for oceanographic o
able 1 Basic data	307 Instruction ma
ppendix T	No.

		amt.	2	2	2	2	5	2	0	2	2	2	0	ŝ	co	1	1 1	2	1	I I	1	E I	I I	1	a t	1	1	1	1	8 2	ł	1	1	1		1	1	;	1	1	1 1		L I	ŀ	1	1 1	1	1
	3we11	dir.	25	25	25	25	25	25	25	25	25	2.5	25	25	25	1	1	25	1	1	I	I I	l J	1	I I	1	1	1	1	1	I	1	1	1)	1	1	1	1	1			1	1	1	1 1	1	
	01	sea	m	4	4	4	4	4	4	4	4	4	4	4	4	5 2	2 2	Ω.	2 2	2	ഹ	S	S	S	5 2	2	ۍ ۱	цС I	n n	i C	<u>م</u> ا	۰ n	4	4	+ <	4 4	* 7	4	4 4	+ F	# ~	* <		≁ *t	4, 2	4 4	 7 +t	ť
		Vis.	ŝ	7	7	7	2	2	2	2	1	7	- 1	7	7	7	7	2	7	7	7	7	7	2	7	<u>'</u>	2	[<u> </u>	~	× ·	000	000	20 0	0 0	- α) a	0		0 0	0 0	0 0	io c	òc	20 0	χα	00	0
	ds	amt.	œ	œ	7	2	ω	œ	0	00	0 00	00	9	9	9	4	4	9	9	9	S	ŝ	ى م	2	2	7	2	8	0	0		- 0	10 0	N 0	10	30	30	30	30	3 0	10	30	10	1		210	10	3
	Clou	type	7	9	4	4	5-6	4-6	4-6	5-7	5-7	5-7	ى . ر	ß	ŝ	4	S	S	S	9	S	S	വ	വ	വ	0-2	0-2	ŝ	1	1			1,	1-0-1		1	 - - -		30	3 C	1 C	1 C		000	000	000	000	0
	Wea-	ther	02	02	01	01	03	02	02	02	02	02	02	02	02	02	02	02	02	03	01	02	02	02	02	01	03	03	02	02	03	02	0.0	20	70	300	4 C	100	100		70		7.0	200	0.3	50	7.0	TO
	Bar.	mb.	12	12	12	12	12	12	11	11	12	11	11	11	10	10	10	10	10	60	60	08	08	90	90	04	03	02	19	19	20	25	C 7 0	220	200	30	0 C	4 K	2 C	3 C	0 1	0 0	0 0	9 0	526	27	9 7 0	20
	Dry bulb	temp.°F.	44.0	45.0	45.0	45.0	45.0	48.0	48.0	48.0	49.0	49.0	48.6	45.0	44.0	44.0	45.0	45.0	45.0	45.0	45.0	51.5	51.5	51.0	51.0	56.0	53.0	52.0	34.0	33.0	32.5	32.0	30.0	30.0	0.92	20.07	0,00	24.0	0.400		30.U	31.0	36.0	34.0	34.5	34.0	35.0	34. U
y 1959	pu	kn.	18	18	20	27	27	28	27	27	27	26	28	38	32	27	30	30	25	30	30	30	30	30	30	31	31	31	20	18	18	19	× 1	21		- 10	010	0 0	2 10	2 0	07	000	020	2.2	20	20	207	c T
Januar	Ŵ İ1	dir.	20	20	23	23	23	23	23	23	23	23	23	14	19	19	19	19	19	20	20	20	20	20	20	20	20	20	29	29	29	32	32	32	20	270	- 00	3 1 0	- 70	- 1 0 0	77	17	12	1.7	30	30	30	87
	Sea surf.	temp.°F.	37.1	39.0	37.1	39.6	39.0	39.1	39.0	39.5	39.5	39.6	43.6	45.2	41.7	40.8	42.6	41.1	39.4	43.1	43.0	46.5	48.3	43.7	42.6	47.4	50.8	48.0	50.9	49.6	48.3	45.6	42.6	42.0	41.8	41.0	40 0			, c	50. T	50. I	50.5	51.5	51.7	52.1	21.7	40.8
	Depth	fm.	13	16	19	19	25	28	29	30	32	351	38	39	40	47	52	63	68	72	76	85	138	356	402	7 0 0	650	618	62	50	43	36	4.0	33	200	200	0 7 0	# F F	+ C U	1 0	80	140	164	124	75	58	46	242
	Long.]	Ň.	70 53	70 53	70 53	70 53	70 54	70 54	70 53	70 53	70.52	70.53	70 52	70.52	70 52	70 52	70 52	70 52	70 52	70 52	70 52	70 51	70 50	70 58	71 07	71 15	71 25	71 32	72 53	72 57	72 59	73 07	13 12	73 13	CT 2)	02 01	10000	20 00	2000	200	10 2)	00 7 7	80 27	13 02	73 12	73 15	13 21	13 21
	Lat.	N.	41 13	41 10	41 07	41 03	40 59	40 53	40 50	40 46	40 43	40 40	40 37	40 33	40 29	40 25	40 22 7	40 19	40 16	40 13	40 10	40 06	40 02	39 55 7	39 50	39 49	39 45	39 35 /	38 54	38 59	39 00	39 05	39 09	39 11	39 T3	01 00	02 00	20 02	20 20		30.30	20 02	38 50	38 49	38 47	38 45	38 42	38 40
	wich time	date	21	21	21	21	21	21	21	21	21	12	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	22	22	22	22	22	22	7.7	52	000	30	000	200	2 6	50	53	5.2	5.2	23	23	5.3	5.3
	Green	hour	0800	0830	0060	0630	1000	1030	1100	1130	1200	1230	1300	1400	1430	1500	1530	1600	1630	1700	1730	1800	1830	2000	2100	2200	2300	0000	1915	2000	2100	2200	2300	2330	0000	0000	0010	00790	0400		1000	CONT	1100	1200	1320	1400	1200	nngT
	Consec. slide	no.	-	103	ŝ	4	ວ	9	7	~) с	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	59	30	31	20 00	50	# u	200	000	- 00		ς γ	40	41	24	43	44	40	40

APPENDIX I, BT CAST DATA

- 20	
60	
No.	
ıb.	sd)
РС	nu€
o.	nti
Η.	ŭ
ith	Je
A	20]
nce	me
rda	til
CO	20 +
ac	,
/ ir	12
ar	0.
8 8 8	9
lec	uis
e r	ũ
her	III
q q	SS
ode	tro
č	1160
late	
s (c	suc
ast	atic
h c	εrv
rap	bse
60	0 0
rm	phi
the	gra
thy	fou
ba	cea
for	r o
ıta	fo I
q	ual
asid	nar
-B	n r
-	ctic
e	ruc
ab	nst
X T	H
ndi	
ppe	
1	

		mt.	-	1	1	1	ł	1	L I	I I	1	1		F 1	1	1	1)	1	1	2	2	2	ŝ	3	со ⁻	4,	4.	7 ,	4.0	n a	ი ი	о с	0 c	0 c	° °	00	n	νu		n a	n		ה כ יו	, 0	c	
	Swell	dir. a	1	1	1	3	ь 1	;	I I	1	1	1	1	i I	I I	1	1 1	1	1	27	18	18	18	18	19	19	19	61	61				רי קור	ה כ ד ד	ם ת די ד		ר ד די ד	л (Т	1 8 1	19		5 U	19	0 0 1 •	ה כ ד ד	ה ד מ	
		sea	4	4	ŝ	ŝ	с С	က	ŝ	2	2	2	2	2	2	2	2	2	2	2	က	n	က	n	4	4	4	ı م	ı ما	<u>،</u> م	4,	4, 4		° c	<i>~~~</i>	n c	<i>ი</i> ძ	n o		 	، در	، در	3		о с	°	
	-	Vis.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	8	8	8	œ	80	œ	8	00	œ	œ	œ	\$	~~~	8	~	8	00	œ	00	00	0	00	~ ~		x	x	ю г	- r	- c	- r	(× •	o (20 (00 (00	00 0	τοc	ò	
	spr	amt.	2	2	5	0	0	ດ	1	1	2	-1	1	1	Ω	5 C	ŝ	9	9	9	2	2	0	n	2	က	co i	(C)	9	9 0	19 I	- r	- U	، د	1 , c	n c	2		9	က၊	Ω.	9	9	90	0 0	٥	
	Clot	type	4	5	-1	1	1	9	4	4	co	со 	ŝ	က	2-5	2-5	2-4	2-4	2-4	2-4	4-5	4 - 5	4-5	9	က	ç	с ,	(C)	0	- 5	1-2-4	1-2-4	F-2-T	+-2-1	4, 4	4 4 (0	9	، در	2 .	4-6	4	4	4	4	44	
	Wea-	ther	02	01	01	01	02	03	01	02	03	01	01	01	03	02	03	03	02	02	01	02	02	03	01	02	02	03	03	02	03	200	200	70	10	20	10	10	0.7	05	02	03	02	02	70	20	
	Bar.	mb.	28	28	27	27	28	28	28	30	31	30	30	30	28	28	26	26	26	25	24	23	23	19	19	19	10	17	16	16	16	ດ ເ 1 ເ	Ω, I	0 L 1 7	Ω I	ΩI,	0 ·	14	14	12	15	15	16	15	0 r	10	
1959	Dry bulb	temp.°F.	34.0	34.0	36.8	36.0	38,0	36.0	36.0	36.0	40.0	43.0	41.0	44.0	45.0	47.0	46.8	45.0	43.0	44.0	44.0	47.0	48.0	48.0	44.5	48.0	50.0	48.0	51.0	52.0	51.0	51.0	50°0	0.10	49.0	48,0	48.0	48.0	47.5	44.0	52.0	57.0	55.0	55.0	62.0 1	55.8	
nuary	<u>م</u>	kn.	10	~	- LO	4	9	S	S	0	ى د		0	က	It.	1t .	10	20	20	20	20	25	20	25	30	30	30	30	30	25	21	1.7	12	22	21	12	10	10	10	10	15	22	20	10	10	10	
Jai	Win	dir.	28	28	27	27	27	27	27	00	ŝ	27	0	var.	var.	var.	23	18	18	18	21	21	21	21	21	21	21	21	23	23	23	12		с I С	1 8 F	18	54	24	24	36	36	36	05	05	0 0	c0	
	Sea surf.	temp.°F.	45.5	47.0	46.9	46.4	46.0	46.5	47.2	48.6	47.9	48.8	57.3	61.5	61.0	61.0	60.5	57.5	50.8	48.9	49.0	46.9	45.3	44.5	44.2	48.1	55.0	54.5	57,5	55.5	51.5	47.5	44.5	43.8	42.7	43.9	44.0	43.2	42.7	43.7	45.1	53.6	52.6	59,5	59.7	61.5	
	Depth	fm.	36	36	34	30	32	28	23	20	40	60	81	97	115	167	160	60	43	37	31	28	23	19	19	25	38	51	130	52	234	45	31	28	28	20	18	20	14	17	19	25	45	66	8 4 1 1	155	
	Long.	° N	73 36	73 42	73 49	73 56	74 08	74 16	74 21	74 19	74 04	74 00	73 57	73 57	73 60	73 57	73 58	74 06	74 11	74 17	14 24	74 29	74 34	74 39	74 50	74 42	74 27	74 27	74 19	74 22	74 30	74 33	74 30	14 44	14 52	74 57	15 06	75 11	75 15	75 15	75 01	74 51	74 45	74 40	74 40	74 40	
	Lat.	N.	38 37	38 34	38 32 7	38 28	38 25 7	38 23	38 20	38 17	38 08	38 04	37 59	37 56	37 55	37 57	37 55 7	37 55	37 55	37 56	37 50	37 57	37 56	37 57	37 50	37 47	37 40	37 37	37 33	37 30	37 27	37 24	37 21	37 18	37 16	37 11	37 07	37 03	36 57	36 49	36 47	36 47	36 45	36 48	36 46	36 45	
	vich	late	23	23	23	23	23	23	23	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	25	25	25	25	25	25	25	122	52	220	2 2 2 2	5 D	25	25	25	26	26	26	26	26	26	26	
	Green	JOUL	1700	1800	0061	2000	2100	2200	2255	0230	0430	0540	0110	0825	0935	1050	1200	1300	1330	1405	1430	1500	1530	1600	0155	0300	0200	0610	0737	0060	1000	1100	1200	1300	1400	1500	1600	1700	1800	0200	0325	0450	0610	0830	0940	1105	
	Consec.	no.	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	10	71	72	73	74	7.5	16	2.2	1.8	19	80	81	82	83	84	85	86	87	88	500	06	

. Pub. No. lued)
, Pub.
ppendix Table 1Basic data for bathythermograph casts (data coded where necessary in accordance with H. O. Instruction manual for oceanographic observations), <i>Albatross III</i> Cruise no. 126, + 5 time zone (Contir

		amt.	ŝ	ŝ	co	n	ŝ	ŝ	63	n	4	4	ci	cr;		1.01		4	4 01	20	00	00	n u		n	era	ന	იი ი	3	~~ ·	n	m				3		3	n	co.	e	e e	c	co	2	2	2	2	2	1	
	Swell	dir.	14	16	16	16	16	16	16	04	05	05	05	05	05	0.5	0.5	500	36	200	000	000	30	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	32	32	32	32	32	32	32	32	1	
		sea	n	c	n	m	m	n	2	ŝ	4	4	4	· ~ .) (°;	0 01) (r.	0 4	4 07	- 	00	° .	dı .	4, .	4	4	4	4	4	4	4	4	4	4	4		с о		ŝ	n	co		c	c	02	2	0	2		1	
		Vis.	8	7	7	2	7	8	~~~~	8	œ		~~~~	~	0 00	α	0 00	α		- 4	0 (0 0	9	9	9	9	9	9	9	9	9	9	9	2	2	L	~	×	C	2	2	9	9	9	7	7	. [- 2			
	spu	amt.	7	7	8	ω	4	0	0	c	ŝ		2	6	4	4	•	.α	0 0		ກດ	n a	э ·	с , (თ	<u>б</u>	<u>б</u>	8	×	œ	8	8	0	2	2	2	2	2	4	4	4	4	4	ŝ	2	2	10	2	10	3	
	Clo	type	4	4-6	4-6	4-6	4	8	ł	1-4	1		2	. 6	2-5	210	2-5-6	2		۲ ۲	4	1	1	8	E E	ı t	1	6-8	6-8	6-8	6-8	6-8	6-8	6-8	1-6-8	1-6-8	2-5	2-5	2	2	2	5	2	2	0-1	0-1	0-1	0-1-0	0	4	
	Wea-	ther	03	02	02	02	01	01	00	03	03	03	0.5	02	03	00	03		500	200	20	07	3	00	00	02	25	02	02	02	02	02	02	02	01	02	01	02	02	02	02	02	02	02	02	02	020	02	000	3	
	Bar.	mb.	16	16	16	16	17	16	00	16	16	16	16		14	4	14	• •	0 0	0 0	2 7	72	12	21	21	21	22	23	24	25	26	26	26	26	25	25	27	27	28	29	30	30	30	30	31	31	325) () ()	5	
ry 1959	Drv bulb	temp. °F.	55.0	56.0	53.0	53.0	56.5	57.0	60.0	56.0	62.0	62.0	64.0	64 0	63.0	64.0	62.0	20.00			0.00 10	00.0	54.0	54.0	50.0	49.0	48.0	48.0	48.0	47.0	47.0	46.0	46.0	44.0	43.0	43.0	42.0	40.0	42.0	41.0	40.0	38.0	37.0	36.0	36.0	31.0	28.0	30.0	30.0	2	
Janua		kn.	10	5	10	12	5	5 2	4	2	10	10	1)	1	1	10				18	20	28	32	30	30	25	20	20	19	19	19	20	20	21	20	20	15	15	15	20	18	19	18	20	000	200	2 8	ο α	2	-
	Win	dir.	60	05	05	05	14	14	var.	05	4	14	14	101	. 10 V		39		100	100	32	22	32	32	32	32	32	34	34	34	34	34	34	36	36	36	36	34	35	35	35	35	35	35	35) u) ()	о и о с	о и о ст	2 C 2 C	5	-
	Sea surf.	temp. °F.	58.9	53.0	54.5	58.1	57.7	55.1	55.4	55.1	58.9	58.9	63.4	- L - C - C - C - C - C - C - C - C - C - C	6.00		0.40		0.01	10.1	58.9 10.1	0.90 	56.5	63.2	63.1	64.2	63.5	62.7	56.5	56.2	54.6	53.9	60.1	58.4	57.1	58.8	56.2	56.3	51.0	47.3	45.9	46.2	44.7	42.3	42.1	40.3	0.05	41.6	73 6	2,04	
	Denth	fm.	50	29	19	17	20	16	12	61	27	- 22	45	46	99		ςα 1 2 2 2		740	420	497	383	488	8 00	1050	1200	1000	1058	1178	1243	1210	1095	978	1012	813	556	180	78	44	35	26	23	21	20	18		11	4 F	ο 1 Γ	P I	
	I ong	W.	74 43	74 48	74 51	74 55	75 05	75 15	75 17	75 14	25 00	75 00	74 53	74 53	74 59		74 51		00 01	14 40	14 43	14 38	74 33	74 32	74 28	74 25	74 21	74 17	74 12	74 07	74 04	73 59	73 57	73 56	74 04	74 11	74 15	74 16	74 17	74 19	74 22	74 23	74 25	74 27	74 28	74 21	74 39	00 E1	27 1 1 2	21 10	
	Lat	N.	36 39	36 35	36 29	36 24	36 11	35 57	35 51	35 43	35 46	35 46	35 46	35 40	35 47		25 42		04 00	30 40	35 53	36 01	36 08	36 16	36 21	36 29	36 37	36 43	36 50	36 57	37 04	37 10	37 18	37 22	37 27	37 32	37 37	37 38	37 47	37 56	38 05	38 13	38 22	38 31	38 40	28 40	28 57	20 51	30 76	24	
	wich	date	2.6	26	26	26	26	26	27	2.8	98	280	200	200	0 0 0	0 0	07	0 0	200	200	30	30	30	30	30	30	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	5	31	31	1 5	210	1 6	100	10	10	
	Green	hour	1200	1300	1400	1500	1700	1900	2000	0155	0415	0420	0230	0770	00000	2000	1025	0000	0100	1135	1835	1930	2023	2130	2230	2330	0030	0130	0230	0330	0430	0530	0630	0110	0800	0060	1100	1215	1330	1430	1530	1630	1730	1830	1930	0000	01202	00000	00000	0007	
	Consec.	no.	10	92	93	94	95	96	26	. 80	000	001	101	105	100		#01		001	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	12.9	130	131	132	100	120	+ u	100	001	

Appendix Table 1. --Basic data for bathythermograph casts (data coded where necessary in accordance with H.O. Pub. No. 607--Instruction mannual for oceanographic observations), Albatross III Cruise no. 126, + 5 time zone (Continued)

		amt.	2	2	0 0	2 0	40	10	10	2 0	1	71 0	7	10	، در	10		c,	3	3	0	n	n	3	m	3	3	2	21	21 0	. 1	N C	10	10	10	2	ę	n	4	4	4	4		200	, n n	റന	ა თ	
	Swell	dir.	32	32	32	222	200	200	30	22	20	20	22	32	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	000	000	200	36	36	36	36	36	36	36	27	27	1.7	1.7	17	27	
		sea	2	2	0	20 0	10	10	3 0	2		2 0	21	در	(C)	3		3	n	ŝ	ŝ	n	3	3	n	3	ŝ	2	2	2 0	21 0	N C	10	10	30	2	3	3	4	4	4	(C)	(n)			n m	ათ	
		Vis.	7	œ	2		~ [ə L	- 1	t	I	- 1	~ 1	2	9	.0	9	9	9	9	2	2	2	2	2	7	œ	~	~	~	~	× 0	οc	ο α	000	0.00	0 00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8	~~~~	8		C~ 1		- r		- 2-	
	ads	amt.	2	n	2	. 0	00	00	s c	- 1	~ (∞ ı	.~ (÷	0	÷	~	×	2	2	2	9	2 2	S	4	с С	0	0	0	0	0	21	7 0	10	10	10	0	2	0	2	1	2	က၊	2	4	4° L	с С	•
	Clo	type	0-1	1-8	1-8	20 0 	0 0				4 · 0	6-4 1	4 - C - F	4-5	9	9	6-8	6-8	6-8	6-8	œ	œ	œ	œ	8	2-5-8	t 1	1	1	I I	t 1	~ ~	× 0	0 0	ο α	0 00	0 00	0	8	8	8	8	0	ر م	in i	ດທ	о из)
	Wea-	ther	02	02	02	03	50	70	2,0	01	20	200	20	02	02	20	03	0 2	01	02	02	02	01	02	01	02	02	02	02	02	02	200	20	20	200	02.	02	02	02	02	01	02	02	03	01	20	03)
	Bar.	mb.	33	34	34	44 c	200	2 0 0	2,0	5 4 4	5 4 4	5 7 7	54 N	34	34	34	34 4	34	35	36	37	37	36	34	32	32	31	31	30	30	29	28	87	070	9 C	200	24	24	24	21	20	18	17	1	12	08 72	02)
1959 Jary 1959	Dry bulb	temp.°F.	31.0	31.0	32.0	33,0	0.1.0	0.10	0 0 0	29.0	29.0	25.0	25.0	25.0	25.0	25.0	25.0	28.0	27.0	25,0	25.0	25.0	23.0	23.0	23.0	25.0	23.0	29.0	30,0	31.0	31.0	31.3	32.0	0.4°0	0 C	33.0	35.0	37.0	36.0	38.0	38.0	38.0	38.0	42.0	44.0	46.U	48 0 48 0	•
Febru	pq	kn.	15	15	10	10		01 10	3 L 1 1	10	0 i	18	15	18	19	20	20	20	20	22	18	10	15	12	10	15	10	15	Ч	ß	10	8 q	2 L	0 0	ο α 1 Γ	010	50	25	25	25	20	22	20	18	s S	20	22	3
	Wi	dir.	35	05	02	30	000	202	200	36	36	36	36	36	36	36	36	36	36	36	36	36	34	34	29	29	27	27	27	27	27	27	7.7	2 10		- 26	27	27	27	27	27	25	20	23	23	23	0.0	2
	Sea surf.	temp.°F.	44.1	44.7	46.8	52.1	4, 4, 4	50.8	0.10	49. I	48.6	47.4	47.6	48.5	47.1	48.1	47.4	47.2	48.0	48.4	51.0	49.6	50.0	46.3	45.9	39,9	42.5	41.8	47.6	43.0	42.7	44.8	44.0	44°0	0.04	44.5	42.3	42.1	42.2	42.2	44.8	41.8	41.9	42.3	44.9	44.6	0.44	2 . 4
	Depth	fm.	26	31	46		200	1 7 0	D V T	160	498	687	1 20	571	816	190	692	515	712	715	168	104	86	66	45	34	47	52	90	190	398	473	543	240	676	548	180	127	100	84	63	45	51	67	172	398	514	4
	Long.	Ň.	74 03	73 52	73 38	73 38	07 01	10 24	12 01	73 13	73 05	72 56	72 49	72 43	72 32	72 25	72 17	72 09	71 56	71 58	72 08	72 09	72 09	72 18	72 27	72 36	72 19	72 06	71 53	71 42	71 32	71 19	71 08		0 4 0 7	20 22	70 17	70 15	70 14	70 17	70 17	70 21	70 23	70 32	70 39	70 47	70 58	2
	Lat.	z.	38 41	38 32	38 29	38 24	38 25	38 20	20 20	38 35	38 38	38 43	38 48	38 55	38 58	39 03	39 07	39 10	39 19	39 22	39 31	39 32	39 34	39 39	39 48	39 51	39 51	39 50	39 49 /	39 50	39 50	39 48	39 48	50 40	20 40	04 08	40 00	40 01	40 03	40 06	40 11	40 24	40 19	40 08	39 59	39 49	39 50	222
	wich time	date	1	1		 1 -		-1 -					-1		1	-1		-	-1	1	2	2	2	2	2	2	2	2	2	2	2	2		70	10	3 0			3	3	ŝ	n	n	m	с , с		0 m	>
	Green mean	hour	0030	0245	0435	0615	0180	1016	CTAT	1225	1330	1430	1530	1630	1730	1830	1930	2030	2100	2130	0420	0555	0655	0845	1045	1255	1430	1530	1630	1730	1830	1930	2030	00000	00000	00300	0230	0400	0545	0810	1005	1230	1330	1530	1730	1930	0017	222
	Consec. slide	.ou	137	138	139	140	141	142	140	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	201	021	121	172	173	174	175	176	177	178	179	180	181	183	2

APPENDIX II, TEMPERATURE PROFILES

The profiles presented in figures A-1 to A-18 are based on the bathythermograph casts. They are all, by necessity, somewhat diagrammatic. This is particularly true of the profiles presenting both temperature and fishing data. In order to fish in various depths, it was frequently necessary to search around somewhat to find trawlable bottom. For this reason some of the profiles are not straight lines across the shelf, especially on the edge of the shelf.

The various temperature and fishing profiles are presented in more or less geographic order, from north to south.

Bottom water temperatures given for stations at depths exceeding 150 fathoms were determined by extrapolating bathythermograph data and should be considered gross estimates.

- Figure A-1.--Temperature profile A-B and B-C.FigureFigure A-2.--Temperature profile U-V.FigureFigure A-3.--Temperature profile T-U.FigureFigure A-4.--Temperature profile S-T.FigureFigure A-5.--Temperature profile R-S.FigureFigure A-6.--Temperature profile D-E.FigureFigure A-7.--Temperature profile Q-R.FigureFigure A-8.--Temperature profile E-F.FigureFigure A-9.--Temperature profile P-Q.Figure
- Figure A-10.--Temperature profile F-G. Figure A-11.--Temperature profile N-O-P. Figure A-12.--Temperature profile H-I. Figure A-13.--Temperature profile G-H. Figure A-14.--Temperature profile I-J. Figure A-15.--Temperature profile J-K. Figure A-16.--Temperature profile K-L. Figure A-17.--Temperature profile L-M.
 - Figure A-18 .-- Temperature profile M-N.

Figure A-1,--Temperature profile A-B and B-C. Data from bathythermograph casts 1 to 21, and 21 to 26, January 21-22, 1959.

Figure A-2.--Temperature profile U-V. Data from bathythermograph casts 177 to 182, February 3-4, 1959.

Figure A-3.--Temperature profile T-U. Data from bathythermograph casts 172 to 177, February 3, 1959.

Figure A-4.--Temperature profile S-T. Data from bathythermograph casts 160 to 171, February 2-3, 1959.

Appendix table 2.--Principal species caught, fishing transect 1 (Martha's Vineyard), February 3, 1959

[See Figure A-3]

		Nur	ber taken	at station	1	
crossing	[Avera	ige depth o	of tow (in	fathoms) i	in parenthe	eses]
opecies	6	5	4	3	2	1
	(46.5)	(64)	(82.5)	(99)	(146)	(210)
Spiny dogfish: Male	48 11 2 1 4		14 353 277 	423 5 3 1,500 9 7	 2 300 130 1 105 1 4 4 4 9 5	2 280 72 26 68 34 34 31

Figure A-5.--Temperature profile R-S. Data from bathythermograph casts 153 to 160, February 2, 1959.

Appendix table 3.--Principal species caught, fishing transect 10 (Hudson Canyon), February 2, 1959

[See figure A-5]

	Number taken at station								
Creation	[Average depth of tow (in fathoms) in parentheses]								
Species	7	6	5	4	3	2	1		
	(32)	(46)	(67)	(92)	(103)	(178)	(228)		
Spiny dogfish: Male Female. Barndoor skate. Leopard skate. Silver hake. American hake. White hake. Red hake. Long-finned hake. Fluke. Grey sole. Butterfish. Scup. Black-bellied redfish. Armored sea robin. Angler.	10 1 13 1 	40 2 16 178 41 90 8	5 5 2 29 149 387 		1 4 21	280 360 16 36 16 17 17	 62 5 8 11 2 -2		

¹ Young-of-the-year and immature fish

Figure A-6.--Temperature profile D-E. Data from bathythermograph casts 36 to 41. January 23, 1959.

Appendix table 4.--Principal species caught, fishing transect 3 (Barnegat), January 23, 1959

	Number taken at station [Average depth of tow (in fathoms) in parentheses]							
Creation								
Specres	1	2	3	4	5			
	(25)	(45)	(62)	(80)	(159)			
Big skate. Leopard skate. Silver hake. Red hake. Four spot. Grey sole. Butterfish. Mackerel. Scup. Black-bellied redfish. Angler.		2 8 12 3	2 23 1 2 17 2 1 1	1 12 	407 54 2 7 8			

Figure A-7.--Temperature profile Q-R. Data from bathythermograph casts 145 to 153, January 1-2, 1959.

Figure A-8.--Temperature profile E-F. Data from bathythermograph casts 41 to 53, January 23-24, 1959.

Figure A-9.--Temperature profile P-Q. Data from bathythermograph casts 134 to 143, February 1, 1959.

Appendix table 5.--Principal species caught, fishing transect 9 (Cape May), February 1, 1959

[See figure A-9]

	Number taken at station							
Species	[Average depth of tow (in fathoms) in parentheses]							
Obcorco.	1	2	3	4	5	7	6	
	(32)	(43)	(62)	(86)	(117)	(153)	(180)	
Spiny dogfish: Male.	53	144	251					
Female	4	138	466					
Brier skate	1					1	1	
Leopard skate				80	+1.125	850	415	
American hake	±7					27	+125	
White hake						15	21	
Red hake	1			1	49	17		
Spotted hake		1		6				
Long-finned hake							4	
Fluke	2		1					
Crev sole					5	3	3	
Butterfish	52	1,120		5	1			
Sea bass		23	5					
Scup	3	121	2	1				
Black-bellied redfish					1	30	13	
Common sea robin	105	11						
Armored sea robin					1	1		
Angler	5	1			4	13	51	

Appendix table 6.--Principal species caught, fishing transect 4 (Delaware Bay), January 24, 1959

		Number taken at station							
Species	[Average	depth of	tow (in	fathoms) in par	entheses]	
0,000,000	1	2	3	4	5	6	7	8	
	(30)	(42)	(65)	(80)	(100)	(125)	(150)	(220)	
Spiny dogfish: Male	14 1 1 10 1 1 3 1	53 66 2 1 6 4 10 5 30 4 4 	2 1 2 1 53 15 3 1 53	1 1 1 1 4 2 1 1 1 1 1 	 3 113 15 1 	 1 72 5 2 2 2	 1 72 36 2 2 4 4	 127 46 6 3 7 7 7	
Angler	6	1	1	1	1	2	9	30	

[See figure A-10]

¹ Young-of-the-year

Figure A-10,--Temperature profile F-G. Data from bathythermograph casts 54 to 61, January 24, 1959.

Figure A-11.--Temperature profile N-O-P. O-P: Data from bathythermograph casts 124 to 134, January 31 to February 1, 1959. N-O: Data from bathythermograph casts 121 to 124, January 31, 1959.

Figure A-12.--Temperature profile H-1. Data from bathythermograph casts 69-73. January 25, 1959.

Appendix table 7.--Principal species caught, fishing transect 5 (Winter Quarter), January 25, 1959

	See	figure	A-12]
--	-----	--------	-------

	Number taken at station							
Species	[Average depth of tow (in fathoms) in parentheses]							
	1	2	3	7	4	6		
	(18)	(37)	(48)	(92)	(130)	(238)		
Spiny dogfish:								
Male	58	4	1	17				
Female		L 1		8				
Big Skale	1			2				
Leonard skate		2		2				
Silver hake	2			¹ 334	¹ 230			
American hake						66		
White hake						49		
Red hake				61				
Spotted hake	2			6				
Long-finned hake						29		
Fluke		2		4				
Four spot			1	6				
Grey sole						2		
Butterfish	6	1						
Sea bass		-2	6					
Scup	1	399	4		L			
Black-Dellied redfish.					2	271		
Angler	5			2	5	17		

¹ Mostly immature fish

Appendix table 8.--Principal species caught, fishing transect 6 (Cape Charles), January 25, 1959

	Number taken at station								
Species	[Average depth of tow (in fathoms) in parentheses]								
Species	1	2	3	4	5	6			
	(17)	(24)	(42)	(77)	(107)	(173)			
Spiny dogfish:.		1							
Male		25							
Pemale		56	T						
Brier skate			1						
Silver hake	1 5			6	450	540			
American hake						24			
White hake					1	4			
Red hake					33	2			
Spotted hake			1	1	12	2			
Long-finned hake						16			
Fluke	L	2	2		T				
Butterfish									
Sea bass		3	2	15	8				
Scup.			46	8					
Black-bellied redfish.					2	2			
Common sea robin		6	45	6	1				
Angler					15	45			

[See figure 15-A]

¹ Young-of-the-year

Figure A-13.--Temperature profile G-H. Data from bathythermograph casts 60 to 69, January 24-25, 1959.

Figure A-14.--Temperature profile 1-J. Data from bathythermograph casts 73 to 83, January 24-25, 1959.

Figure A-15.--Temperature profile J-K. Data from bathythermograph casts 84 to 90, January 25, 1959.

Figure A-16.--Temperature profile K-L. Data from bathythermograph casts 90 to 97, January 26-27, 1959.

Figure A-17.--Temperature profile L-M. Data from bathythermograph casts 98 to 106, January 27, 1959.

Appendix table 9.--Principal species caught, fishing transect 7 (Albermarle), January 27, 1959

[See figure A-7]

	Number taken at station								
Species	[Average depth of tow (in fathoms) in parentheses]								
	1	2	3	4	5	6			
	(19)	(26)	(45)	(64)	(80)	(192)			
Brier skate Leopard skate Silver hake American hake Red hake Spotted hake Long-finned hake Fluke Four spot Butterfish. Black-bellied redfish. Angler	1 2	5	4 1 2 1 1 	1 1 3 1 1	 123 7 1 6 2	1 332 4 7 4 4 2 1			

Mostly immature fish.
 Small red hake in scallop.

Figure A-18.--Temperature profile M-N. Data from bathythermograph casts 107 to 121, January 30-31, 1959.

GPO 922754

