PHYSICAL OCEANOGRAPHIC, BIOLOGICAL, AND CHEMICAL DATA -SOUTH ATLANTIC COAST OF THE UNITED STATES

Marine Biological Laboratory LIBRARY DEC 3 - 1956 WOODS HOLE, MASS.

UNITED STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE

EXPLANATORY NOTE

The series embodies results of investigations, usually of restricted scope, intended to aid or direct management or utilization practices and as guides for administrative or legislative action. it is issued in limited quantities for official use of Federal, State or cooperating agencies and in processed form for economy and to avoid delay in publication. United States Department of the Interior, Fred A. Seaton, Secretary Fish and Wildlife Service, John L. Farley, Director

PHYSICAL OCEANOGRAPHIC, BIOLOGICAL, AND CHEMICAL DATA SOUTH ATLANTIC COAST OF THE UNITED STATES M/V THEODORE N. GILL CRUISE 1

By

William W. Anderson, Fishery Research Biologist Jack W. Gehringer, Fishery Research Biologist Edward Cohen, Analytical Chemist South Atlantic Fishery Investigations Brunswick, Georgia

Special Scientific Report--Fisheries No. 178

Washington, D.C.

August 1956

CONTENTS

•

Page

Introduction	1
Procedures on station	3
Regular and special stations	3
Standard station	4
Chemical methods and procedures	4
General	4
Containers used for collection of samples	4
Initial preparation of containers	4
Notes on collection of samples at sea	5
General notes on methods	5
Notes on calculation of concentration values	5
Methods	6
Dissolved oxygen	6
Salinity	6
Total phosphorus	6
Inorganic phosphate	7
Nitrate- nitrite	7
Carbohydrates	. 7
Proteins	8
	_
Biological methods and procedures	8
Plankton	8
Method of towing 1/2-meter silk nets	8
Volumes of water strained	8
Numbers of organisms	10
Continuous plankton sampler	10
Dip-netting	. 10
Trolling	. 12
	•
Oceanographic methods and procedures	. 12
Narrative account of cruise 1	. 12
Explanation of data sheets and tables	14
Oceanographic and chemical	14
Riological	15
	.15
Literature Cited	. 17

LIST OF TABLES

Page

Table 1.	Compass direction conversion table for wind,	
	sea, and swell directions 1	8
Table 2.	Numerical weather codes - present weather I	19
Table 3.	Cloud type 2	20
Table 4.	Cloud amount	20
Table 5.	Sea amount	20
Table 6.	Swell amount	21
Table 7.	Visibility 2	21
Table 8.	Plankton volumes (half-meter silk net) 2	22-23
Table 9.	Numbers of plankton organisms per cubic meter of	
	water (half-meter net) 2	24-30
Table 10	. Numbers of plankton organisms per cubic meter of	
	water (continuous plankton sampler) 3	1-37
Table 11	. Numbers and species of fish taken by trolling	38
Table 12	. Numbers and species of fish taken by dip net 3	89-40
Oceanog	aphic and chemical data by station	
U	Regular stations 4	18-149
	Standard station 15	50-160

PHYSICAL OCEANOGRAPHIC, BIOLOGICAL, AND CHEMICAL DATA SOUTH ATLANTIC COAST OF THE UNITED STATES M/V THEODORE N. GILL CRUISE 1

The program of the South Atlantic Fishery Investigations evolved from: (1) the interest of the U. S. Fish and Wildlife Service in the biological and chemical conditions in the offshore waters from Cape Hatteras to Florida Straits; (2) the interest of the South Atlantic Section, Atlantic States Marine Fisheries Commission in these matters; (3) the interest of the U. S. Navy Hydrographic Office in the physical oceanography of the same region; and (4) the interest of the Office of Naval Research in the deep scattering layer and related subjects.

During 1952 the Fish and Wildlife Service M/V Theodore N. Gill was converted and outfitted. She has a length of 97 feet, beam of 21.5 feet, draft of 11.5 feet, displaces187 tons, and has a cruising range of 3500 miles. Navigation and communications equipment includes Sperry Automatic Pilot, CG Model RD-137 Loran, Navy Model SO-1 Radar, Edo AN/UQN-1B Echo Sounder, RCA Transceiver Type CRM, and National Type CNA receiver. The basic oceanographic equipment includes BT winch (1200 foot capacity), Markey hydrographic winch (electric powered, with capacity of 5000 meters of 5/32" stainless steel cable), and a two-drum Stroudsburg trawling winch (hydraulic powered, with 1/4" stainless steel cable) for plankton tows. There are accommodations for eight scientists and a crew of ten.

The initial effort was a cruise in July, 1952. This was a cooperative Navy Hydrographic Office Office of Naval Research program involving: (1) sound velocity meter tests; (2) scattering layer observations; and (3) the first in a series of twenty-four to fortyeight hour oceanographic stations, termed "standard stations." This work continued until December, 1952.

By the end of 1952 the Fish and Wildlife Service's South Atlantic Fishery Investigations had established headquarters at Brunswick, Georgia, and developed to the operational stage A cooperative operational plan and agreement was reached by the Service, the Navy Hydrographic Office, and the Office of Naval Research. The Service set up a pattern of 80 regular stations between Jupiter Light (Florida Straits) and Cape Hatteras extending in area from near the beaches to beyond the axis of the Gulf Stream. These stations were 20 miles apart on the east-west lines, which were in turn, 40 miles apart in the north-south direction, with stations es tablished inshore between some of the eastwest lines. The standard station was maintained in its location off Elbow Cay, Bahamas. Additionally, at the request of the Navy Hydrographic Office, nine special stations were located farther offshore. This basic cruise plan is shown in Figure 1.

The ultimate objective of the investigations is to ascertain the potential productivity of those waters adjacent to our coast from Cape Hatteras on the north to the Florida Straits on the south As a beginning to this study, a general survey of the waters was projected that had three major objectives:

- To ascertain the distribution and concentrations of nutrients and the relations between these nutrients and the distributions and concentrations of the fishes, as a means of delimiting potentially productive fishing areas.
- 2. To determine the presence, identity, distribution, and interrelationships of marine forms in the area as an aid in understanding the presence, abundance, availability, and fluctuations of the fishes. Special attention is directed to the distribution and abundance of fish eggs, larvae, and juveniles; and to the early life history of important species of the area.

Figure 1.--Basic station plan.

 To determine through oceanographic techniques, the flow pattern of the major currents of the region, and trends in temperatures and salinities.

The program developed as a cooperative venture between the Fish and Wildlife Service and the several agencies: the Navy Hydrographic Office and the Office of Naval Research in physical oceanography and related studies; the Georgia Game and Fish Commission in the biological inventory and nutrient studies; and the Florida State Board of Conservation (through the Marine Laboratory of the University of Miami) in biological studies. The Woods Hole Oceanographic Institution is cooperating in the processing and analysis of data relating to physical oceanography.

Field operations comprised nine cruises over the established station pattern during the period January, 1953, to December, 1954. It was agreed by the cooperating agencies that the basic data from the cruises of the <u>Theodore N. Gill</u> would be made available in an assembled form for each cruise. This report is to explain the program, operational procedure, and methods; and to present the assembled data for Cruise 1.

PROCEDURES ON STATION

Regular and Special Stations

- General observations including barometer reading, wet and dry bulb air temperatures, wind direction and velocity, and observed sky, sea, and wave conditions were recorded.
- 2. BT casts were taken on each station. Three bathythermographs with ranges of 180, 450, and 900 feet were available:
- Nansen bottle casts were made at standard wire depths, using 12 bottles or less per cast. A 30 cm. Secchi disc was attached directly

to the hydrographic cable, and readings taken on stations during daylight hours.

- 4. Oxygen determinations were conducted aboard vessel immediately after each cast, using Wooster's modification of the Winkler method of dissolved oxygen analysis.
- Salinity samples were collected for each cast (determinations were made in the Service's laboratory at Brunswick, Georgia).
- 6. Water samples for use in the determination of inorganic phosphate, total phosphorous, carbohydrates, proteins, and nitrate-nitrite were collected for each cast (analyses were accomplished in the Service's laboratory at Brunswick, Georgia.
- 7. Bottom sediment samples were obtained, using a modified orange peel dredge (lead weights were added and covers were placed over the blades to prevent the sample from washing out). Half of each sample was furnished to the Navy Hydrographic Office for analysis.
- 8 GEK measurements from the Gill were found impractical, and use of the instrument was abandoned very early in the program.
- Plankton tows with a half-meter silk net were made on each station. The continuous plankton sampler was run continuously.
- 10. Dip-net fishing was conducted on each station as conditions permitted.
- 11. Feather and bone jigs were trolled between stations.

Standard Station

The water depth in the area of operation was too great for anchoring, so the position of 26°21.5'N and 76°46'W was held within the limits of the navigational equipment aboard. This station was located so that it was free of the effects of the Gulf Stream. It was of 48 hours duration when conditions permitted. Observations were similar to those taken for regular and special stations except:

- BT lowerings were made to 900 feet before and after each Nansen bottle cast.
- Nansen bottle casts were lowered two hours after completion of the previous cast, and were made to a depth of 700 meters with 12 bottles spaced at standard depths. Samples for oxygen and salinity determinations were drawn for each cast and treated as on regular stations. Water samples for the other chemical determinations were drawn on four casts during the standard station (these at dawn, mid-day, dusk, and mid-night as nearly as possible).
- Special plankton tows were made for the Office of Naval Research for deep scattering layer investigation (four tows with half-meter silk nets during the station timed to represent the periods of dawn, mid-day, dusk, and mid-night). Towing depths were surface, 100, and 200 meters.
- 4. Hydrophone and special echoranging observations were made by the Office of Naval Research.
- Dip-netting was conducted continuously.

CHEMICAL METHODS AND PROCEDURES

General

Containers used for collection of samples

- Total phosphorous and salinity -4 oz. prescription bottles having plastic screw caps with vinyl liners.
- Inorganic phosphate 200 mm. culture tubes with polyethylene screw caps.
- 3. Carbohydrates and proteins -125 mm. culture tubes with plastic screw caps having polyethylene inserts.
- 4. Nitrate-nitrite 60 mm. vials with plastic screw caps having polyethylene inserts.
- 5. Oxygen standard 250 ml. oxygen bottles.

Initial preparation of containers

Culture tubes and vials were aged in concentrated sulfuric acid for approximately one week, thoroughly rinsed with tap water, followed by three rinses with distilled water.

Prescription and oxygen bottles were washed with a detergent, rinsed with tap water, followed by three rinses with distilled water.

A small amount of thorium **carb**onate was added to each total phosphorous sample bottle at the shore laboratory (to prevent loss of organic phosphorous by attachment to the sides of the bottle).

Notes on collection of samples at sea

Total phosphorous sample bottles "baited with thorium carbonate were not rinsed at sea before drawing samples. All other bottles, tubes, and vials were rinsed twice with sea water from the Nansen bottles before samples were drawn.

Vials and tubes containing samples for inorganic phosphate, carbohydrates, proteins, and nitrate-nitrite were prepared for freezing by taping the junction of the cap and the tube with plastic electrician's tape (to prevent contamination of samples by ethylene glycol). <u>1</u>/ They were then immersed in 38% ethylene glycol freeze bath until completely frozen, after which they were removed from the bath and stored in a deep-freezer at 0° to -10° F (Collier and Marvih 1953).

General notes on methods

Stock solutions of standards were prepared with distilled water, and subsequent dilutions made with synthetic sea water. Synthetic sea water for total phosphorous, inorganic phosphate, and carbohydrate analyses was prepared by dissolving 35 gm. sodium chloride in distilled water and diluting to one liter; for nitrate-nitrite, 20 ml. conc. hydrochloric acid was added to distilled water and diluted to one liter; and for proteins, by dissolving 35 gm. sodium chloride and 6.5 gm. magnesium sulphate in distilled water and diluting to one liter.

Chemicals used, with the exception of Nethylcarbazole, were reagent grade. A set of standards was run with each batch of sea water samples and treated in the same manner as the samples.

A Beckman DU Spectrophotometer was used in the protein determination, and a Fisher AC Electrophotometer used for total phosphorous, inorganic phosphate, nitratenitrite, and carbohydrate determinations. Densities were read from scale "A" on the Fisher instrument, and from the optical density scale on the Beckman instrument, after the instruments were adjusted to zero with a distilled water blank. Density readings were recorded as -log T.

Notes on calculation of concentration values

Standardization curves were prepared for each set of standards by plotting -log T values against concentrations of standards. Those for nitrate-nitrite were fitted as smooth curves through all points, while all others were fitted as straight lines.

Concentration values for nitrate-nitrite were determined by direct reading from standardization curves. Those for total phosphorous and inorganic phosphate were calculated by dividing the -log T values by a factor (equivalent to "the slope of the line" in the standardization curves). Those for carbohydrates and proteins were calculated by subtracting the -log T value for the zero concentration of the standard from the -log T values of the samples, and then dividing by the factor.

Concentration values were calculated to the nearest 0.5 of a unit for nitrate-nitrite, and to the nearest 0.1 of a unit for total phosphorous, inorganic phosphate, carbohydrates, and proteins.

1/Beginning with Cruise 6, samples for carbohydrates were placed immediately in the deep freeze, to eliminate all contact with ethylene glycol.

METHODS

Dissolved oxygen $\frac{1}{}$

Reagents:

- Manganous Chloride (MnCl.4H₂0) dissolve 800 gm. manganous chloride in 1570 ml. distilled water.
- Potassium Hydroxide-Potassium Iodide

 dissolve 500 gm. potassium hydroxide and 100 gm. potassium iodide in distilled water, dilute to two liters, and store in dark bottle.
- 3. Concentrated Hydrochloric Acid.
- Sodium Thiosulfate (Na S O 3.5H 0) dissolve 3.5 gm. sodium thiosulfate in one liter freshly boiled distilled water, add 0.1 gm. sodium carbonate, and store in dark bottle.
- 5. Standard Solution (0.01 N Potassium Biniodate) - dissolve 0.3250 gm. potassium biniodate /KH(IO) / in distilled water, and dilute to one liter.

Procedure: (determination made aboard ship)

Add 2 ml. manganous chloride and 2 ml. potassium hydroxide-potassium iodide to the sample (inserting the tip of the buret to below the surface), replace stopper carefully without trapping any air, and mix thoroughly. Allow to stand until ppt. settles. Add 2 ml. conc. hydrochloric acid and shake until ppt. dissolves. Pipet 100 ml. of sample into a 250 ml. flask, titrate with sodium thiosulfate until color becomes faint yellow, add starch indicator, and continue titrating until the blue color disappears.

1/ Wooster, Warren S., 1950

2/ Harvey, H. W., 1948

Salinity

Two or more chlorinity determinations were run on each sample, employing the Knudsen method; and these were converted to salinity.

Total phosphorous $\frac{2}{}$

Reagents:

- 50% Sulfuric Acid mix equal volumes of distilled water and conc. sulfuric acid.
- Molybdic Acid dissolve 3.3 gm. ammonium molybdate /(NH₄)₆ Mo₇0₂₄ .4H₂0/ in a solution of 3 ml. conc. sulfuric acid and 200 ml. distilled water.
- Stannous Chloride (SnCl₂.2H₂0) dissolve 1.2 gm. stannous chloride in 5 ml. conc. hydrochloric acid, and dilute to 50 ml. with distilled water (solution made up daily).
- 4. Standard Stock Solution (2000 ,ug at P/L)

 dissolve 0.6120 gm. of di-sodium, beta-glycerophosphoric acid in distilled water, and dilute to one liter.

Procedure:

Add 1.5 ml. of 50% sulfuric acid to 100 ml. of sample. Shake samples and allow to stand until the thorium carbonate is dissolved, usually three or four days. Pipet 25 ml. samples into 60 ml. flasks, cover with 30 ml. beakers, and autoclave for 6 hours at 30-40 lbs. pressure. Remove from autoclave, cool, add 0.75 ml. molybdic acid, swirl, and add 1 drop of stannous chloride $\frac{3}{}$. Let stand for 20-30 minutes for maximum color development, transfer to 23 ml. absorption cells, and read densities using a red filter (650 m,u).

3/ Allow a lapse of 30-60 seconds between additions of stannous chloride to samples to ensure equal development time.

Inorganic phosphate $\frac{4}{}$

Reagents:

- Molybdic Acid dissolve 12.5 gm. of ammonium molybdate /(NH₄)₆Mo₇
 0₂₄.4H₂O / in 125 ml. distilled water, add 375 ml. 50% sulfuric acid, and store in dark bottle.
- Stannous Chloride (SnCl₂.2H₂O) dissolve 1.2 gm. stannous chloride in 5 ml. conc. hydrochloric acid, and dilute to 50 ml. with distilled water (solution made up daily).
- Standard Stock Solution (2000 µg at PO -P/L) - dissolve 0.2722 gm. of potassium di-hydrogen phosphate in distilled water, and dilute to one liter.

Procedure: ·

Pipet 25 ml samples into 60 ml. flasks, add 1 ml. of molybdic acid, and mix well by swirling. Add 1 drop of stannous chloride $\frac{5}{}$ and swirl. Let stand from 20-30 minutes for maximum color development, transfer to 23 ml. absorption cells, and read densities using a red filter (650 m,u).

Nitrate-nitrite 6/

Reagents:

- 0.3 millimole Strychnidine/L dissolve 0.0960 gm. strychnidine in one liter of conc. sulfuric acid.
- 2. Standard Stock Solution (2000 μ g at NO₃-NO₂/L) dissolve 0.1702 gm. of sodium nitrate in distilled water, and dilute to one liter.
- 4/ Robinson, R.J. and T.S. Thompson, 1948.
- 5/ Allow a lapse of 30-60 seconds between additions of stannous chloride to samples to ensure equal development time.
- 6/ Marvin, K. T., 1955.

Procedure:

Pipet 1 ml. samples into 10 ml. test tubes, add 2 ml. distilled water and 3 ml. of reagent, using automatic pipets. The reagent is carefully added by placing rack of test tubes on approximately a 45° angle and allowing reagent to run down side of test tube to avoid boiling. Mix contents by pouring gently from the 10 ml. test tube to a 15 ml test tube and back again. Store samples in darkness for 3-5 hours, transfer to 3 ml. micro cells, and read densities using a green filter (525 mu).

Carbohydrates 7/

Reagents:

- N-ethylcarbazole dissolve l gm. of recrystallized <u>8</u>/N-ethylcarbazole in one liter of conc. sulfuric acid <u>9</u>/ (keep out of sunlight and store in refrigerator).
- Standard Stock Solution dissolve 1 gm. of L-arabinose in distilled water, and dilute to one liter.
- 7/ Collier, Albert, S.M. Ray, A.W.Magnitzky, and Joe O. Bell, 1953.
- 8/ Recrystallize N-ethylcarbazole as follows: (1) dissolve about 50 gm. of N.E.C. in 500 ml. of warm alcohol, (2) add distilled water slowly while swirling until precipitation is complete, (3) collect precipitate on filter paper, then add water to the filtrate and refilter, (4) redissolve precipitate collected on filter paper in warm alcohol, (5) cool alcohol solution in freezer to crystallize N.E.C., (6) collect crystals on filter paper, then salt out dissolved N.E.C. in filtrate with water, (7) repeat steps 2-6 until filtrate is clear. Dry crystals at 50°C or lower.
- 9/ Use acid only from bottles that have a plastic insert in screw cap.

Procedure:

Pipet 2.5 ml. samples into 60 ml. flasks, add 22.5 ml. of reagent by buret 10/, and mix well by swirling. After HCl has bubbled off, pour a thin film of mineral oil over surface of sample to exclude oxygen. Cover flasks with 30 ml. beakers and hydrolize in water bath at 70°C ($^{\pm}$ 0.5°) for 15 minutes. Remove and place in refrigerator for 10-15 minutes. Remove from refrigerator, transfer samples to 23 ml. absorption cells, allow to stand for at least 10 minutes, and read densities using a green filter (525 m,µ).

Proteins
$$\frac{11}{}$$

Reagents:

- 1. 0.25 N Sodium Hydroxide.
- Standard Stock Solution dissolve 1 gm. of dl-tyrosine in sufficient amount of 0.25 N sodium hydroxide to give a clear solution, and dilute to one liter with distilled water.

Procedure:

Pipet equal volumes of samples and 0.25 N sodium hydroxide into 60 ml. flasks, cover with 30 ml beakers, and autoclave for five hours at 30-40 lbs. pressure. Cool, transfer to centrifuge tubes, add a small amount of Celite to each tube, and spin for 10 minutes at 900-1000 r.p.m. Draw off supernatant liquid into a spectrophotometer cell, set instrument at 240 m,u, and read densities.

- 10/ Buret is an automatic, screw-cap acid bottle type.
- 11/ This method was developed by Mr. Albert W. Collier, Jr., Chief, Gulf Fishery Investigations, Fort Crockett, Galveston, Texas and his associates. It has not heretofore been published and is in the process of being refined.
- 12/ Ahlstrom, Elbert H., 1952.

BIOLOGICAL METHODS AND PROCEDURES

Plankton

Method of towing 1/2-meter silk nets $\frac{12}{2}$

A standard half-meter No. 1 silk net was towed obliquely after departing each station, with the ship on course to the subsequent station. A 40-pound streamline depressor was used as a weight, and an Atlas type current meter suspended in the mouth of the net registered the flow of water into the net. Figure 2.

With the ship underway the net was lowered slowly to a depth of 70 meters (100 meters of cable out), or less in shallow water, and then retrieved at the rate necessary to bring it to the surface in approximately 20 minutes. The ship's speed during the tow was 1-2 knots, and the engine was started and stopped as often as necessary to maintain a cable angle of approximately 45 degrees. This angle of stray, measured continuously with an inclinometer suspended from the towing boom and riding freely on the cable, was recorded every minute, or less frequently in shallow water. Plankton samples were preserved in 5% buffered formalin.

The depth of a tow was calculated by multiplying the cosine of the angle of stray by the amount of cable out.

Volumes of water strained

An estimate of the volume of water strained during a tow was derived from the revolutions registered by the flow meter mounted in the mouth of the net. Flow meters were calibrated by towing them at regular towing speed over a known distance. From this a meter factor of "meters of distance per revolution" was obtained. This factor was multiplied by the area of the net opening, and the product applied to the meter readings for each tow, thus converting the readings to "cubic meters of water strained." Meter pointers were zeroed prior to each tow to prevent double errors in readings.

Figure 2.--Half-meter silk net.

Numbers of organisms

Each plankton sample was examined in 10ml. portions under a low-power binocular microscope, and the fish eggs, fish larvae, and amphioxi were removed and counted. The wet volumes of plankton were then determined by displacement (drained plankton placed in graduated cylinder containing a known volume of 5 percent buffered formalin).

Numbers of organisms other than fish eggs and larvae and amphioxi were estimated by counting those in aliquot portions of a sample and adjusting the counts to the entire sample volume. The procedure was as follows: (1) the sample was stirred thoroughly, and a 10 ml. portion removed, by dipping with a 10 ml. beaker, to a dish marked with a centimeter grid; (2) the more numerous organisms were counted in six preselected centimeter squares, and the less numerous ones counted in the entire dish; (3) the portion was then returned to sample jar, the sample stirred thoroughly, and a second 10 ml. portion removed; (4) the second portion was treated in same manner as the first; and (5) the counts were averaged and then adjusted to the entire sample volume by multiplying by the appropriate factor. Numbers of the various organisms per cubic meter of water strained were calculated by dividing sample totals by volumes of water strained.

Continuous Plankton Sampler

Plankton samples were also taken with a continuous sampler designed by Albert W. Collier, Jr, Chief, Gulf Fishery Investigations, Fish and Wildlife Service. A description of this sampler has not been published, but general construction details and operational procedure will be presented here. Figure 3. The sampler consists of a circular trough divided into eight compartments, and is driven by an electric motor at the rate of one revolution per eight hours. Extending down from each compartment is a tube fitted at its lower end with a clamp which holds a 1-1/4" No. 1 silk filtering disc. A reverse bend in the discharge tube below the clamp retains sufficient water to cover the silk, thus preventing filtered organisms from drying out. Sea water is pumped from a sea chest located several feet below the ship's water line, through a standard water meter, and into the sampler. As the sampler trough revolves, each compartment receives water for one hour. After one revolution of the trough (eight hours), a timer switch shuts off the sampler and pump motors. The filtering discs are then removed, preserved in 5 percent formalin, and replaced with new silks. Each revolution constitutes a "run". The sampler is permitted to run continuously, except for the time needed to change silks and when the ship is entering or leaving a harbor (where sand and silt may jam the water meter).

The flow of water into the sampler is regulated according to the density of plankton encountered (in shallow waters phytoplankton plugs the filtering disc rapidly if flow is not reduced). A pressure gauge in the line between the meter and the sampler provides for uniform adjustment of the flow. From 50 to 100 gallons of water pass into each compartment during the hour it receives water.

The silks are examined individually, and counts made of all organisms present. The counts are then adjusted to "Number per cubic meter of water strained". The position of the ship at the time the center of each compartment is reached is accepted as the location of sampling for the compartment involved. Generally, the trough does not make one revolution in exactly eight hours, and the time for each compartment is adjusted accordingly.

Dip-netting

Dip-netting for larval and juvenile forms of fish was conducted on station when seas and weather conditions permitted. Dip nets used were 18 inches in diameter, lined with 1/4-inch nylon mesh, and were fitted with 12foot bamboo handles. Spot and floodlights were used at night to attract fish. In general, dip-netting at night under the lights proved more productive than dip-netting during the

Figure 3.--Continuous plankton sampler.

day, for most species.

Trolling

Three-ounce red and white nylon jigs were trolled at 9-10 knots between all stations during daylight hours, and hand-lines using cut or live bait were fished on some shallow stations. All fish caught were identified, weighed, and measured, and stomach contents were preserved.

OCEANOGRAPHIC METHODS AND PROCEDURES

Standard methods employed by the U.S. Navy Hydrographic Office were used aboard the Gill and in processing the data.

Salinity, temperature, and density profiles were prepared by Mr. Dean Bumpus of the Woods Hole Oceanographic Institution.

NARRATIVE ACCOUNT OF CRUISE 1

The Theodore N. Gill departed from Brunswick, Georgia on February 10, 1953, and proceeded to the standard station along the track as shown in Figure 4. Hourly bathythermograph observations were made while enroute, except when passing through the Gulf Stream and the Antilles Current when BT lowerings were made every half hour. The site was reached on February 12. Nine nansen bottle casts were made to 700 meters, at intervals of about two hours. Half-hourly bathythermograph observations, Secchi disc readings during daylight casts, simultaneous routine meteorological observations, and special plankton tows for deep scattering layer studies were also made during the occupation of the standard station. Thirty-four hours (interrupted on February 13 by a trip to Nassau, BWI, for winch repairs) were spent on the standard station.

Upon completion of the standard station the <u>Gill</u> proceeded to and began occupying the series of regular stations of the southern leg on February 16, 1953. Due to high winds and heavy seas, only 16 of the proposed 34 regular stations could be made. On several occasions it was necessary for the vessel to proceed to the nearest shelter until the weather moderated. The <u>Gill</u> returned to Brunswick on February 22, 1953.

After a brief stopover in Brunswick for supplies, the <u>Gill</u> departed on February 26, 1953, and proceeded northward to occupy regular stations 35 through 80 and special stations 1 through 4 of the northern leg of the cruise. Adverse weather conditions in the Cape Hatteras area prevented occupation of 10 regular and the 4 special stations. The vessel returned to Brunswick on March 10, 1953. Cruise track chart is given in Figure 4.

During the cruise, Nansen casts were made on all regular stations occupied. Bottom samples were obtained on southern leg stations and a few northern leg stations with the orange peel sampler (sampler lost early on northern leg). Coring was attempted using Phleger corer, but it proved ineffective on the types of bottom encountered. Water samples were collected for salinity, nitrate, carbohydrates, inorganic phosphate, total phosphorous, and proteins on each station. Oxygen determinations were made aboard vessel for each station. BT's and associated meteorological observations were taken on each station and hourly between stations. Oblique plankton hauls with a half-meter silk net were made on each station. Dip-netting was carried out day and night when conditions permitted. Artificial lures were trolled between stations for capture of larger fish.

Scientific personnel participating in the cruise were:

I. Southern Leg

U.S. Fish and Wildlife Service and Cooperators:

W	.W.	Anderson	Chief Scientist
J.	Ψ.	Gehringer	Biologist

Figure 4.--Track chart.

G.F. Arata, Jr.	Biologist (Florida
	State Board of Con-
	servation)
W.C.Pittman	Biological Aid

Navy Hydrographic Office:

F.X.Doherty	Senior Oceanograph-
	er
E.K.Stanton	Oceanographer
C.W.Backus	Technician

Office of Naval Research:

- S.S.Galler Head Biologist
- II. Northern Leg
 - U.S. Fish and Wildlife Service and Cooperators:

W.W.Anderson	Chief Scientist
G.F.Arata, Jr.	Biologist (Florida
	State Board of Con-
	servation)
W.C.Pittman	Biological Aid
C.C.Bryant	Chemical Aid

Navy Hydrographic Office:

E.K.Stanton	Senior Oceanograph-
	er
F.J. Reynolds	Oceanographer
L.Silverstein	Oceanographer
C.W.Backus	Technician

EXPLANATION OF DATA SHEETS AND TABLES

Oceanographic and Chemical

Each of the items appearing on the station data pages is explained below. All doubtful data are indicated and were not used in the construction of the curves from which the interpolated values (standard depth values) were derived. Observed values which were obviously false were omitted entirely. A dash in a table means that no value was available. Interpolations for standard depth values for temperature, salinity, sigma-t, and oxygen were for the most part IBM calculations, but in a few instances they are manual interpolations from hand drawn curves; those for the chemical constituents were derived from straight lines between observed values.

The profiles of salinity, temperature, and density were prepared from these data, and appear as Figures 5 - 15.

- Cruise Number. The first cruise over the established station pattern (Figure 1) will be numbered <u>Gill</u> 1, and subsequent cruises, <u>Gill</u> 2 through <u>Gill</u> 9 (only <u>Gill</u> 1 is covered by the present report).
- 2. Station Number. Stations are numbered consecutively, starting with one, at the beginning of each cruise. The station pattern and numbers as shown in Figure 1 were maintained on each cruise. If a station or series of stations was not occupied, these station numbers are omitted. Regular stations have numbers only; standard and special stations are specifically indicated.
- 3. Date. Month, day, and year are given.
- 4. <u>Latitude and Longitude</u>. The position of the station is given in degrees and minutes.
- 5. <u>Time</u>. Given in Greenwich Mean Time and is that hour nearest to the start of the first cast.
- 6. <u>Depth.</u> Is the observed uncorrected sonic sounding for the station, recorded in meters.
- 7. Wind. Wind speed is given in meters per second. Direction from which the wind blows is coded in degrees true to the nearest ten degrees. The last zero is omitted. North is 36 on this scale and calm is 00. See Table 1, "Compass Direction Conversion Table for Wind, Sea, and Swell Directions."

- Barometer. The barometric pressure is coded in millibars, neglecting the 900 or 1000. Thus 996 millibars is coded as 96 and 1008 millibars is coded as 08.
- 9. <u>Air Temprature</u>. Dry bulb and wet bulb temperatures are entered to the nearest tenth of a degree (centigrade).
- 10. <u>Humidity</u>. The percent of humidity is coded directly.
- 11. Weather. Weather is coded as indicated in Table 2, "Numerical Weather Codes -Present Weather."
- 12. <u>Clouds.</u> Cloud type and amount are coded as indicated in Table 3, "Cloud Type"; and Table 4, "Cloud Amount"
- Sea. Sea direction and amount are coded as indicated in Table 5, "Sea Amount"; and Table 1.
- Swell. Swell directions and amount are coded as indicated in Table 6, "Swell Amount"; and Table 1.
- 15. <u>Visibility</u>. Visibility is coded as indicated in Table 7, "Visibility."
- Water Transparency. Given as meters to which a Secchi disc is visible.

Subsurface Observations

- Sample Depth. Observed (actual) depth of each sample is given in meters. Interpolated values at standard depths are also given. The standard depths in meters are: 0, 10, 20, 30, 50, 75, 100, 150, 200, 250, 300, 400, 500, 600, 700, 800, 1000, 1200, 1500, 2000, 2500, 3000, and thence every 1000 meters.
- 2. <u>Temperature</u>. The centigrade temperature is given in degrees and hundredths.
- 3. Salinity. Salinity is given in parts per thousand to two decimal places.

- Sigma-t. To convert to density divide by 1000 and add 1. Thus, a sigma-t value of 22.35 converts to a density of 1.02235.
- 5. <u>Dissolved Oxygen</u>. These values are given in milliliters per-liter to two decimal places.
- 6. <u>Total Phosphorous</u>. Values are given in microgram atoms per liter to the nearest 0.1 of a unit.
- 7. <u>Inorganic Phosphate</u>. Values are given in microgram atoms per liter to the nearest 0.1 of a unit.
- <u>Nitrate-nitrite</u>. These values are given in microgram atoms per liter to the nearest 0.5 of a unit.
- 9. <u>Carbohydrates (Arabinose)</u>. These values are given in terms of milligrams per liter to the nearest 0.1 of a unit. Collier et al. (1953) presented a technique for estimating certain elements of the organic materials in sea water which react to the test for carbohydrates. The carbohydrate values are given as arabinose equivalents, and are not necessarily the actual concentration of carbohydrate substances.
- 10. Proteins (Tyrosine). These values are given to the nearest 0.1 of a unit as milligrams per liter of protein material in sea water, which reacts to the test for tyrosine.

Biological

 Plankton volumes (half-meter silk net), Table 8. The position given is that at beginning of the tow. The depth of the haul is given from 0 to the greatest depth reached. The volumes as given are "wet volumes" (procedures for determination are given under methods). Very few samples contained large organisms such as jellyfish (which were removed), so that the volumes represent smaller organisms.

- 2 Numbers of plankton organisms per cubic meter of water (half-meter net), Table 9. The procedures for plankton tows, methods for sorting and counting, and calculations of numbers of organisms were described under methods. Counts are given for major groups as indicated.
- Numbers of plankton organisms per cubic meter of water (continuous plankton sampler), Table 10.
 Description of this sampler, its use, and methods of calculating numbers of organisms were given under methods. Counts are given by compartment for major groups as indicated.
- 4. Numbers and species of fish taken by trolling, Table 11. The stage of gonad development is based on International Council classifications of gonad maturity for the herring (International Councils Rapports et Proces-Verbaux des Reunions, Vol. LXXIV, pp. 117, March 1931). The scale is only a guide to general classifications and must be treated as such.

This scale follows:

- Stage I. Virgin individuals. Very small sexual organs close under vertebral column. Wine-coloured torpedoshaped ovaries about 2-3 cm. long and 2-3 mm. thick. Eggs invisible to naked eye. Whitish or grayish brown knife-shaped testes 2-3 cm. long and 2-3 mm. broad.
- Stage II Maturing virgins or recovering spents. Ovaries somewhat longer than half the length of ventral cavity, about 1 cm. diameter. Eggs small but visible to naked

eye. Milt whitish, somewhat bloodshot, same size as ovaries, but still thin and knife-shaped.

- Stage III. Sexual organs more swollen, occupying about half of ventral cavity.
- Stage IV. Ovaries and testes nearly filling 2/3 of ventral cavity. Eggs not transparent, milt whitish, swollen.
- Stage V. Sexual organs filling ventral cavity. Ovaries with some large transparent eggs. Milt white, not yet running.
- Stage VI. Roe and milt running (spawning).
- Stage VII. Spents. Ovaries slack with residual eggs. Testes bag- gy, bloodshot. Doubtful cases are indicated by quot- ing two stages e.g. "St. I-II, St. VII II, " etc.
- 5. Numbers and species of fish taken by dip net, Table 12. There is shown, by family, the genera and species taken. Numbers of specimens from each station are given in parentheses, followed by the approximate size or size range of standard length, in millimeters.

ACKNOWLEDGMENTS

Acknowledgment is made to the following agencies and individuals for contributions in securing and processing the material presented. To the Navy Hydrographic Office for their cooperation in planning and executing the field program and for processing the physical oceanographic data. To the Office of Naval Research, and Dr. Sidney S. Galler in particular, for help in planning and executing the field program. To the Georgia Game and Fish Commission for their cooperation in the biological and chemical studies; through Frank T. Knapp, biologist and Joseph L. Moore, chemist. To the Florida State Board of Conservation (through the Marine Laboratory of the University of Miami) for their cooperation in the biological studies, through George F. Arata, Jr., biologist.

From our own staff we wish to acknowledge Kenneth A. Honey, Fishery Research Biologist, for making plankton organism counts, and Frederick H. Berry, Fishery Research Biologist, for identification of fishes from dip net collections. We are appreciative of the assistance of other staff members who participated in various phases of processing of data and preparation of this manuscript: Fanny Lee, F. Elaine Whiteford, Charles P. Goodwin, Clyde C. Bryant, Herbert R. Gordy, Vibert L. Strock, and Elizabeth H. Swindell. Acknowledgment is also made of the excellent cooperation of crew members of the M/V Theodore N. Gill, and Captain Mauritz C. Fredricksen in particular.

LITERATURE CITED

Ahlstrom, Elbert H.

- 1952. Pilchard eggs and larvae and other fish larvae, Pacific Coast, 1950.
 U.S. Fish and Wildl. Serv., Spec.
 Sci. Rept.: Fish. No. 80, 58 pp., 2 figs.
- Collier, Albert, S.M. Ray, A.W. Magnitzky, and Joe O. Bell.
 - 1953. Effect of dissolved organic substances on oysters. Fish Bull. Fish and Wildl. Serv., 54(84): 167-185, 14 figs.

Harvey, H. W.

1948. The estimation of phosphates and total phosphorous in sea water.
J. Mar. Biol. Ass. U. K., 27(2): 337-359, figs. 1-11.

Marvin, Kenneth T.

- 1955. Notes on the precision of a modified routine nitrate-nitrite analysis. J. Mar. Res., 14(1):79-87, figs. 1-4.
- Robinson, Rex J. and Thomas G. Thompson. 1948. The determination of phosphates in sea waters. J. Mar. Res., 7(1):33-41.

Wooster, Warren S.

1950. Methods in chemical oceanography ...employed in the California Cooperative Sardine Research Program. Scripps Inst. Oceanogr., Tech. Rept., iii-24 pp., 8 figs. Mimeo. Table 1. Compass direction conversion table for wind, sea, and swell directions

Code

Direction

00	 Cal	Lm		
01	 5°	to	14°	
02	 15°	to	24° :	NNE
03	 25°	to	34°	
04	 35°	to	44 °	
05	 45°	to	54° :	NE
06	 55°	to	64°	
07	 65°	to	74° :	ENE
08	 75°	to	84°	
09	 85°	to	94° :	E
10	 95°	to	104°	
11	 105°	to	114°	ESE
12	 115°	to	124°	
13	 125°	to	134°	
14	 135°	to	144°	SE
15	 145°	to	154°	
16	 155°	to	164°	SSE
17	 165°	to	174°	
18	 175°	to	184°	S
19	 185°	to	194°	
20	 195°	to	204°	SSW
21	 205°	to	214°	
22	 215°	to	224°	
23	 225°	to	234°	SW
24	 235°	to	244	
25	 245°	to	254°	WSW
26	 255°	to	264°	
27	 265°	to	274°	W
28	 275°	to	284°	
29	 285°	to	294°	WNW
30	 295°	to	304°	
31	 305°	to	314°	
32	 315°	to	324°	NW
33	 325°	to	3340	
34	 335°	to	3440	NNW
35	 345°	to	354 °	
36	 355°	to	40	N

y Slight shower(s) of hail, with or w thout n rain and sucw dimmed, not associated iour. Thunderstorm (with e of or without precipita ton) during past hour, but NOT at time of observation Heavy thunderstorm with hail at time of observation. or drizzle and moderate or dust Duststorm or sand past storm within sight of or at station during past hour with Orizzie and rain noderate or heavy MOUS 9mi sleet Funnel cloud(s) v in sight during p hour Fog. depositing risky not discernible Heavy drifting generally high 69 80 20 **6**6 စဝ 29 **თ** 49 79 Ice pellets (S. definition) <u>თ</u> Rain s now. heavy sight and Isolated starlike snow crystals (with or without tog). Slight shower(s) of Moderate or heavy softor small halwith or shower(s) of soft or without rannor rann and small hal with or with snow mixed show mixed snow mixed Slight or moderate drifting snow, generally high Thunderstorm com bined with duststorm or sandstorm at time of rain. hour. ITT B. Freezing drizzle or Showers of rain dur Showers of snow, or Showers of hail, or of Fog during past hou threating and snow, during hail and rain, during but NOT at time as showers) during at time of observation past hour, but NOT at time of observation. It me of observation. Rain or drizzle Oust or sand raised Well developed by wind, at time of devil(s) within observation. but Squall(s) within the during past hour Fog, depositing sky discernible Orizzle and slight 58 68 78 80 28 80 98 Ľ 300 48 18 snow, slight CODES-PRESENT WEATHE observation. Fog. sky NOT discern-eible, has begun or be si-t come thicker during past hour. Heavy thunderstorm. I without hail, but with b rain and/or snow at o time of observation o thick (with heavy Snow. Precipitation within Precipitation within Precipitation within Thunder heard, i sight but NOT reaching Sight, reaching the jor precipitation at the ground. But distant ground, near to but station. If one station. Granular snow r without fog). Heavy drifting generally low Moderate or freezing drizzle Moderate or eezing rain 27 37 57 ト 0 77 87 07 47 67 1 5 Widespread dust in suspension in the air, b) NOT raised by wind, at ob time of observation. Slight or moderate Mod. or heavy snow, Sight or mod. thun. Slight or moderate or rain and snow wired derstorm without hall thunderstorm, with hall or hall at time of 00. but with rain and/or at time of observation, thunderstorm during snow at time of past hour, but NOT al observation. Fog. sky NOT discern Fog. sky discernible. Ible no appreciable has begun or become change during pastithicker during past hour 0 heavy freezing drizzle Slight freezing rain Ice needles (with without fog). 20 30 40 56 99 76 80 Moderate or now shower(s). 90 ဖ 9 Slight Severe duststorm or Severe duststorm or Severe duststorm or Sin sandstorm has de sandstorm, no appreci sandstorm has in drift creased during past ablichange duringbast treased during past jow hour Intermittent rain Continuous rain (NOT Ineezing), heavy Ineezing), heavy at time at time of observation. of observation. Continuous fall of snowflakes, heavy at time of observation. Intermittent drizzle Continuous drizzle (NOT freezing), thick (NOT freezing), thick at time of observation at time of observation Slight snow shower(s) 45 <u>9</u>2 OG Haze 20 5 32 ຄ 0 0 75 8 8 2 ມ NUMERICAL WEATHER by Fog, sky discernible, no appreciable change during past hour Moderate or heavy shower(s) of rain and snow mixed. Intermittent fall of snowflakes, heavy at time of observation. v Visibility reduced b 34 44 54 74 94 24 64 84 4 Clouds generally forming or developing during past hour Rain and snow (NOT tailing as showers) dur tring past hour, but NOT at time of observation 01 Continuous rain (NOT. freezing), moderate at time of observation. to Continuous drizzle (NOT freezing), moder-ate at time of ob. Continuous fall of snowflakes, moderate at time of observation. Moderate or heavy Slight snow or rain rain at time of ob, and snow mixedor hall thunderstorm during titme of observation. past hour, but NOT at past hour, but not at time of observation. Fog, sky NOT discern-ible, has become thin ner during past hour. Slight shower(s) or ain and snow mixed Lightning visible. thunder heard е О 23 പ്പ 63 73 <u>8</u>9 8 8 9 <u>5</u> ო ო Ć 4 g Snow (NOT talling as v showers) during past/ta r, hour, but NOT at time in of observation. Slight or moderate duststormorsandstorm s, has increased during ci past hour. More or less contin-T uous shallow tog at sta thon, NOT deeper than 6 feet on land. State of sky on the whole unchanged dur-ing past hour Intermittent drizzle (NOT freezing) moder-ate at time of ob. Fog, sky discernible, has become thinner during past hour Intermittent rain (NOT treezing), mod-erate at time of ob. Intermittent fall of snowflakes, moderate at time of observation. Violent rain show-62 02 2 2 2 32 42 522 72 82 92 12 er(s). = Patches of shallow I fog at station. NOT uo deeper than 6 feet on to land Y Slight rain at time of tob., thunderstorm dur-rained ing past hour, but NOT the at time of observation. t Clouds generally dis. I solving or becoming w t less developed during in past hour e Slight or moderate duststormorsandstorm d g no appreciable change h during past hour Continuous fall of snowflakes, slight at time of observation. heavy Continuous rain (NOT freezing), slight at time of observation. Intermittent drizzle Continuous drizzle (NOT freezing) slight at (NOT freezing) slight at time of observation. TABLE Fog in patches. Moderate or ain shower(s). 4 5 5 61 7 ω 5 ົມ = m Slight or moderate duststormorsandstorm di has decreased during hi past hour. Moderate or heavy shower(s) of hail, withor o without rain or rain and r snow mixed, not asso a crated with thunder. Drizzle (NOT freezing and NOTfalling as show ers) during past hour, e but NOT at time of ob Cloud development NOT observed or NOT s observable during past li hour. Fog at distance at time of observation, but NOT at station during past hour. Intermittent rain (NOT freezing), slight at time of observation. Intermittent fall of snowflakes, slight at time of observation. Slight rain shower(s). 10 Light tog 20 0 00 8 20 30 40 00 80

Table 3. Cloud type

Code

- 0 Stratus or Fractostratus
- l Cirrus
- 2 Cirrostratus
- 3 Cirrocumulus
- 4 Altocumulus
- 5 Altostratus
- 6 Stratuscumulus
- 7 Nimbostratus
- 8 Cumulus or Fractocumulus
- 9 Cumulonumbus

Table 4. Cloud amount

С	od	е
_		_

0	No clouds
1	Less than 1/10 or 1/10
2	2/10 and 3/10
3	4/10
4	5/10
5	6/10
6	7/10 and 8/10
7	9/10 and 9/10 plus
8	10/10
9	Sky obscured

Table 5. Sea amount

	Approximate		
Code	Height (feet)	Description	
0		Calm	
1	Less than l	Smooth	
2	1 to 3	Slight	
3	3 to 5	Moderate	
4	5 to 8	Rough	
5	8 to 12	Very rough	
6	12 to 20	High	
7	20 to 40	Very high	
8	40 and over	Mountainous	
9		Very rough	
		confused sea	

Code	::	Approximate Height (feet)	: : Descrip :	tion :	Approximate Length (feet)
0	:		: No swe :	11 :	
1	:		:	Short or:	0 to 600
	:	I to 6	:Low swell	Average :	
2	:		:	Long :	Above 600
3	:		•	Short :	0 to 300
4	:	6 to 12	:Moderate	Average :	300 to 600
5	:		:	Long :	Above 600
6	:	Creator	;	Short :	0 to 300
7	:	Greater	:High	Average :	300 to 600
8	:	than 12	•	Long :	Above 600
9	:		: : Confu :	sed	

Table 6. Swell amount

Table 7. Visibility

Code

0	Dense fog	50	yards
1	Thick fog 2	200	yards
2	Fog!	100	yards
3	Moderate fog 10	000	yards
4	Thin fog or mist]	L mile
5	Visibility poor	- 2	miles
6	Visibility moderate	5	miles
7	Visibility good	10	miles
8	Visibility very good	30	miles
9	Visibility excellentOver	30	miles

	Posi	tion		Time	(EST)	Vol. water	Depth of	Vol. per m ³
			(1953)			strained	haul	strained
Sta.	N. Lat.	W. Long.	Date	Start	End	(m ³)	in meters	(ml)
1	26°59'	79°18.5'	Feb. 17	0147	0217	230.2	0-64	0.078
2	26°58'	79°41'	Feb. 17	0617	0647	401.9	0-71	0.027
3	27°00'	80°03.5'	Feb. 17	1023	1044	147.5	0-8	0.224
4	27°20'	80°03 °	Feb. 17	1309	1329	156.8	0-7	0.249
5	27°40'	80°031	Feb. 17	1552	1614	98.5	0-21	0.203
6	27°40'	79°41'	Feb. 17	1955	2024	188.6	0-64	0.064
7	27°40'	79°18'	Feb. 18	0015	0043	223.3	0-67	0.098
11	28°20'	80°33'	Feb. 19	0910	0930	179.4	0-3	-
23	30°20'	81°20'	Feb. 21	1515	1937	187.4	0-4	0.171
24	30°20'	80°50'	Feb. 21	1014	1035	175.0	0-11	0.102
25	30°20'	80°101	Feb. 21	2111	2139	09.9	0-13	1.216
20	20 20 °	80°21 51	Feb. 22	0056	1001	TTO.0	0-02	0.447
33)⊥ ⊥)•/ 21 ° 111	80°/01	Feb. 22	1250	1217	135 6	0-19	0.390
sт	31°001	81 00 49	Feb. 22	1712	1733	172 2	0-4	0.203
25	31°201	80°52'	Feb. 26	1935	1955	198.3	0-9	0.131
36	31°42'	80°36'	Feb. 26-	2350	0010	197.0	0-8	0.213
37	31°36	80°10'	Feb. 27	0235	0258	186.4	0-13	0.365
38	31°31'	79°52'	Feb. 27	0525	0546	124.1	0-13	0.661
39	31°32'	79°28'	Feb. 27	2135	2157	190.6	0-45	0.079
40	31°27'	78°34'	Feb. 27	1431	1461	217.7	0-48	0.037
41	31°38'	78°45'	Feb. 27	1835	1902	211.8	0-53	0.123
42	31°47'	79 ° 16'	Feb. 28	0045	0115	101.7	0-57	0.836
43	32°12'	79°32'	Feb. 28	0428	0450	82.2	0-11	1.703
44	32°25'	79°50'	Feb. 28	0801	0824	195.4	0-12	0.210
45	32°40'	79°32'	Feb. 28	1032	1053	205.4	0-3	0.097
46	32°51'	79°18'	Feb. 28	1326	1346	218.1	Surface	0.142
47	32°40'	79°00'	Feb. 28	1610	1630	87.9	0-11	0.967
48	32°24'	78°43'	Feb. 28	2004	2031	141.9	0-48	0.599
49	32°11'	78°25'	Feb. 28- Mar l	2336	0002	181.6	0-42	0.176
50	31°57'	78°091	Mar.]	0305	0330	194.7	0-59	0.077
51	32°18'	77°30'	Mar. 1	0819	0846	222.3	0-54	0.063
52	32°47'	77°37'	Mar. 1	1140	1205	165.8	0-53	0.814
53	32°48'	78°041	Mar. 1	1534	1558	140.6	0-48	0.427
54	33°021	78°21'	Mar. 2	1931	1952	239.5	0-9	0.104
55	33°12'	78°38'	Mar. 2	2205	2226	200.4	0-3	0.100
56	33°321	78°55'	Mar. 3	0020	0040	219.6	Surface	0.055

Table 8.--Plankton volumes (half-meter silk net)

Sta.	Posi N. Lat.	tion W. Long.	(1953) Date	Time Start	(EST) End	Vol. water strained (m^3)	Depth of haul in meters	Vol. per m ³ strained (ml)
57	33°33•5'	78°24.5'	Mar. 3	1550	1610	189.3	0-6	0.111
59	33°22'	77°36.5'	Mar. 3	1114	1138	97.5	0-11	0.769
60	33°08'	77°20'	Mar. 3	1434	1459	111.1	0 - 59	0.540
61	32°54'	77°03'	Mar. 3	1756	1821	93.0	0 - 70	0.731
62	32°41'	76°45'	Mar. 3	2210	2238	166.3	0-77	0.096
69	34°32'	76°49'	Mar. 6	0815	0837	133.7	0-9	
70	34°181	76°31.5'	Mar. 6	1104	1125	144.5	0-9	0.450
71	34°031	76°15'	Mar. 6	1349	1413	82.5	0-35	
72	33°50'	75°59'	Mar. 6	1744	1810	214.1	0-44	0.164
73	34°09'	75°22'	Mar. 6	2317	2343	173.5	0-57	
74 75	34°25' 34°38'	75°26' 75°51'	Mar. 7 Mar. 7	0459	0525	117.5	0-81 0-16	0.323
77	35°01'	75°45'	Mar. 7	1333	1355	97.6	0-13	0.820

Table 8.--Plankton volumes (half-meter silk net), cont'd

N A STRAT	umbers of pl	ankton org	ganisms per	· cubic met	er of wate	r (half-me	ter net)		
Station Number	Reg. 1	Reg. 2	Reg. 3	Reg. 4	Reg. 5	Reg. 6	Reg. 7	Reg. 11	
Protozoa	28.5	12.1	70.4	123.0	26.8	28.1	17.0	2.1	l l
Coelenterata	2.9	1.3	13.8	10.6	6.9	3.1	1 .	ı	
Chaetognatha	6.0	5 5 5	27.7	17.0	13.0	4.2	4.9	0.1	
Misc. Worms	1.6	7.0	1.8	0.5	0.2	0.3	0.5	0.2	
Copepoda	87.5	29.5	448.4	496.2	198.0	47.2	39.4	10.0	
Ostracoda	lt . 8	1.5	26.3	h.l	150.7	13.5	4.2	ı	
Mysidacea		ı	i	0.6	t	ı	I	F	
Amphipoda	0.6	0.2	ı	9.3	2.0	0.6	0.3	ł	
Isopoda	I	·			ł	0.1	0.1	ı	
Stomatopoda	ł	I	0.8	ı	ı	r	1	ı	
Euphausiacea	0.3	0.1	ı	0.4	١	1.7	2.1	ı	
Shrimp	2.4	0.9	1.9	0	4.3	S.0	0.6	1.1	
Crabs	0.3	ı	21.2	7.3	1.6	0.1	0.4	5.5	
Misc. Crustaceans	2.0	0.2	12.3	0.4	3.4	ı	I	0.1	
Pteropoda	0.3	0.2	4.1	0. 0. 0.	2.6	0 . 7	0.2	1	
Misc. Mollusca	0.9	0.4	6.6	1.8	10.2	0 0 0	2.1	0.2	
Larvacea	0.6	1. ⁴	11.5	10.8	37.2	1.1	5.6	0.1	
Misc. Tunicata	0.4	0.2	0.1	1.4	1.0	0.7		0.1	
Leptocardia	0.11	0.05	ı	ı	ı	1	0.06	ı	
Misc. Organisms	1.0	0.2	1.2		0.8	0.8	0.6	1	
Subtotal	140.2	51.2	651.4	690.4	458.7	107.0	79.4	19.5	
Fish Eggs Fish Larvae	0.13 0.68	0.04 0.16	9.19 1.04	107.35 1.03	39.80 4.28	0.02	0.03	0.07 0.02	
Total	141.0	51.4	9 . 199	7.28.8	502.8	10'7 • 4	79.8	19.6	

-0
÷
F
0
0
~
\sim
÷
le
ц,
5
Ū.
÷.
e
7
¢.
g
5
Я
e
5 T
M8
-
f
0
54
ē
4
g
Ħ
U
- -
9
2
0
ы
Ū.
д
10
ğ
5
-
Ę.
8
5
6
H
5
Y.
L]
8
H
24
Gent
Ö
S S
SI SI
å
E
n
4
i
9
0)
-
2
29
<u> </u>

Station Number	Reg. 23	Reg. 24	Reg. 25	Reg. 26	Reg. 32	Reg. 33	Reg. 34	Reg. 35
Protozoa	2.6	4.0	3.7	116.2	1	3.2	329.9	15.7
Coelenterata		1.9	0.0	3.6	2. 2	<u>t</u> .7	E	
Chaetognatha	1.1	12.2	17.h	11.6	23.6	11.6	3.0	
Misc. Worms	0.1	0.2	2.9	0.8	1.0	0.1	0.8	0.2
Copepoda	0.9811	137.5	333.6	248.7	248.0	279.4	716.5	447.9
Ostracoda	ı	5°5	39.2	181.5	69.0	4.7	t	
Mysidacea	I	ı	0.0	2.2	7.3	t	I	0.1
Amphipoda	1	6.0	4.0	2.7	3.7	4.0	ł	0.7
Isopoda	t	ı	0.6	ı	ı	ı	I	0.1
S toma topoda	ı	7.0	ı	ı	1.0	ı	0.6	Ч •2
Euphausiacea	1	1	I	0.2	1	0.4	I	ı
Shrimp	0.3	1.2	0.0	2°0	3.7	3.1	ı	1.2
Crabs	0.0	0°0	32.6	2.6	8.1	2.1	1.2	10.2
Misc. Crustaceans	9 . 8	4.9	38.9	5.3	9.9	1.3	9.4	2.5
Pteropoda	I	ı	2.9	1.2	0.4	0.1	ı	ı
Misc. Mollusca	0.2	1.1	15.2	3.4	1.0	1.3	16.6	10.7
Larvacea	I	66.3	44.6	21.4	88.4	0 0	5.6	5.0
Misc. Tunicata	I	ı	50 • ¹ 4	1.2	20.5	I	ı	ı
Leptocardia	I	1	0.01	ı	ı	ı	ı	ı
Misc. Organisms	ı	ı	л. ⁴	1.7	0.8	ı	ı	ı
Subtotal	1212.9	242.0	598.2	606.3	482.6	324.8	1083.6	501.2
Fish Eggs Fish Larvae	2.17 0.02	0.05 0.05	1.07 4.99	1.04 2.85	0.69 0.78	0.93 0.04	0.06 0.03	0.53
Total	1215.1	242.8	604.3	610.2	484.1	325.8	1083.7	501.8

g
nt'
CO
t),
net
er
met
Γ.
ha
) ਮ
ate
f W
0
ter
me
bic
cul
per
Sm
nis
rga
Ö
tol
ank
Ъl
of
SLO
umbe
-Nu
0)
tb1(
Ē

Station Number	Reg. 36	Reg. 37	Reg. 38	Reg. 39	Reg. 40	Reg. 41	Reg. 42	Reg. 43	
Protozoa	0.2	8°0	T	6.2	12.2	10.6	1	L	
Coelenterata	0.0	1.6	6.1	1.5	2.6	5.9	0.6	1.2	
Chaetognatha	30.9	16.5	13.7	0.7	1 ⁴ • 0	7.5	19.1	16.3	
Misc. Worms	1.0	0.0	· M • 0	0	0.3	6.0	1.0	Ъ. С.	
Copepoda	294.9	210.4	256.2	120.1	31.9	76.1	387.7	304.3	
Ostracoda	73.2	26.2	131.5	2.7	ı	2.9	14.0	283.7	
Mysidacea	1.8	0° 3	3.1	I	ı	0.4	t	7.8	
Amphipoda	0°0	з•9	21.9	ч. Ч	0.1	0.6	31.1	10.5	
Isopoda	I	0.3	0.2	ł	ı	0.3	0.4	0.5	
S toma topoda	F	1	0.6	I	L	0.1	1	ı	
Euphausiacea	ı		0.2	,	1	0.9	ı	ı	
Shrimp	0.3	4.5	20.8	1.2	1.6	2.1	12.4	2.2	
Crabs	4.2	2.9	6.0	0.1	ı	0.2	1.8	1.9	
Misc. Crustaceans	ı	7.5	15.0	0.3	t	1.8	5.3	14.1	
Pteropoda	0.8	0.5	J.6	1.2	0.1	0.7	ı	ı	
Misc. Mollusca	τ .	0.6	2.4	2.4	2.6	1.6	1.8	2.7	
Larvacea	0.6	6.6	6.4	2.4	0.3	2°3	55.6	190.8	
Misc. Tunicata	ı	9.5	21.6	J.t	0.1	0.5	10.6	15.6	
Leptocardia	<0.01	ı	I	ı	١	10.01	ı	,	
Misc. Organisms	t	0.8	I	I	ı	5°0	ı	0.2	
					1				
Subtotal	413.2	310.1	507.6	149•7	55.5	117.3	541.4	853.3	
Fish Eggs Fish Larvae	0.65 0.12	0.11	2.80 0.48	0.12 0.45	0.06 0.10	0.03 0.32	2.54 0.74	2•09 2•02	
Total	0.414	310.5	510.9	150.3	55.7	7.7LL	544.7	857.4	

Table 9N	umbers of p	lankton or	gantsms per	cubic me	ter of wate	er (half-m∈	ster net),	cont'd
Station Number	Reg. 44	Reg. 45	Reg. 46	Reg. 47	Reg. 48	Reg. ⁴⁹	Reg. 50	Reg. 51
Protozoa	3•0	1.0	1	1	1	5.7	10.1	7.6
Coelenterata	0.1	0.7	2.4	1.1	2.7	 	5.0	9.9
Chaetognatha	9 . 2	5.2	12.3	64.8	11.4	12.0	9.5	6.6
Misc. Worms	0.2	0.2	ı	0.7	0.4	0•3	0.5	0.4
Copepoda	179.0	397.4	761.1	446.2	410.8	98.1	86.0	93.4
Ostracoda	0.5	1.6	0.2	154.4	101.6	5.1	с• С• С	0.6
Mysidacea		ı	ı	ı	ł	ı	ı	ı
Amphipoda	1.0	0.1	I	15.9	8.2	0.4	0.7	0.4
Isopoda	ı	I	I	0.2	0.4	0.2	0.4	0.4
S toma topoda	ı	I	ı	ı	ı	ı	ı	I
Euphaus iacea	ı	I	ı	ı	0.3	1.2	3.6	1. ⁴
Shrimp	1.8	ł	0.1	4.8	5.0	1.9	0.1	0.5
Crabs	2°8	0.9	Ч.0	16.2	0.0	0.2	ı	ı
Misc. Crustaceans	I	0.9	I	1. 4	F	1.0	0.6	0.6
Pteropoda	0.1	ł	1	0.0	7.4	1.0	2.4	0.0
Misc. Mollusca	17. ⁴	1.0	1	1.1	2·J	2°0	0°0	1.9
Larvacea	6.0	3. 10 10	0.4	19.3	11.7	24.2	0.1	7.4
Misc. Tunicata	0•3	1	ı	28.4	32.3	1.1	0.6	0.3
Leptocardia	ŧ	ł	1	ł	ţ	0.01	I	I
Misc. Organisms	ı	ı.	ı	ı	ł	I	1	ı
Subtotal			1 700	777		1 2 2 2	7 201	
ממה הה המד	C.OLS	C•2T+	++•0].J.	C • J C J	C.76C	C+)[CT		0°62T
Fish Eggs Fish Larvae	0.22	0.03 0.01	0.01 0.02	1.06 0.52	1.58 1.58	0.07 1.00	0.04 0.12	0.01 0.14
Total	216.6	412.5	776.4	759.1	595.7	158.6	125.8	125.2

g
-
n j
0
0
~
(t)
le
Ы
н
Ę.
ğ
H H
4
37
ų
\sim
Я
e
Ø
3
4
Ö
Я
e e
é
E
U
÷
4
บ
5.
อ
д
S
SIL
Ť
ЗЛ
60
Dr
0
n
t
X
E D
Ĩ
д
9-1
0
S
H
pe
m
Nu
1
1
5
e
H
БЦ
Ĥ

Station Number	Reg. 52	Reg. 53	Reg. 54	Reg. 55	Reg. 56	Reg. 57	Reg. 59	Reg. 60
Protozoa	1	I	7.1	2.8	T	164.6	1.2	1
Coelenterata	с. С.	1.3	1-33	0.4	0.4	0.2	2.5	с. С
Chaetognatha	13.5	12.2	11.2	5.9	0.6	12.6	13.1	16.4
Misc. Worms	0.2	0.6	0.2	0.7	0.5	л.2	ч. Ч	1.1
Copepoda	213.5	241.2	92.0	672.8	317.6	224.0	232.6	505.7
Ostracoda	49.9	41.1	1.2	3.4	0.4	70.6	50.0	13.0
Mys1dacea	ł	ł	0.7	1.7	0.4	8	I)
Amphipoda	1.3	2.0	0.8	0	0.1	19.5	9.2	3.6
Isopoda	0.7	I	0.2	ı	ı	I	I	0.4
S toma topoda	ı	ı	ι	1	ı	I	0.2	I
Euphausiacea	t	0.3	ı	ı	t	I	0.2	0.5
Shrimp	2.8	4°8	1.2	1.1	0.4	1.0	5.9	t.1
Crabs	0.7	0.1	2.6 2.6	0.1	0°S	1.0		1.8
Misc. Crustaceans	9.4	5.7	3.7	4.5	15.5	4.2	0. 0	45.0
Pteropoda	1.9	1.7	0.5	i	t	I	1.0	1.6
Misc. Mollusca	ı	8 9	3.4	4.2	11.7	4.5	0. 0	0.9
Larvacea	17.0	5.3	0.3	0°C		0°	2.0	6.8
Misc. Tunicata	168.8	12.9	00 • •	0.2	1	ı	8.6	75.2
Leptocardia	I	I	1	0.23	1	0.04		
Misc. Organisms	ì	t	I	l	1	I	I	ı
Subtotal	482.0	333•0	130.2	701.3	350.1	507.4	339.6	678.4
Fish Eggs Fish Larvae	0.07 0.80	1.03 1.62	0.78	0.49 0.01	10.01	0.19 0.08	5.73 1.90	0.63 2.28
Total	482.9	335.6	131.0	701.8	350.1	507.7	347.2	681.3

Table 9	-Numbers of]	plankton or	ganisms pe	er cubic me	eter of wat	er (half-m	leter net),	cont'd
Station Number	Reg. 61	Reg. 62	Reg. 69	Reg. 70	Reg. 71	Reg. 72	Reg. 73	Reg. 74
Protozoa	I	9.1	12.4	7.0	I	8.0	8.6	4.4
Coelenterata	1.5	6.8	1.5	4.7	4.4	1.7	6.1	0 0 0
Chaetognatha	9.5	5.4	16.3	18.8	5.0	6.2	6.3	11.2
Misc. Worms	1.1	2.0	2.0	0.0	1. ⁴	0.7	0.6	1.7
Copepoda	745.4	89.2	610.5	717.4	226.1	91.7	124.6	2634.2
Ostracoda	9.5	6.6	133.2	0.3	14.8	4.1	7.6	0.0
Mysidacea	1	ı	1	ī	ı	ı	i	0.5
Amphipoda	1.1	0.2	4.5	6 .8	2.9	2.4	0.6	1.4
Isopoda	ı	ı	I	1	ı	ı	I	ı
Stomatopoda	ı	1	1	ı	ł	ı	ı	ł
Euphausiacea	ł	1.3	1	0.1	0.2	5.3	2.4	0 9
Shrimp	6.0	5.4	1.6	0.1	5.6	1.1	6 . С	I.7
Crabs	0.0	0.5	с• С• С		9 . 9	ı	0.1	0.0
Misc. Crustaceans	33.8	0.1	1.5	7.5	9.4	ı	0•3	4. t
Pteropoda	1.9	1.4	1.6	0.0	1.9	0.9	0.0	2°4
Misc. Mollusca	1.5	J. 4	1.3	0.0	0.5	1.8	0.7	2.7
Larvacea	12.5	1.9	21.8	1.5	2.9	2.2	л•2	10.2
Misc. Tunicata	40.6	0.1	0.4	1 . 5	290.4	4.6	0.7	58.9
Leptocardia	ı	0.01	ſ	i	ł	ı	1	1
Misc. Organisms	I	ł	0.2	I	ı	0.3	ı	ŧ
Subtotal	865.3	130.1	810.8	4.L77	570.2	131.0	164.5	2747.7
Fish Eggs	0.08	0.12	1.15	3.96	0.07	0.02	0.06	0.06
Fish Larvae	2.39	0.57	0.30	0.33	3.13	0.30	0.65	1.23
Total	867.8	130.8	812.2	775.7	573.4	131.3	165.2	2749.0

mn C atar.	upers of pr	ank ton organisms per cupic meter of water (main -meter meter), contra
Station Number	Reg. 75	Reg. 77
Protozoa	4.6	0.4
Coelenterata	4.1	2.2
Chaetognatha	21.8	9•2
Misc. Worms	0.5	0.2
Copepoda	356.5	473.5
Ostracoda	0.11	1.62
Mysidacea	ı	
Amphipoda	2.6	0.6
Isopoda	ı	
Stomatopoda	ı	
Euphausiacea	0.2	,
Shrimp	2°8	10.2
Crabs	1.5	1.2 1
Misc. Crustaceans	1.3	0.8
Pteropoda	1 •0	0*6
Misc. Mollusca	0°	9.0
Larvacea	20.8	4°,1
Misc. Tunicata	204.1	9°6
Leptocardia	ı	
Misc. Organisms	1	1
Subtotal	633.0	5-415
Fish Eggs Fish Larvae	0.19 0.19	0.27 0.22
Total	634.0	515.1

τı+ tar (half. 9 Ģ
Table 10.--Numbers of plankton organisms per cubic meter of water (continuous plankton sampler)

Run No. 1, Date February 16-17, 1953

11411 1101 =) Dave 1001	aut J ±0							
Compartment No.	1	2	3	4	5	6	.7	8
Time (EST)	2250	2350	0050	0150	0250	0350	0450	0550
Position of (N. Lat.	26°59'	26°59'	26°59'	26°59'	26°59'	26°59'	26°58'	26°58'
Ship: (W. Long.	79 ° 18'	79 ° 18'	79 ° 18'	79 ° 18'	79°23'	79°35'	79°41'	79°41'
Protozoa	-	-		-	-	-	-	-
Coelenterata	-	-	-	-	-	-	-	3.1
Chaetognatha	-	-	-	-	-	-	-	-
Misc. Worms	-	-	-	3.1	3.1	3.1	-	-
Copepoda	12.4	3.1	9.3	12.4	12.4	15.4	61.8	6.2
Ostracoda	-	-	3.1	-	6.2	-	-	-
Amphipoda	-	-	-	-	-	-	-	-
Shrimp	-	-	-	-	-	-	-	-
Crabs	-	-	3.1	-	-	-	-	-
Misc. Crustaceans	-	-	-	-	-	-	3.1	-
Mollusca	-	-		3.1	-	-	-	-
Invertebrate Eggs	-	-	3.1	-	-	12.4	3.1	6.2
Misc. Organisms	-	-	-	6.4	-	3.1	-	-
Subtotal	12.4	3.1	18.6	24.8	21.7	34.0	68.0	15.5
Fish Eggs Fish Larvae	- 3.1	-	-	-	-	- -	-	-
Total	15.5	3.1	18.6	24.8	21.7	34.0	68.0	15.5

Run No. 2, Date February 17, 1953

.

		1 000						
Compartment No.	1	2	3	4	5	6	7	8
Time (EST)	0748	0844	0940	1036	1132	1226	1324	1420
Position of (N. Lat.	27001	27°001	27°001	27°00'	27°06'	27°15'	27°22'	27°28'
Ship: (W. Long.	790481	79°57'	80°031	80°031	80°031	80°031	80°031	80°031
Protozoa	-	3.6	-	7.2	3.6	-	-	-
Coelenterata	-	10.7	-	-	-	-	-	-
Chaetognatha	-	-	_	-	-	3.6	-	3.6
Misc. Worms	-	3.6	3.6	7.2	-	-	3.6	-
Copepoda	43.0	39.4	100.2	143.2	28.6	10.7	50.1	32.2
Ostracoda	-	-	-	-	-	-	-	-
Amphipoda	-	-	3.6	-	-	-	-	-
Shrimp	-	-	-	-	3.6	-	-	-
Crabs	-	-	14.3	7.2	-	3.6	-	-
Misc. Crustaceans	-	-	-	7.2	-	-	-	-
Mollusca	-	-	-	7.2	-	-	-	-
Invertebrate Eggs	-	3.6	21.5	17.9	-	-	10.7	-
Misc. Organisms	-	-	-	-	-	-	-	-
Subtotal	43.0	60.9	143.2	197.1	35.8	17.9	64.4	35.8
Fish Eggs	-	-	3.6	7.2	3.6	46.5	-	21.5
Fish Larvae	-	-	-	-	-	-	-	-
Total	43.0	60.9	146.8	204.3	39.4	64.4	64.4	57.3

Table 10.--Numbers of plankton organisms per cubic meter of water (continuous plankton sampler), cont'd

Run No. 3, Date Feb	ruary l'	7, 1953						_
Compartment No.	l	2	3	4	5	6	7	8
Time (EST)	1526	1623	1719	1816	1912	2009	2105	2202
Position of (N. Lat.	27°40'	27°40'	27°40'	27°40'	27°41'	27°41'	27°42'	27°41'
Ship: (W. Long.	80°031	80°001	79°52'	79°44 '	79°40'	79°40'	79°36'	79°271
Protozoa	14.8	-	-	-	-	-	-	-
Coelenterata	-		-	-	-	-	-	3.7
Chaetognatha	-	-	3.7	3.7	3.7	-	-	3.7
Misc. Worms	-	7.4	-	3.7	-	-	-	-
Copepoda	96.5	11.1	59.4	37.1	18.6	22.3	11.1	14.8
Ostracoda	11.1	-	-	-	-	-	-	-
Amphipoda	-	-	-	-	-	-	-	-
Shrimp	-	3.7	-	-	3.7	-	-	-
Crabs	3.7	-	-	-	-	-	-	-
Misc. Crustaceans	-	-	-	-	-	-	-	-
Mollusca	-	-	-	-	-	-	-	-
Invertebrate Eggs	-	11.1	7.4	-	-	3.7	11.1	-
Misc. Organisms	-	-	7.4	-	-	-	-	-
Subtotal	126.1	33•3	77.9	44.5	26.0	26.0	22.2	22.2
Fish Eggs	37.1	-	22.3	_	_	3.7	_	7.4
Fish Larvae	-	-	•_	-	-	-	-	-
Total	163.2	33.3	100.2	44.5	26.0	29.7	22.2	29.6

Run No. 4, Date February 17-18, 1953

Compartment No.	1	2	3	4	5	6	7	8
Time (EST)	2314	0011	0108	0205	0302	0359	0456	0553
Position of (N. Lat.	27°40'	27°40'	27°48'	28°00'	28°10'	28°21'	28°25'	28°21'
Ship: (W. Long.	79°18'	79 ° 18'	79°20'	79°23'	79°26'	79°26'	79°26'	79°29'
Protozoa	-	4.2	-	-	4.2	-	-	4.2
Coelenterata	-	-	-	-		-	-	-
Chaetognatha	-	-	-	4.2	-	-	-	-
Misc. Worms	-	-	-	-	4.2	-	-	4.2
Copepoda	25.3	16.9	33.8	16.9	16.9	4.2	12.7	8.4
Ostracoda	-	4.2		-	-	-	-	-
Amphipoda	_	-	-	-	-	-	-	-
Shrimp	4.2	-		4.2	-	-	-	-
Crabs	-	-	-	-	-	-	-	-
Misc. Crustaceans	-	-	-	-	-	4.2	-	-
Mollusca	-	-	-	-	-	-	-	-
Invertebrate Eggs	-	-	4.2	-	-	-	8.4	-
Misc. Organisms	-	-	-	~	-	-	-	-
Subtotal	29.5	25.3	38.0	25.3	25.3	8.4	21.1	16.8
Fish Eggs	4.2	4.2	-	-	-	-	-	-
Fish Larvae	-	-	-	-	-	-	-	-
Total	33.7	29.5	38.0	25.3	25.3	8.4	21.1	16.8

Table 10.--Numbers of plankton organisms per cubic meter of water (continuous plankton sampler), cont'd

Run No. / Date Febr	uary 10	, 1973						
Compartment No.	1	2	3	4	5	6	7	8
Time (EST)	0712	0812	0912	1012	1112	1212	1312	1412
Position of (N. Lat.	28°20'	28°18'	28°15'	28°18'	28°20'	28°22'	28°23'	28°24'
Ship: (W. Long.	79°40'	79°48'	79°56'	80°061	80°12'	80°18'	80°24 '	80°29'
Protozoa	_	-	-	4.6	4.6	4.6	-	-
Coelenterata	-	-	-	-	-	-	-	-
Chaetognatha	-	-	4.6	4.6	4.6	-	-	-
Misc. Worms	-	-	-	9.2	-	-	-	-
Copepoda	27.7	-	4.6	78.5	27.7	13.9	50.8	32.3
Ostracoda	-	~	-	-	-	-	-	+
Amphipoda	-	-	-	-	-	-	-	-
Shrimp	-	-	-	-	-	-	-	-
Crabs	-	-	-	-	-	-	4.6	-
Misc. Crustaceans	-	-	4.6	-	-	-	-	-
Mollusca	-	-	-	-	-	-	-	-
Invertebrate Eggs	-	-	-	9.2	-	-	-	4.6
Misc. Organisms	4.6	-	-	-	-	-	y.2	-
Subtotal	32.3	-	13.8	106.1	36.9	18.5	64.6	36.9
Fish Eggs	_	_	_	-	-	13.9	9.2	_
Fish Larvae	-	-	-	-	-	-	-	-
Total	32.3	_	13.8	106.1	36.9	32.4	73.8	36.9

Run No. 5, Date February 18, 1953

Run No. 6, Date February 19, 1953

	V							
Compartment No.	l	2	3	4	5	6	7	8
Time (EST)	0829	0927	1025	1123	1221	1319	1417	1515
Position of (N. Lat.	28°23'	28°201	28°24 '	28°31'	28°36'	28°45'	28°53'	29°02'
Ship: (W. Long.	80°32'	80°32'	80°261	80°21'	80°22'	80°26'	80°29'	80°32'
Protozoa	-	-	-	-	-	-	-	-
Coelenterata	-	-	-	-	-	-	-	3.0
Chaetognatha	-	-	-	-	-	5.9	3.0	-
Misc. Worms	3.0	-	-	-	-	3.0	-	-
Copepoda	32.4	5.9	35.4	59.0	29.5	32.4	73.8	44.2
Ostracoda	-	-	-	-	-	-	-	-
Amphipoda	-	-	-	-	-	-	-	-
Shrimp	3.0	-	-	-	-	-	-	-
Crabs	5.9	-	8.8	11.8	3.0	20.6	23.6	8.8
Misc. Crustaceans	3.0	-	3.0	_	3.0	14.8	5.9	-
Mollusca	-	-	-	-	-	-	5.9	-
Invertebrate Eggs	3.0	-	-	5.9	-	3.0	11.8	-
Misc. Organisms	-	-	-	-	-	-	-	-
Subtotal	50.3	5.9	47.2	76.7	35.5	79.7	124.0	56.0
Fish Eggs Fish Larvae	-	-	-	-	3.0	14.8 -	5.9	-
Total	50.3	5.9	47.2	76.7	38.5	94.5	129.9	56.0

Table 10.--Numbers of plankton organisms per cubic meter of water (continuous plankton sampler), cont'd

Run No. 7 Date Febr	uary 21	, 1953						
Compartment No.	1	2	3	4	5	6	7,	8
Time (EST)	1442	1539	1636	1733	1830	1927	2024	2121
Position of (N. Lat.	30°201	30°20'	30°201	30°20'	30°201	30°20'	30°20'	<u>3</u> 0°201
Ship: (W. Long.	81°20'	81°20'	81°09'	81°01'	80°55'	80°46'	80°38'	80°34′
Protozoa	-	3.5	-	3.5	-	-	-	-
Coelenterata	-	-	-	-	-	-	-	-
Chaetognatha	-	-	-	10.6	3.5	3.5	-	7.1
Misc. Worms	-	-	-	-	7.1	-	28.2	49.4
Copepoda	165.9	158.8	134.1	60.0	95.3	67.1	197.7	208.3
Ostracoda	-	-	-	-	-	-	10.6	-
Amphipoda	-	-	-	-	-	-	-	7.1
Shrimp	-	-	3.5	-	-	14.1	3.5	3.5
Crabs	-	-	-	3.5	3.5	-	7.1	3.5
Misc. Crustaceans	-	3.5	7.1	-	-	3.5	17.6	17.6
Mollusca	-	-	-	-	-	-	7.1	_
Invertebrate Eggs	-	_	-	_	3.5	-	_	-
Misc. Organisms	-	-	-	-	-	-	-	-
Subtotal	165.9	165.8	144.7	77.6	112.9	88.2	271.8	296.5
Fish Eggs	-	-	_	-	-	-	-	_
Fish Larvae	-	_	-	-	-	-	-	-
Total	165.9	165.8	144.7	77.6	112.9	88.2	271.8	296.5

Run No. 8, Date February 21-22, 1953

Compartment No.	1	2	3	4	5	6	7	8
Time (EST)	2233	2332	0032	0131	0231	, i i i i i i i i i i i i i i i i i i i	1	Ŭ
Position of (N. Lat.	30°20'	30°20'	30°20'	30°20'	30°20'			
Ship: (W. Long.	80°25'	80°15'	80°10'	80°07'	79°56'			
Protozoa	-	_	_	_	_			
Coelenterata	_	_	-	_	3.5			
Chaetognatha	-	_	7.0		7.0			
Misc. Worms		-	_		· _			
Copepoda	179.5	126.7	119.7	14.1	161.9			
Ostracoda	3.5	133.8	116.2	_	38.7			
Amphipoda	-		-	-	-			
Shrimp	~	3.5	3.5	-	-			
Crabs	-	-	-	-	-			
Misc. Crustaceans	7.0	-	-	-	-			
MOLLUSCA	-	3.5	-	-	3.5			
Invertebrate Eggs	-	-	3.5	3.5	3.5			
Misc. Organisms	-	3.5	3.5	-	-			
Subtotal	190.0	271.0	253.4	17.6	218.1			
Fish Eggs	-	-	-	_	-			
Fish Larvae	-	-	7.0	-	3.5			
Total	190.0	271.0	260.4	17.6	221.6			

Table 10.--Numbers of plankton organisms per cubic meter of water (continuous plankton sampler), cont'd

Run No. 9, Date Feb:	ruary 22	<u>, 1953</u>						
Compartment No.	1	2	3	4	5	6	7	8
Time (EST)	0849	0947	1045	1143	1241	1339	1437	1535
Position of (N. Lat.	31°09'	31°13'	31°13'	31°12'	31°11'	31°09'	31°06'	31°04'
Ship: (W. Long.	80°27'	80°31'	80°37'	80°44′	80°49'	80°53'	80°581	81°04'
Protozoa	-	-	-	-	11.0	3.7	3.7	18.3
Coelenterata	3.7	-	-	-	-	-	-	-
Chaetognatha	-	-	3.7	-	-	-	-	-
Misc. Worms	-	-	3.7	-	-	-	-	-
Copepoda	446.5	164.7	54.9	22.0	40.3	98.8	109.8	164.7
Ostracoda	7.3	3.7	76.9	25.6	-	-	-	
Amphipoda	7.3	-	-	-	-	-	-	3.7
Shrimp	3.7	3.7	-	-	-	3.7	-	-
Crabs	3.7	-	-	-	-	-	-	-
Misc. Crustaceans	18.3	-	-	-	3.7	3.7	3.7	3.7
Mollusca	3.7	-	-	-	-	-	3.7	3.7
Invertebrate Eggs	3.7	11.0	3.7	-	7.3	3.7	3.7	3.7
Misc. Organisms	-	-	-	-	-	-	-	-
Subtotal	497.9	183.1	142.9	47.6	62.3	113.6	124.6	197.8
Fish Eggs	_	_	-	-	3.7	-	7.3	_
Fish Larvae	-	-	-	-	-	-	-	-
Total	497.9	183.1	142.9	47.6	66.0	113.6	131.9	197.8

Run No.10. Date Febru	uary 22	1953						
Compartment No.	1	2	3	4	5	6	7 8	
Time (EST)	1644	1744	1844				·	
Position of (N. Lat.	31°00'	31031	31°07'					
Ship: (W. Long.	81°09'	81°14'	81°22'					
Protozoa	-	_						
Coelenterata	-	_	-					
Chaetognatha	-	-	-					
Misc. Worms	-	_	4.1					
Copepoda	268.4	45.4	140.4					
Ostracoda	· _ ·	-	-					
Amphipoda	-	-	-					
Shrimp	-	-	-					
Crabs	-	-	-					
Misc. Crustaceans	4.1	-	-					
Mollusca	8.3	4.1	-					
Invertebrate Eggs	-	-	-					
Misc. Organisms	-	-	-					
Subtatal	000 0	10.5	- 11 -					
Subtotal	280.8	49.5	144.5					
Fish Eggs								
Fish Larvae	_	_	_					
Total	280.8	49.5	144.5					

Table 10.--Numbers of plankton organisms per cubic meter of water (continuous plankton sampler), cont'd

Run No. II, Date reur	uary LU		/					
Compartment No.	1	2	3	4	5	6	7	8
Time (EST)	1743	1841	1938	2036	2133	2231	2328	0026
Position of (N. Lat.	31°08'	31°13'	31°18'	31°20'	31°25'	31°34'	31°42'	31°40'
Ship: (W. Long.	81°10'	81°02'	80°55'	80°52'	80°44'	80°39'	80°36'	80°28'
Protozoa	154.8	-	-	-	-	12.6	-	3.2
Coelenterata	-	-	-	-	-	-	-	-
Chaetognatha	-	-	-	-	-	3.2	-	12.6
Misc. Worms	-	-	-	-	-	-	-	-
Copepoda	246.5	123.2	208.6	151.7	56.9	113.8	75.8	63.2
Ostracoda	6.3	-	-	-	-	12.6	6.3	9.5
Amphipoda	-	-	-	-	-	-	-	-
Shrimp	-	-	-	-	-	-	-	-
Crabs		-	-	-	-	-	9.5	-
Misc. Crustaceans	25.3	-	-	6.3	-	-	-	-
Mollusca	~	-	-	-	3.2	-	-	-
Invertebrate Eggs	-		-	-	-	-	~	-
Misc. Organisms	-	-	-	-	3.2	-	-	-
Subtotal	432.9	123.2	208.6	158.0	63.3	142.2	91.6	88.5
Fish Eggs	.3.2	-	-	_	-	-	-	-
Fish Larvae	-	-	-	-	-	-	-	-
Total	436.1	123.2	208.6	158.0	63.3	142.2	91.6	88.5
Fish Larvae	436.1	-	- 208.6	- 158.0	- 63.3	- 142.2	- 91.6	88

Run No. 11, Date February 26-27, 1953

Run No. 12, Date February 27, 1953

null no. 14, Dave		, -///						
Compartment No.	1	2	3	4	5	6	7	8
Time (EST)	0138	0238	0338	0438	0538	0638	0738	
Position of (N. Lat.	31°38'	31°36'	31°34'	31°32'	31°31'	31°31'	31°31'	
Ship: (W. Long.	80°17'	80°14'	'80°08	79°58'	79°52'	79°45'	79 ° 33'	
Protozoa	2.9	-	5.8	-	8.7	5.8	23.2	
Coelenterata	-	-	-	-	-	-	2.9	
Chaetognatha	2.9	-	8.7	8.7	2.9	5.8	-	
Misc. Worms	-	-	_	-	-	5.8	-	
Copepoda	84.1	81.2	159.5	139.2	29.0	258.1	142.1	
Ostracoda	14.5	2.9	5.8	11.6	-	5.8	-	
Amphipoda		-	-	2.9	-	-	-	
Shrimp	-	-	5.8	2.9	11.6	29.0	-	
Crabs	2.9	2.9	-	2.9	2.9		-	
Misc. Crustaceans	-	-	-	2.9	-	14.5	-	
Mollusca	2.9	-	-	-	-		2.9	
Invertebrate Eggs	-	-	8.7	-	2.9	8.7	-	
Misc. Organisms	-	-	-	-	-	-	2.9	
Subtotal	110.2	87.0	194.3	171.1	58.0	333•5	174.0	
Fish Eggs	-	-	_	_	-	-	5.8	
Fish Larvae	-	-	-	-	-	-	-	
Total	110.2	87.0	194.3	171.1	58.0	333.5	179.8	

Table 10.--Numbers of plankton organisms per cubic meter of water (continuous plankton sampler), cont'd

Run No. 13, Date Febr	uary 27	, 1953_						
Compartment No.	1	2	3	4	5	6	7	8
Time (EST)	1230	1330	1430				·	
Position of (N. Lat.	31°29'	31°27'	31°27'					
Ship: (W. Long.	78°55'	78°34'	78°34'					
Protozoa	-	_	-					
Coelenterata	-	4.9	-					
Chaetognatha	4.9	-	-					
Misc. Worms	_	-	-					
Copepoda	19.7	19.7	19.7					
Ostracoda	-	-	-					
Amphipoda	-	-	-					
Shrimp	-	-	-					
Crabs	-	_	-					
Misc. Crustaceans	-	-	9.9					
Mollusca	-	-	-					
Invertebrate Eggs	-	-	-					
Misc. Organisms	-	-	-					
Subtotal	24.6	24.6	29.6					
Fish Eggs	-	-	-					
Fish Larvae	-	-	-					
Total	24.6	24.6	29.6					
Dur No 1) Data Tahm	10 mr 07	1052						
Kun No. 14, Date Febr	uary 21	<u>, 1973</u>		1.				
Compartment No.		2	3	4	5	6	7	8

Compartment No.	1	2	3	4	5	6	7	8
Time (EST)	1905							
Position of (N. Lat.	31°39'							
Ship: (W. Long.	78°451							
Protozoa	10.6							
Coelenterata	-							
Chaetognatha	10.6							
Misc. Worms	-							
Copepoda	47.5							
Ostracoda	-							
Amphipoda	-							
Shrimp	-							
Crabs	-							
Misc. Crustaceans	-							
Mollusca	5.3							
Invertebrate Eggs	-							
Misc. Organisms	10.6							
Subtotal	84.6							
Fish Leges	-							
rish Larvae	-							
Total	81 6							
TOUGL	04.0							

	Stonach Contents		fish remains, unidentified	fish remains, unidentified	fish remains, unidentified	fish remains, unidentified	none	none	none	fish remains, unidentified	Etrumeus sadina (Mitchill)(1);	squid (1)	squid (1)	none	fish remains, unidentified;	squid (1)	none	Etrumeus sadina (Mitchill)	(5); other Clupeidae (112);	Congermuraena impressa (Poey)	(1); Scomber sp. (1); squid	(1)	none	Ilsh remains, unidentified	110116	none	none		Pseudupeneus maculatus (Bloch)	(2); Acanthurus hepatus (Linnaeus) (3)		Etrumeus sadina (Mitchill) (1)
)	Weight (lbs.)			20	7.2	. 6.6	0°00	7.7	9.6	4.4	6.6		6.6	7.7	9.9		0°.00	7.2						0 0 0 0		m.	4. 4		35.3)	-	t.t
>	Length (mm.)		495	606	578	610	648	559	660	521	584	Ċ	584	622	669		654	591					527	200 105	() () ()	508	502		978	-		480
	Stage Gonad Devel.		I-II	TT-TT	II	I-II	II-II	II-II	II	II	II		Н	II	II-II		II-III	н					нγ		77	Н	II		Г	i		н
	Sex		ΣI	F4	М	M	M	ŕч	ŕ٩	Ēч	Ē		Σ	ſщ	F=4		ſ۲ı	M					Z;	ΞÞ	4	X	F-4		М	i		Σ
ı	ation W.Long.		80°101	80,08	80.081	80.031	80°27'	80°03'	80°31'	80°31'	80°34'		80°35'	80°37'	80°42'		78°14'	78°27'					142.77	- +2 - J.J.	0 2 0	76,261	76°221		78°00'	-		80.021
	Loc N.Lat.		28°35'	28.30	28°30'	28°28'	28°48'	28°57'	28.59'	120.62	29°07'		29°10'	29°15'	31°11'		32°52'	32°57'					33,20'	02.55 11.02		34.5141	34°11'		102072	- -		27°00'
	Time (EST)		1320	1340	1340	1400	1345	1445	1500	1510	1550	,	1615	1650	1140		1652	1750					1200			1201	1240		1020			0630
	ate 953		11	11	ЪЪ	11	19	19	19	19	19		10	с Г	22		Ч	Ч					\sim	$\sim \sqrt{2}$	0 '	0	9					17
	АЧ		Feb.	Feb.	Feb.	Feb.	Feb.	Feb.	Feb.	Feb.	Feb.		Feb.	Feb.	Feb.		Mar.	Mar.					Mar.	Mar.	Mar.	Mar.	Mar.		Feb.	, ! !		Feb.
	Species	Euthynnus alletteratus	(Rafinesque)		-	1		11	2	11			-	z	11		11	11						. =	:	-	= f	Inunus	(CUV: and Val.)		Katsuwonus pelamis	(Linnaeus)

.

Table 11. -- Numbers and species of fish taken by trolling

Table 12. -- Numbers and species of fish taken by dip net

Species	Location of capture, number and size range
	of specimens
Unidentified	-Abaco Light Anchorage, 25°50'N: 77°10'W (5) 105.5 to 123.5 mm.
SYNODTDAE	
Unidentified	-Abaco Light Anchorage, (1) 36.5 mm. Reg. 1, (2) 40.5 and 41.5 mm.
Synodus sp.	-Abaco Light Anchorage, (3) 35.5 to 37.5 mm.
MYCTOPHIDAR	
Myctophum affine (Lutken) Myctophum obtusirostris Taning	-Reg. 73, (3) 21 to 29 mm. -Reg. 1, (2) 22.5 and 25 mm. Abaco Light Anchorage, (1) 81 mm.
Diaphus dunerili Bleeker	-Abaco Light Anchorage, (2) 63.5 and 66 mm.
BELONIDAE	
Strongylura sp.	-Reg. 73, (1) 40.5 mm.
COMPEREDATION	
Scomberesox saurus (Walbaum)	-Reg. 73, (8) 51.5 to 63 mm.
HEMIRAMPHIDAE Hemiramphus brasiliensis (Linnaeus)	-Reg. 1, (1) 173 mm.
EXOCOETIDAE	
Parexocoetus brachypterus	-Reg. 1, (1) 113 mm.
Exocoetus obtusirostris Gunther	-Reg. 73, (2) 28.5 and 38 mm.
Cypselurus heterurus	-Reg. 6, (1) 81 mm.
(Rafinesque) Hirundichthys affinis (Cunther)	-Reg. 73, (3) 55 to 129.5 mm.
Danichthys rondeletii (Cuv. and Val.)	-Reg. 73, (1) 61 mm.
GADIDAE <u>Urophycis</u> regius (Walbaum)	-Reg. 35, (1) 39.5 mm.
SYNGNATHTDAE	
Syngnathus dunckeri Metzelaar	-Abaco Light Anchorage, (4) 35 to 49 mm.

Table 12.--Numbers and species of fish taken by dip net (cont'd)

Species	Location of capture, number and size range of specimens
SPHYRAENIDAE Sphyraena picudilla Poey	-Abaco Light Anchorage, (1) 250 mm.
MUGILIDAE <u>Mugil</u> <u>cephalus</u> Linnaeus	-Mayport, Fla., Naval Basin (St. Johns River), (71) 18.5 to 27 mm. Reg. 35, (1) 22.5 mm. Reg. 73, (8) 22.5 to 27 mm.
Mugil curema Cuv. and Val.(?)	-Cape Canaveral Anchorage, (1) 25 mm.
ATHERINIDAE Allanetta harringtonensis (Goode) <u>Membras martinica</u> (Cuv. and Val.)	-Abaco Light Anchorage, (11) 21.5 to 65 mm. -Cape Canaveral Anchorage, 35°14'N: 75°34'W, (2) 74.5 and 77 mm.
CORYPHAENIDAE Coryphaena hippurus Linnaeus	-Reg. 73, (1) 72.5 mm.
MULLIDAE <u>Mullus auratus</u> Jordan and Gilbert	-Reg. 73, (1) 16 mm.
Pseudupeneus maculatus (Bloch)	-Abaco Light Anchorage, (10) 54 to 59.5 mm.
ANTENNARIDAE Histrio gibba (Mitchill)	-Reg. 73, (1) 14.5 mm.

TN GILL CRUISE I JUPITER SECTION IT FEB 1953

Figure 5.--Distribution of temperature (°C), salinity (%), and density (σ_t) across section of stations 1, 2, and 3 (Jupiter Section).

TN GILL CRUISE I VERO SECTION 17,18 FEB,1953

Figure 6.--Distribution of temperature (°C), salinity (%), and density (σ_t) across section of stations 5, 6, and 7 (Vero Section).

TN GILL CRUITE I JACKSONVILLE JEET ZI, 22 FEB , 963

(o t) across section of stations 23, 24, 25, and 26 (Jacksonville Section) Figure 7.--Distribution of temperature (°C), salinity ($\frac{V}{200}$), and density

TH GILL CRUISE I BRUNSNICK SECT 28 FEB 1953

Figure 8.--Distribution of temperature (°C), salinity (%), and density ($\sigma_{\rm t}$) across section of stations 32, 33, and 34 (Brunswick Section).

T.N GILL CRUISE I CAPE LOOKOUT SECT G, MARCH, 1953

Figure 14.--Distribution of temperature (°C), salinity (‰), and density (σ t) across section of stations 69, 70, 71, and 72 (Cape Lookout Section).

TH GILL CRUISE I RALEIGH BAY SECT 7 MARCH, 1953

Figure 15.--Distribution of temperature (°C), salinity (‰), and density (σ_t) across section of stations 74 and 75 (Raleigh Bay Section).

DATE Feb. 17, 1953 LAT. 26° 59'N. LONG. 79° 18'W. TIME 05 DEPTH 597 WIND _____ BAR. 21 AIR TEMP: dry 20.0°C, wet 16.1°C HUMIDITY 28% WEATHER 00 CLOUDS:type ____ amt. ___ SEA:dir. _____ amt. 1 SWELL:dir. _____ amt. ___ VIS. 8 WATER TRANS. ____

			ODOLINED		
ſ	DEPTH (m)	T (°C)	S (‰)	σ _t	0 ₂ (ml/1)
	1 20 50 100 200 300 400 500	24.30 25.39* 24.27 24.23 24.01 20.36 18.02 16.30 13.80	36.35 36.33 36.36 36.47 36.80 36.47 36.27 35.84	24.59 24.25 24.61 24.62 24.77 26.06 26.41 26.67 26.90	4.68 4.64 4.61 4.44 4.27 3.67 4.16 4.20 3.66

OBSERVED

* Value questionable

INTERPOLATED AND CALCULATED

DEPTH (m)	Т (°С)	S (‰)	σ _t	02 (ml/1)
0	24.30	36.35	24.59	4.68
10	24.29	36.33	24.58	4.64
20	24.27	36.36	24.61	4.61
30	24.26	36.36	24.61	4.55
50	24.23	36.36	24.62	4.44
75	24.15	36.41	24.68	4.37
100	24.01	36.47	24.77	4.27
150	22.02	36.72	25.54	3.83
200	20.36	36.80	26.06	3.67
250	19.11	36.62	26.25	3.97
300	18.02	36.47	26.41	4.16
400	16.30	36.27	26.67	4.20
500	13.80	35.84	26.90	3.66

DEPTH (m)	TOTAL P (ug at/l)	РО ₄ -Р (µg at/l)	$NO_3 - NO_2$ (ug at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)					
1	0 li	<01	0.0	1 3	15					
10	0.4	0.1	0.0	0.9	2.1					
20	0.5	<0.1	<0.5	-	1.3					
50	0.6	0.1	0.5	2.1	0.6					
100	0.9	0.0	0.0	-	0.7					
200	0.6	<0.1	1.0	-	1.3					
300	0.4	0.2	1.0	-	1.2					
400	0.5	0.2	3.0	-	1.0					
500	0.8	0.6	7.5	4.4	0.6					

OBSERVED

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	РО ₄ -Р (µg at/l)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)
		i de la companya de l			
0	0.4	0.1	0.0	1.3	1.5
10	0.4	0.1	0.0	0.9	2.1
20	0.5	<0.1	<0.5	1.2	1.3
30	0.5	<0.1	<0.5	1.5	1.0
50	0.6	0.1	0.5	2.1	0.6
75	0.8	<0.1	<0.5	-	0.7
100	0.9	0.0	0.0	-	0.7
150	0.8	0.0	0.5	-	1.0
200	0.6	<0.1	1.0	-	1.3
250	0.5	0.1	1.0	-	1.3
300	0.4	0.2	1.0	-	1.2
400	0.5	0.2	3.0	-	1.0
500	0.8	0.6	7.5	4.4	0.6

DATE Feb. 17, 1953 LAT. 26° 58'N. LONG. 79° 41'W. TIME 11 DEPTH 539 WIND 1, 27 BAR. 21 AIR TEMP: dry 19.4°C, wet 15.6°C HUMIDITY 22% WEATHER 03 CLOUDS:type 8, amt. 7 SEA:dir. _____, amt. 2 SWELL:dir. _____, amt. ____ VIS. 8 WATER TRANS. ____

		ODOERVED		
DEPTH (m)	Т (°С)	S (‰)	σ _t	0 ₂ (ml/1)
1 9 17 44 88 176 263 351 439	24.80** 27.00* 24.63 24.67 21.95 17.00 14.29 11.18 8.15	36.18 36.24 36.15 36.87 36.38 35.99 35.46 35.01	24.31 23.59 24.41 24.33 25.67 26.59 26.91 27.12 27.28	

OBSERVED

** From BT

* Value questionable

INTERPOLATED AND CALCULATED

DEPTH (m)	T (°C)	S (‰)	σ _t	0 ₂ (ml/1)
	· · · · · ·			
0	24.80	36.18	24.31	-
10	24.70	36.15	24.32	-
20	24.64	36.21	24.39	-
30	24.65	36.15	24.34	-
50	24.29	36.29	24.55	-
75	22.74	36.72	25.33	-
100	21.14	36.80	25.84	-
150	18.23	36.51	26.39	-
200	16.29	36.29	26.69	-
250	14.72	36.06	26.87	-
300	12.97	35.76	27.01	-
400	9.48	35.20	27.22	-

		OBSEF	RVED		
DEPTH (m)	TOTAL P (µg at/l)	PO ₄ -P (µg at/l)	$\frac{\mathrm{NO}_{3}-\mathrm{NO}_{2}}{(\mathrm{\mu g} \mathrm{at}/\mathrm{1})}$	ARABINOSE (mg/l)	TYROSINE (mg/l)
1 9 17 44 88 176 263 351 439	0.7 0.3 0.4 0.2 0.5 0.7 0.9	0.1 0.3 0.0 0.1 0.3 0.6 0.4 1.2 1.7	0.0 0.5 0.5 3.0 3.5 7.0 -	2.2 2.3 2.2	0.7 1.0 0.1 1.5 0.1 0.5 0.2 0.1 0.9

INTERPOLATED DEPTH TOTAL P $\frac{NO_3 - NO_2}{(\mu g at/1)}$ PO₄-P ARABINOSE TYROS INE (m) $(\mu g at/1)$ $(\mu g at/l)$ (mg/l)(mg/l)0.1 0 0.0 0.7 0.7 0.3 0.4 10 0.3 0.0 0.9 _ 0.2 20 0.5 0.0 ---0.3 0.5 0.8 30 0.1 -0.2 50 1.3 1.0 2.2 0.1 75 0.4 2.2 0.5 0.2 2.5 0.3 3.0 100 0.5 2.2 0.2 3.5 150 0.5 2.3 0.4 0.6 0.5 0.4 200 0.8 2.2 0.4 6.5 2.2 0.3 250 0.9 6.5 2.2 0.2 300 -0.7 400 1.5 6.0 _ 0.5 -

DATE Feb. 17, 1953 LAT. 27° 00'N. LONG. 80° 04'W. TIME 15 DEPTH 19 WIND 4, 36 BAR. 24 AIR TEMP: dry 19.4°C, wet 16.1°C HUMIDITY 30% WEATHER 03 CLOUDS:type 0, amt. 8 SEA:dir. 36, amt. 2 SWELL:dir. -, amt. - VIS. 8 WATER TRANS. -

OBSERVED								
DEPTH T		S	σ _t	0 ₂				
(m) (°C)		(‰)		(ml/1)				
1	20.53	36.18	25.54	5.11				
10	20.54	36.15	25.51	5.59				

INTERPOLATED AND CALCULATED DEPTH S Т 02 σ_{\pm} (°C) (‰) (ml/l)(m) 36.18 25.54 5.11 20.53 0 20.54 36.15 25.51 5.59 10

OBSERVED								
DEPTH (m)	TOTAL P (µg at/l)	РО ₄ -Р (µg at/l)	$NO_3 - NO_2$ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)			
]	0.3	0.2	0.0	0.0	0.0			
10	0.4	<0.1	0.5	0.6	0.1			

INTERPOLATED								
DEPTH	TOTAL P	PO ₄ -P	$NO_3 - NO_2$	ARABINOSE	TYROSINE			
(m)	(µg at/l)	(µg at/l)	(µg at/1)	(mg/l)	(mg/l)			
0	0.3	0.2	0.0	0.0	0.0			
10	0.4	<0.1	0.5	0.6	0.1			

53

DATE Feb. 17, 1953 LAT. 27° 20'N. LONG. 80° 03'W. TIME 18 DEPTH 24 WIND 1, 32 BAR. 23 AIR TEMP: dry 17.5°C, wet 13.3°C HUMIDITY 16% WEATHER 02 CLOUDS:type 0, amt. 4 SEA:dir. 32, amt. 1 SWELL:dir.___, amt.___ VIS.___ WATER TRANS.____

	UDSERVED								
DEPTH T		S	σ _t	0 ₂					
(m) (°C)		(‰)		(ml/l)					
	1	19.70	36.22	25.79	5.70				
	10	19.49	36.29	25.90	5.79				

ODGEDIED

INTERPOLATED AND CALCULATED

DEPTH	Т	S	σ _t	0 ₂
(m)	(°С)	(‰)		(ml/l)
0	19.70	36.22	25.79	5.70
10	19.49	36.29	25.90	5.79

OBSERVED	
----------	--

DEPTH	TOTAL P	PO _{l4} -P	$NO_3 - NO_2$	ARABINOSE	TYROSINE
(m)	(µg at/l)	(µg at/l)	(µg at/1)	(mg/l)	(mg/l)
1	0.2	0.4	2.0	1	2.0
10	0.2	0.2	1.0		0.1

INTERPOLATED

DEPTH	TOTAL P	PO _{l4} -P	NO ₃ -NO ₂	ARABINOSE	TYROSINE
(m)	(µg at/l)	(µg at/l)	(µg at/1)	(mg/l)	(mg/l)
0 10	0.2	0.4 0.2	2.0 1.0	-	2.0 0.1

DATE	Feb.	17,	1953	LAT	27° 40	<u>'</u> N. I	LONG	<u> 80 ° 0</u>	<u>3'</u> W.	TIME_	21	-
DEPTH	38	_ WIN	D_2	<u>, 34</u> E	BAR. 22	AIR ?	TEMP:	dry <u>18</u>	<u> </u>	wet_l	<u>3.9</u> °C	;
HUMID	TY 18	% WE	ATHER.	02 CLC	DUDS:type	<u>, o</u>	amt4	SEA:	dir. <u>3</u>	<u>4</u> ,a	mt]	L
SWELL:	dir.		,amt.	- VIS.	8 WATH	ER TRA	ANS					

			OBSERVED		
ſ	DEP TH (m)	Т (°С)	S (‰)	σ _t	0 ₂ (ml/1)
-	1 10 20 30	20.73 20.40 - 15.93	36.17 36.18 36.08 35.90	25.48 25.57 26.47	5.33 5.39 4.87 3.69

INTERPOLATED	AND	CALCU	LATED
--------------	-----	-------	-------

DEPTH	T	S	σ _t	0 ₂
(m)	(°C)	(‰)		(ml/1)
0	20.73	36.17	25.48	5.33
10	20.40	36.18	25.56	5.39
20	18.81	36.08	25.91	4.87
30	15.93	35.90	26.47	3.69

\$	OBSERVED									
	DEPTH	TOTAL P	$PO_4 - P$	$NO_3 - NO_2$	ARABINOSE	TYROSINE				
-	(m)	(µg at/1)	(µg at/1)	(µg at/1)	(mg/1)	(mg/1)				
	1 10 20	0.3 0.3	<0.1 0.0 0.2	<0.5 0.5 1.5	6.2 2.2	0.1 1.8 <0.1				
	30	-	0.9	13.0	-	1.3				

INTERPOLATED РО₄-Р (µg at/l) DEPTH NO₃-NO₂ (µg at/1) TOTAL P ARABINOSE TYROS INE (m) (µg at/l) (mg/l)(mg/l)<0.5 0.5 0 0.3 <0.1 0.1 -6.2 1.8 10 0.3 0.0 1.5 <0.1 20 0.2 2.2 -30 -0.9 1.3 -

DATE	Feb.	17, 1953	LAT2	<u>7° 40'</u> N.	LONG	<u>79° 41'</u> W.	TIME <u>24</u>
DEPTH	475	WIND 4	<u>36</u> BAR.	23_ AIR	TEMP: d	lry <u>20.0</u> °C,	wet_ <u>15.6</u> °C
HUMIDI	ry <u>-</u> 9	WEATHER 02	CLOUDS	:type <u>5</u>	,amt. <u>7</u>	SEA:dir	<u>36</u> ,amt. <u>2</u>
SWELL:	lir	, amt	VIS. <u>8</u>	WATER T	RANS. <u>-</u>		

	OBSERVED									
DEPTH	Т	S	۳ _t	0 ₂						
(m)	(°С)	(‰)		(ml/l)						
1	24.52	36.15	24.38	5.13						
10	24.51	36.11	24.35	3.28						
19	26.56*	36.13	23.73	3.53						
29	24.50	36.11	24.35	4.15						
46	24.53	36.11	24.34	4.43						
92	22.94	36.64	25.21	4.76						
184	20.44	36.18	25.56	4.68						
276	12.81	35.64	26.94	4.76						
368	9.17	35.10	27.19	2.96						

* Value questionable

DEPTH	Т	S	σ _t	0 ₂
(m)	(°С)	(‰)		(ml/l)
0 10 20 30 50 75 100 150 200 250 300	24.52 24.51 24.51 24.38 23.50 22.80 21.96 18.83 14.56 11.48	36.15 36.11 36.13 36.18 36.50 36.60 36.60 36.36 36.09 35.79 35.50	24.38 24.35 24.36 24.35 24.44 25.22 25.28 25.28 25.92 26.69 27.09	5.13 3.28 3.61 4.17 4.47 4.67 4.67 4.69 4.69 4.69 4.69 4.75 4.47

INTERPOLATED AND CALCULATED

OBSERVED											
DEPTH	TOTAL P	OTAL P PO ₄ -P NO		ARABINOSE	TYROSINE						
(m)	(µg at/1)	(µg at/1)	(µg at/1)	(mg/1)	(mg/1)						
1 10 19 29 46 92 184 276	- - - 0.4 1.7 0.5 0.2	1.4 1.1 0.6 <0.1 0.2 <0.1 0.1	5.0 20.5* 5.5 1.5 0.0 0.5 0.0 0.0	2.8 2.2 - 1.9 1.2 1.4 -	0.1 0.4 1.5 2.1 0.6 0.1 0.9 0.2						

INTERPOLATED

DEPTH (m)	TOTAL P $PO_{\mu} - P$ $NO_{3} - NO_{2}$ (µg at/1) (µg at/1) (µg at/1)		ARABINOSE (mg/l)	TYROSINE (mg/l)	
0	-	1.4	5.0	2.8	0.1
10	-	1.1	5.5	2.2	0.4
20	-	0.6	5.5	2.1	1.5
30	-	<0.1	1.5	2.0	2.1
50	0.5	0.2	<0.5	1.8	0.6
75	1.2	0.1	0.5	1.5	0.3
100	1.6	0.1	0.5	1.2	0.2
150	0.9	0.1	<0.5	1.3	0.6
200	0.4	0.1	0.0	1.4	0.8
250	0.3	0.1	0.0	-	0.4
300	0.2	0.1	0.5	-	0.3

* Value questionable

0

DATE Feb. 18, 1953 LAT. 27° 40'N. LONG. 79° 18'W. T.	IME <u>04</u>
DEPTH 667 WIND 2, 32 BAR. 24 AIR TEMP: dry 21.1°C, w	et <u>17.2</u> °C
HUMIDITY_67% WEATHER_00_CLOUDS:type,amt2_SEA:dir32	,amt2
SWELL:dir,amt VIS8_ WATER TRANS	

		OBSERVED		
DEPTH	T	S	σ _t	0 ₂
(m)	(°C)	(‰)		(ml/1)
1	24.27	36.18	24.47	4.88
10	24.28	36.27	24.54	4.76
20	24.33	36.24	24.50	4.88
30	24.27	36.26	24.53	5.38
49	24.27	36.20	24.49	4.47
98	24.18	36.38	24.65	4.64
195	20.66	36.62	25.84	4.31
293	16.65	36.26	26.58	3.90
391	14.56	35.95	26.82	3.69

INTERPOLATED AND CALCULATED

DEPTH	T	S	σ _t	0 ₂
(m)	(°C)	(‰)		(ml/1)
0	24.27	36.18	24.47	4.88
10	24.28	36.27	24.54	4.76
20	24.33	36.24	24.50	4.88
30	24.27	36.26	24.53	5.38
50	24.27	36.20	24.49	4.48
75	24.22	36.30	24.58	4.59
100	24.11	36.39	24.68	4.63
150	22.35	36.58	25.34	4.47
200	20.41	36.60	25.89	4.28
250	18.17	36.41	26.33	4.06

CD-FV-CD											
DEPTH TOTAL P (m) (µg at/l)		$\begin{array}{c c} PO_{\mu}-P & NO_{3}-NO_{2}\\ (\mu g at/1) & (\mu g at/1) \end{array}$		ARABINOSE (mg/l)	TYROSINE (mg/l)						
					L						
1	1.0	0.0	0.0	-	1.2						
10	0.8	0.1	-	-	1.2						
20	0.3	0.2	1.0	-	0.3						
30	0.3	0.2	0.0	7.4	-						
49	0.5	0.0	0.5	0.0	0.8						
98	0.1	0.1	0.5	1.7	0.5						
195	0.7	0.2	3.5	0.7	1.4						
293	1.8	0.5	11.0	7.1	-						
391	2.0	0.7	2.0	3.4	1.2						

ADOUDIT

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	РО ₄ -Р (µg at/1)	$\frac{NO_3 - NO_2}{(\mu g at/1)}$	ARABINOSE (mg/l)	TYROSINE (mg/l)
0	1.0	0.0	0.0	_	1.2
10	0.8	0.1	0.5	_	1.2
20	0.3	0.2	1.0	-	0.3
30	0.3	0.2	0.0	7.4	0.5
50	0.5	0.0	0.5	0.0	0.8
75	0.3	<0.1	0.5	0.8	0.7
100	0.1	0.1	0.5	1.7	0.5
150	0.4	0.2	2.0	1.2	1.0
200	0.6	0.2	3.5	0.7	1.4
250	1.3	0.4	7.5	3.9	1.3
300	1.8	0.5	11.0	7.1	1.3
400	2.0	0.7	2.0	3.4	1.2

DATE_	Feb.	18,	1953	_ LAT.	<u> 28° 2</u>	$\underline{l'}N.$	LONG.	<u>79° 26'</u> W	I. TII	ME <u>09</u>	
DEP'TH	741	WIND	7	<u>, 32</u>	BAR. <u>23</u>	AIR	TEMP:	dry 18.3°C	, we	t <u>15.6</u>	°C
HUMID	TTY <u>75</u> 9	6 WEA	THER_	<u>00</u> CL	OUDS:type	e <u> </u>	, amt	SEA:dir.	32	_,amt.	2
SWELL:	dir	,	amt	VIS	. <u>8</u> WAT	ER TI	RANS				

		OBSERVED		
DEPTH (m)	Т (°С)	S (‰)	σ _t	0 ₂ (ml/l)
1 10 30 49 99 197 393 591 691	24.44 24.48 24.47 24.26 19.50 18.81* 9.47 7.82	36.22 36.18 36.18 36.18 36.35 36.65 35.97 35.14 35.01	24.45 24.41 24.41 24.61 26.17 25.83 27.17 27.33	4.72 4.58 4.97 5.05 4.56 3.90 3.57 2.91 2.91

* Value questionable

INTERPOLATED AND CALCULATED	INTERPOLATED	AND	CALCULATED
-----------------------------	--------------	-----	------------

DEPTH (m)	DEPTH T (m) (°C)		σ _t	0 ₂ (ml/1)
0 10 20 30 50 75 100 150 200 250 300 400 500	24.44 24.48 24.48 24.47 24.46 24.40 24.20 21.42 19.35 17.68 16.25 13.73 11.42	36.22 36.18 36.18 36.18 36.18 36.27 36.36 36.56 36.56 36.64 36.48 36.48 36.31 35.93 35.43	24.45 24.41 24.41 24.42 24.42 24.50 24.63 25.58 26.20 26.50 26.71 26.98 27.05	4.72 4.58 4.81 4.97 5.04 4.78 4.55 4.18 3.90 3.84 3.77 3.53 3.10
600	9.30	35.12	27.18	2.91

ODDERVED									
TOTAL P	PO _{li} -P	NO ₂ -NO ₂	ARABINOSE	TYROSINE					
(µg at/l)	$(\mu g at/1)$	$(\mu g at/1)$	$(\mu g at/1)$ (mg/1)						
0.5	0.0	0.0	-	1.5					
0.8	<0.1	0.5	1.0	0.7					
0.2	0.0	0.5	2.2	1.0					
0.3	0.0	< 0.5	0.9	0.3					
0.3	0.0	5.0	1.4	1.3					
0.3	0.1	3.5	3.0	0.1					
2.0	0.8	-	-	0.5					
1.5	1.3	3.0	-	1.9					
4.2	1.7	8.0	-	0.1					
	TOTAL P (µg at/1) 0.5 0.8 0.2 0.3 0.3 0.3 0.3 2.0 1.5 4.2	TOTAL P (μg at/1)PO (μg at/1)0.50.00.8<0.1	TOTAL P (μg at/1)PO (μg at/1)NO (μg at/1)NO (μg at/1)0.50.00.00.8<0.1	TOTAL P (μg at/1)PO μg at/1)NO $(\mu g$ at/1)ARABINOSE (μg at/1)0.50.00.0-0.8<0.1					

OBSERVED

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	PO _l -P (µg at/l)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)
0	0.5	0.0	0.0	-	1.5
10	0.8	<0.1	0.5	1.0	0.7
20	0.5	<0.1	0.5	1.6	0.9
30	0.2	0.0	0.5	2.2	1.0
50	0.3	0.0	<0.5	0.9	0.3
75	0.3	0.0	2.5	1.2	0.8
100	0.3	0.0	5.0	1.4	1.3
150	0.3	0.1	4.5	2.2	0.7
200	0.3	0.1	3.5	3.0	0.1
250	0.8	0.3	3.5	-	0.2
300	1.2	0.5	3.5	-	0.3
400	2.0	0.8	3.5	-	0.5
500	1.8	1.1	3.0	_	1.2
600	1.5	1.3	3.0	-	1.9
700	4.2	1.7	8.0	-	0.1

DATE Feb. 19, 1953	LAT. <u>28° 20'</u> N.	LONG. <u>80° 33'</u> W.	TIME <u>14</u>
DEPTH 13 WIND 2,	09 BAR. 27 AI	TEMP: dry 20.6 °C,	wet <u>20.6</u> °C
HUMIDITY 99% WEATHER	01_CLOUDS:type_6	,amt. <u>7</u> SEA:dir	<u>09</u> ,amt. <u>2</u>
SWELL:dir,amt	VIS.7 WATER 1	TRANS	

OBSERVED										
DEPTH	DEPTH T		۳ _t	0 ₂						
(m)	(m) (°C)			(ml/1)						
1	18.15	36.09	26.09	5.30						
10	18.18	36.17	26.14	5.25						

INTERPOLATED A	ND CALCULATED
----------------	---------------

DEPTH	T	S	σ _t	02		
(m)	(°C)	(‰)		(ml/1)		
0	18.15	36.09	26.09	5.30		
10	18.18	36.17	26.14	5.25		

DEPTH TOTAL P (m) (µg at/1)		^{РО} ц-Р (µg at/1)	$\frac{NO_3 - NO_2}{(\mu g at/1)}$	ARABINOSE (mg/l)	TYROSINE (mg/l)			
1 10	_ 0.4	0.7 0.3	1.0	4.9 0.0	0.6 0.1			

J

٠

Þ

OBSERVED

INTERPOLATED

DEPTH	TOTAL P	PO ₄ -P	$\frac{NO_3 - NO_2}{(\mu g at/1)}$	ARABINOSE	TYROSINE
(m)	(µg at/l)	(µg at/l)		(mg/l)	(mg/l)
0	0.4	0.7	1.0	4.9	0.6
10		0.3	0.0	0.0	0.1

DATE_	Feb.	21,	1953	LAT	· <u> </u>	<u>0° 20'</u> N	I. LONG	•	81° 201	<u>'</u> W. '	TIME _	20	_
DEPTH	15	_ WIN	D <u>1</u>	,_14	BAR.	22AI	IR TEMP	: dr	y <u>20.6</u>	°C, 1	vet_2	0 <u>.6</u> °(С
HUMID	ITY <u>99</u>	% WE	EATHER	<u>02</u> C	LOUDS:	type_8	<u>3</u> ,amt.	2	SEA:di	r. <u> </u>	,a	mt	2
SWELL	dir.	-	,amt.	- VI	s. <u>8</u>	WATER	TRANS.	-	_				

OBSERVED							
DEPTH	Т	S	σ _t	0 ₂			
(m)	(°С)	(‰)		(ml/l)			
1	16.11	34.94	25.69	5.82			
10	15.73	35.10	25.90	5.54			

DEPTH	Т	S	σ _t	0 ₂		
(m)	(°С)	(‰)		(ml/1)		
0	16.11	34.94	25.69	5.82		
10	15.73	35.10	25.90	5.54		

INTERPOLATED AND CALCULATED
		OTO TH			
DEP T H (m)	TOTAL P (µg at/l)	РО ₄ -Р (µg at/1)	${ m NO_3-NO_2} \ (\mu { m g} { m at}/1)$	ARABINOSE (mg/1)	TYROSINE (mg/l)
1 10	0.4 2.6	0.2	<0.5 0.5	0.4 0.1	0.9

OBSERVED

**

J

.

,

INTERPOLATED									
DEPTH (m)	TOTAL P (µg at/1)	PO _l -P (µg at/l)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/1)				
0 10	0.4 2.6	0.2	<0.5 0.5	0.4	0.9				

67

DATE	Feb.	21, 19	953	LAT.	30°_21	<u>)'</u> N.	LONG.	80'	<u>58'</u> W.	TIME	23	
DEPTH_	25	WIND_	2,	<u>11</u> B.	AR. 22	AIR	TEMP:	dry_	<u>20.0</u> °C,	wet_2	20 <u>.0</u> °C	
HUMIDI	CTY <u>99</u>	% WEAT	HER 02	_ CLO	UDS:typ	e	, amt	<u>-</u> SE/	A:dir	<u>-</u> ,8	umt. <u>2</u>	
SWELL:	dir	,a	t	VIS.	WA1	ER T	RANS	-				

		OBSERVED		
DEP TH	T	S	حt	0 ₂
(m)	(°C)	(‰)		(ml/1)
1	17.27	36.17	26.36	5.54
10	17.28	36.17	26.36	5.58
20	17.30	36.26	26.43	5.45

TNTER	POLA	ITED A	ND (CAT	спл	ATED
INTER	(POLA'	FED A	ND (JAL		AIEL

DEPTH	T	S	σ _t	0 ₂
(m)	(°C)	(‰)		(ml/1)
0	17.27	36.17	26.36	5•54
10	17.28	36.17	26.36	5•58
20	17.30	36.26	26.43	5•45

OBSERVED										
DEPTH (m)	TOTAL P (µg at/l)	^{РО} ц-Р (µg at/l)	${ m NO_3-NO_2} \ (\mu { m g} { m at/1})$	ARABINOSE (mg/l)	TYROSINE (mg/l)					
1 10 20	0.3 0.6 0.3	0.1 0.1 <0.1	0.0 0.0 0.0	1.8 0.0 0.1	1.0 0.2 1.1					

INTERPOLATED $\frac{NO_3 - NO_2}{(\mu g at/1)}$ TOTAL P PO₄-P (µg at/l) ARABINOSE TYROS INE DEPTH (m) ($\mu g at/1$) (mg/l)(mg/l)0.3 0.6 0.3 1.8 0.1 0.0 1.0 0 0.1 0.0 0.0 0.2 10 <0.1 0.0 0.1 1.1 20

DATE_	Feb.	22,	1953	_ LAT.	3	0° <u>20</u>	'N.	LONG.	80	<u>° 35'</u>	W. 1	TIME_	02	_
DEPTH	33	WINI)_1	<u>, 18</u>	BAR	24 /	AIR	TEMP:	dry_	<u>20,6</u> °(c, ·	wet_2	<u>0.3</u> °	С
HUMID	TTY 97 9	6 WEA	THER_	<u>02</u> CI	LOUDS	type.	,	, amt	SE	A:dir	·	,a	mt	2
SWELL:	dir	,	amt	VIS	5. <u> </u>	WATEF	7 TT	RANS						

		OBSERVED		
DEPTH	Т	S	σ _t	0 ₂
(m)	(°С)	(‰)		(ml/1)
1	18.18	36.11	26.09	5.58
10	18.19	36.13	26.11	5.66
20	18.22	36.13	26.10	5.37
30	18.16	36.15	26.13	5.33

TNTERPOLATED	AND	CALCULATED

DEPTH	Т	S	σ _t	02	
(m)	(°С)	(‰)		(ml/1)	
0	18.18	36.11	26.09	5.58	
10	18.19	36.13	26.11	5.66	
20	18.22	36.13	26.10	5.37	
30	18.16	36.15	26.13	5.33	

/

OTSTERVED										
DEPTH (m)	TOTAL P (µg at/l)	$ \begin{array}{c c} PO_{\mu} - P & NO_{3} - NO_{2} \\ (\mu g \text{ at/l}) & (\mu g \text{ at/l}) \end{array} $		ARABINOSE (mg/l)	TYROSINE (mg/l)					
1 10 20 30	0.4 0.3 - 0.3	0.3 0.3 0.8 0.2	1.5 0.0 2.0 1.0	2.8 0.9 1.1	0.7 0.5 0.1 0.3					

OBSERVED

INTERPOLATED

DEPTH	TOTAL P	PO _{l4} -P	NO ₃ -NO ₂	ARABINOSE	TYROSINE (mg/l)
(m)	(µg at/l)	(µg at/l)	(µg at/1)	(mg/l)	
0 10 20 30	0.4 0.3 -	0.3 0.3 0.8 0.2	1.5 0.0 2.0	2.8 0.9 1.1	0.7 0.5 0.1 0.3

•

DATE	Feb.	22,	1953	LAT.	30° 20	<u>'</u> N.	LONG	<u>80</u> °	<u>10'</u> W.	TIME_	05	
DEP T H	219	WIND	,	22 BA	R	AIR	TEMP:	dry	<u> </u> °C,	wet	°C	
HUMIDI	ry9	6 WEA	THER	<u>81</u> CLOU	DS:type	e <u></u> ;	, amt	SEA	dir	<u> </u>	mt. <u>2</u>	
SWELL:	lir	<u> </u>	amt. <u>-</u>	VIS.	WATE	ER TI	RANS					

		OBSERVED		
DEPTH	Т	S	ም _ቲ	0 ₂
(m)	(°С)	(‰)		(ml/l)
1	20.94	36.20	25.44	5.23
10	20.91	36.18	25.43	5.12
19	20.91	36.17	25.43	5.29
29	20.62	36.13	25.48	5.31
49	18.19	35.99	26.00	4.18
73	12.41	35.62	27.01	2.85
98	11.29*	35.32	26.99	2.86
144	6.87	34.96	27.43	3.22
195	6.92	34.99	27.44	3.25

* Value questionable

DEPTH	т	S	σ _t	02
(m)	(°С)	(‰)		(ml/l)
0	20.94	36.20	25.44	5.23
10	20.91	36.18	25.43	5.12
20	20.91	36.17	25.43	5.31
30	20.55	36.13	25.49	5.25
50	18.00	35.97	26.03	4.10
75	12.02	35.59	27.06	2.85
100	8.76	35.30	27.41	2.88

INTERPOLATED AND CALCULATED

DEPTH (m)	TOTAL P (µg at/l)	^{РО} ц-Р (µg at/l)	$NO_3 - NO_2$ (µg at/1)	ARABINOSE (mg/1)	TYROSINE (mg/l)					
1 10 19 29 49 73 98 144 195	1.9 0.5 0.3 0.2 0.4 - 0.7	0.3 0.1 0.1 - 0.9 0.5 1.7 1.8	0.5 0.0 2.5 2.5 9.5 13.5 9.0 3.5	2.2	0.2 2.9 0.4 0.8 0.3 0.2 1.0 0.0 0.6					

OBSERVED

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	PO _l -P (µg at/l)	$NO_3 - NO_2$ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)
0	1.9	0.3	0.5	-	0.2
10	0.5	0.3	0.0	2.2	2.9
20	0.3	0.1	0.5	-	0.4
30	0.2	0.1	2.0	-	0.8
50	0.4	0.4	2.5	-	0.3
75	_	0.9	9.5	-	0.3
100	0.7	0.5	13.5	0.0	1.0
150	-	1.7	8.5	2.2	0.1
200	-	1.8	3.5	-	0.6

DATE	Feb.	22.	1953	LAT.	31° 1	<u>4'</u> N.	LONG.	80 °	<u>32'</u> W.	TIME	1	5
DEPTH_	37	WIND	2,	<u>32</u> BA	AR	AIR	TEMP:	dry_	<u></u> °C,	wet_	-	°C
HUMIDIT	[Y9	6 WEA	THER C	<u>l</u> CLOU	JDS:typ	pe	, amt	SEA	A:dir	<u> </u>	amt.	2
SWELL: d	lir		amt	_ VIS	- WA	TER T	RANS					

DEPTH	Т	S	σ _t	0 ₂
(m)	(°С)	(‰)		(ml/1)
1	18.14	36.18	26.16	5.45
10	18.15	36.22	26.19	5.41
20	18.20	36.20	26.16	5.45
30	18.15	36.20	26.17	5.45

OBSERVED

	INTERPOLATED AND CALCULATED									
ſ	DEPTH	Т	S	σ _t	02					
l	(m)	(°C)	(‰)		(ml/l)					
	0	18.14	36.18	26.16	5.45					
	10	18.15	36.22	26.19	5.41					
	20	18.20	36.20	26.16	5.45					
	30	18.15	36.20	26.17	5.45					

		OBSEF	RVED		
DEPTH (m)	TOTAL P (µg at/1)	PO _μ -P (μg at/1)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)
1 10 20 30	1.3 0.4 3.0 0.3	0.1 0.1 <0.1 0.1	0.5 0.0 0.0 0.0	0.5 0.7 0.9 0.5	0.9 1.0 0.9

•

,

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	РО _ц -Р (µg at/l)	$\frac{NO_3 - NO_2}{(\mu g at/1)}$	ARABINOSE (mg/l)	TYROS INE (mg/l)
0 10 20	1.3 0.4 3.0	0.1 0.1 <0.1	0.5 0.0 0.0	0.5 0.7 0.9	0.9 1.0
30	0.3	0.1	0.0	0.5	0.9

DATE	Feb.	22,	<u>1953</u>	LAT.	<u>31° 11</u>	<u>'</u> N.	LONG	800	<u>49'</u> W.	TIME _	18
DEPTH_	27	WIND	<u> </u>	<u>32</u> B.	AR	AIR	TEMP:	dry_	<u> </u>	wet	°C
HUMIDI	TY	% WEA	THER C	CLO	UDS:type	;	, amt	_ SEA	A:dir	,aı	nt. <u>2</u>
SWELL:	dir	,	amt	VIS.	- WATE	RT	RANS				

OBSERVED									
DEPTH	Т	S	۳ _t	0 ₂					
(m)	(°С)	(‰)		(ml/l)					
1	15.61	35.97	26.60	5.61					
10	15.62	36 00	26.62	5.60					
20	15.65	36.00	26.61	5.61					

.

INTERPOLATED	AND	CALCUI	LATED
--------------	-----	--------	-------

DEPTH	Т	S	۳ _t	0 ₂
(m)	(°С)	(‰)		(ml/l)
0	15.61	35.97	26.60	5.61
10	15.62	36.00	26.62	5.60
20	15.65	36.00	26.61	5.61

DEPTH (m)	TOTAL P (µg at/l)	^{РО} 4-Р (µg at/1)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/1)	TYROSINE (mg/l)						
1 10	1.9 1.6	0.0 <0.1	< 0.5 2.0	-	1.3 0.8						
20	-	0.2	0.5	-	0.3						

OBSERVED

INTERPOLATED $NO_3 - NO_2$ (µg at/1) РО_ц-Р (µg at/l) DEPTH TOTAL P ARABINOSE TYROS INE (m) ($\mu g at/l$) (mg/l)(mg/l)< 0.5 0 1.9 1.6 0.0 1.3 0.8 -<0.1 2.0 10 -0.2 20 0.5 0.3 _ _

DATE	Feb.	22, 3	<u>1953 </u>	LAT.	31°	<u>00'</u> N.	LONG.	<u>81</u> °	<u>09'</u> W.	TIME _	22
DEPTH_	13	WIND	<u> </u>	<u>36</u> BA	R	_ AIR	TEMP:	dry	<u></u> °C,	wet	°C
HUMIDI	ry9	6 WEA	THER	CLOU	DS:ty	rpe <u>-</u>	, amt	SEA	:dir	<u> </u>	nt. <u>2</u>
SWELL:	iir		amt. <u>-</u>	_ VIS	<u> </u>	TER T	RANS				

OBSERVED									
DEPTH	Т	S	حt	0 ₂					
(m)	(°С)	(‰)		(ml/1)					
1	14.80	34.56	25.70	5•78					
10	14.83	24.54	25.67	5•78					

INTERPOLATED	AND (CALCULATED	
			-

DEPTH	Т	S	حt	02
(m)	(°С)	(‰)		(ml/l)
0	14.80	34.56	25.70	5.78
10	14.83	34.54	25.67	5.78

OBSERVED									
DEPTH (m)	TOTAL P (µg at/l)	РО ₄ -Р (µg at/l)	$NO_3 - NO_2$ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)				
1 10	0.9 0.4	0.3 0.3	0.5	-	0.7				

OBSERVED

	INTERPOLATED										
DEPTH	TOTAL P	РО ₄ -Р	NO3-NO2	ARABINOSE	TYROS INE						
(m)	($\mu g at/l$)	($\mu g at/l$)	$(\mu g at/1)$	(mg/l)	(mg/l)						
_											
0	0.9	0.3	0.5	-	0.7						
10	0.4	0.3	0.5	_	1.8						

79

DATE	Feb.	27,	1953	LAT.	31°	20'N.	LONG	80.	<u>52'</u> W.	TIME _	01
DEPTH_	16	WIND	,	<u>07</u> I	BAR	AIR	TEMP:	dry	°C,	wet	°C
HUMIDI'	ry9	6 WEA	THER C	<u>1</u> CL(DUDS:ty	vpe	, amt	SEA	dir	<u> </u> ,ar	nt. <u>1</u>
SWELL:	dir	<u> </u>	amt	VIS.	. <u> </u>	TER T	RANS	-			

OBSERVED										
DEPTH	Т	S	حر	0 ₂						
(m)	(°С)	(‰)		(ml/l)						
1	14.20	34.76	25.98	6.13						
10	14.11	35.01	26.19	5.73						

INTERPOLATED	AND	CALCULATED
--------------	-----	------------

DEPTH	Т	S	ኖ ቲ	0 ₂
(m)	(°С)	(‰)		(ml/l)
0	14.20	34.76	25.98	6.13
10	14.11	35.01	26.19	5.73

OBSERVED											
DEPTH (m)	TOTAL P (µg at/l)	РО ₄ -Р (µg at/l)	$\frac{\mathrm{NO}_{3}-\mathrm{NO}_{2}}{(\mathrm{\mu g} \mathrm{at}/\mathrm{1})}$	ARABINOSE (mg/l)	TYROSINE (mg/l)						
1 10	-	0.1 0.1	0.0 <0.5	-	0.8						

INTERPOLATED РО₄-Р (µg at/l) DEPTH TOTAL P $\frac{NO_3 - NO_2}{(\mu g at/1)}$ ARABINOSE TYROS INE (m) ($\mu g at/1$) (mg/l)(mg/l)0.0 <0.5 0 0.1 --0.8 10 0.1

DATE	Feb.	27,	1953	LAT	<u>31°</u>	<u>42'</u> N.	LONG.	<u>80°</u>	<u>36'</u> W.	TIME	05	
DEPTH_	16	WIND	2,	25_ BA	R	_ AIR	TEMP:	dry <u> </u>	°C,	wet	°C	
HUMIDI	ГҮ <u>-</u> 9	6 WEA	THER	- CLOU	DS:ty	pe	, amt	SEA	dir	,am	ıt. <u>1</u>	
SWELL:	dir	,	amt. <u>-</u>	_ VIS	WA	TER T	RANS					

OBSERVED										
DEP TH	т	S	σ _t	0 ₂						
(m)	(°С)	(‰)		(ml/l)						
1	13.75	35•25	26.45	5.73						
10	13.70	35•25	26.46	5.69						

DEPTH	Т	S	σ _t	02
(m)	(°С)	(‰)		(ml/l)
0	13.75	35.25	26.45	5.73
10	13.70	35.25	26.46	5.69

•

DEPTH (m)	TOTAL P (µg at/1)	^{РО} ц-Р (µg at/1)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)						
1 10	-	0.1	0.5	1.9	0.1						

OBSERVED

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	PO ₄ -P (µg at/l)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)
		0.1	ė r	1.0	0.7
0	-	0.1	0.5	1.9	0.1
10	-	0.0	0.0	-	-

DATE	Feb.	27, 1	.953	LAT.	310	<u>36'</u> N.	LONG.	<u> 80 ° </u>	<u>10'</u> W.	TIME _	07	-
DEPTH	32	WIND_	<u>4</u> ,_	<u>25</u> BA	AR	_ AIR	TEMP:	dry	<u></u> °С,	wet	°(2
HUMIDIT	Y9	6 WEAT	HER_02	CLOU	JDS:ty	pe <u>-</u>	, amt	_ SEA	dir	<u> </u>	.mt	1
SWELL: d	lir	,a	mt. <u>-</u>	VIS.	WA	TER T	RANS					

		OBSERVED		
DEPTH	т	S	حر	0 ₂
(m)	(°С)	(‰)		(ml/1)
1	16.27	36.15	26.59	5.37
10	16.21	36.17	26.62	5.37
20	16.24	36.17	26.61	5.51
30	16.23	36.18	26.62	5.47

¢

INTERPOLATED AN	ND CALCULATED
-----------------	---------------

DEPTH	Т	S	۳ _t	02
(m)	(°С)	(‰)		(ml/1)
0	16.27	36.15	26.59	5.37
10	16.21	36.17	26.62	5.37
30	16.24	36.17 36.18	26.61 26.62	5.51 5.47

	OFDERVED							
DH (EP TH (m)	TOTAL P (µg at/l)	PO ₄ -P (μg at/1)	$\frac{\mathrm{NO}_{3}-\mathrm{NO}_{2}}{(\mu \mathrm{g} \mathrm{at}/1)}$	ARABINOSE (mg/l)	TYROSINE (mg/l)		
	1 10 20 30	- - -	0.1 0.2 0.1 0.1	0.0 0.0 0.0 1.5	4.2	1.3 0.3 0.1 0.0		

OBSERVED

	INTERPOLATED								
Γ	DEPTH	TOTAL P $(\mu q, at/1)$	$PO_{\mu} - P$	$NO_3 - NO_2$	ARABINOSE	TYROSINE			
L	(111)	(µg a0/1)	(μg αυ/τ)	(µg 20/1)	(116/1)	(mg/±/			
	0	-	0.1	0.0	-	1.3			
	10	-	0.2	0.0	-	0.3			
	20	-	0.1	0.0	4.2	0.1			
	30	-	0.1	1.5	-	0.0			

DATE Feb. 27, 1953	LAT. <u>31° 31'</u> N.	LONG. $79^{\circ} 52'$ W.	TIME <u>10</u>
DEPTH 45 WIND 4,	<u>25</u> BAR AIR	TEMP: dry - °C,	wet°C
HUMIDITY _ % WEATHER (<u>)</u> CLOUDS:type	,amt SEA:dir	,amt2_
SWELL:dir,amt	VISWATER T	RANS	

OBSERVED								
DEP T H (m)	т (°С)	S (‰)	σ _t	0 ₂ (ml/1)				
1 10 20 30 40	19.40** 19.21 18.95 17.93 17.93	36.36 36.18 36.36 36.13 36.11	25.97 25.89 26.09 26.17 26.16	5.17 5.13 4.57 4.55				

** From BT

INTERPOLATED AND CALCULATED

DEPTH	Т	S	σ _t	0 ₂
(m)	(°С)	(‰)		(ml/l)
0 10 20 30	19.40 19.21 18.95 17.93	36.36 36.18 36.36 36.13	25.97 25.89 26.09 26.17	5.17 5.13 4.57

	UBSERVED							
DEPTH	TOTAL P	PO _{l4} -P	NO3-NO2	ARABINOSE	TYROSINE			
(m)	(µg at/l)	(µg at/l)	$(\mu g at/1)$	(mg/l)	(mg/l)			
l	-	<0.1	<0.5	-	0.0			
10	-	0.2	-	-	0.2			
20	-	0.2	1.0	-	0.4			
30	-	0.4	3.0	-	0.2			
40	-	0.3	1.0	1.8	0.0			

1

0.00000

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	PO ₄ -P (µg at/l)	$\frac{NO_3 - NO_2}{(\mu g at/1)}$	ARABINOSE (mg/l)	TYROSINE (mg/l)
0	-	<0.1	< 0.5	-	0.0
10	-	0.2	0.5	-	0.2
20	-	0.2	1.0	-	0.4
30	-	0.4	3.0	1.8	0.2

DATE	Feb.	27.	1953	LAT.	31°	<u>32'</u> N.	LONG.	79 °	<u>28'</u> W.	TIME_	13	-
DEPTH	512	WIND	_7_,	<u>34</u> B.	AR	AIF	TEMP:	dry	<u></u> °C,	wet	°C	1 7
HUMIDI	[Y9	6 WEA	THER 0	2_ CLO	UDS:t	ype <u>-</u>	,amt	SEA	dir	<u>-</u> ,a	mt. <u>-</u>	
SWELL: d	lir	,	amt. <u>-</u>	_ VIS.	W.	ATER 1	RANS					

с

OBSERVED								
DEPTH (m)	T (°C)	S (‰)	حر	0 ₂ (ml/l)				
1 7 22 36 72 143 216 290 367	24.10** 23.95 23.92 22.44 19.86 16.92 14.00 11.12 8.50	36.20 36.22 36.24 36.27 36.38 36.29 35.82 35.82 35.37 35.08	24.54 24.60 24.62 25.08 25.87 26.54 26.84 27.06 27.28	4.88 4.69 4.73 4.73 4.13 3.56 3.24 3.12 3.00				

** From BT

INTERPOLATED AND CALCULATED

DEPTH	Т	S	σ _t	02
(m)	(°С)	(‰)		(ml/1)
0 10 20 30 50 75 100 150 200 250 300	24.10 23.94 23.93 23.04 21.35 19.73 18.69 16.64 14.63 12.63 10.76	36.20 36.22 36.24 36.26 36.33 36.38 36.35 36.24 35.92 35.59 35.59	24.54 24.60 24.62 25.43 25.90 26.15 26.57 26.78 26.94 27.09	4.88 4.73 4.73 4.73 4.51 4.12 3.87 3.52 3.28 3.18 3.09

DEPTH TO (m) (µg	TAL P 1 at/l) (μ	PO ₄ -P g at/1) (NO ₃ -NO ₂ µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)
1 7 22 36 72 143 216 290 367	-	<0.1 0.2 0.2 0.3 0.1 0.4 0.6 0.8 1.1	0.5 0.0 2.5 4.5 15.0 14.0 18.5	2.3 1.4 - 3.5 - 3.6	0.3 0.9 0.0 0.1 - 0.7 1.1 0.1 0.5

OBSERVED

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	PO ₄ -P (µg at/l)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)
0				0.0	0.2
10	-	$\overline{)}$	-	∠•) 15	0.3
10	-	0.2		T•2	0.0
20	-	0.2	<0.5	T.9	0.2
30	-	0.3	0.5	2.2	<0.1
50	-	0.2	1.5	2.8	0.2
75	-	0.1	2.5	3.5	0.3
100	-	0.2	3.5	3.5	0.5
150	-	0.4	5.5	3.5	0.8
200	-	0.6	12.5	3.6	1.0
250	-	0.7	14.5	3.6	0.6
300	-	0.8	14.5	3.6	0.2

DATE	Feb.	27.	1953	LAT.	31° 2'	<u>7'</u> N.	LONG	78 °	<u>34'</u> W.	TIME.		
DEPTH	585	WIND_	4,	<u>27</u> BA	R	AIR	TEMP:	dry	<u> </u> °C,	wet_	<u>-</u> °C	
HUMIDIT	Y <u>-</u> %	WEAT	<u> </u>	_ CLOU	DS:typ	e	, amt	SEA	dir	<u> </u> ,e	mt. <u>3</u>	_
SWELL:d	ir	<u> </u>	umt	VIS.	WAT	TER TI	RANS					

		OBSERVED		
DEP T H	т	S	حt	0 ₂
(m)	(°с)	(‰)		(ml/l)
1	24.47	36.18	24.41	4.81
10	24.46	36.13	24.38	4.65
29	24.46	36.11	24.36	4.61
49	24.43	36.13	24.39	3.72
98	22.83	36.73	25.31	4.13
195	19.46	36.67	26.20	4.05
293	14.01*	36.51	27.37	4.17
391	16.73	36.35	26.63	4.13
488	15.24	35.71*	26.48	3.72

* Value questionable

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					the second s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DEPTH (m)	Т (°С)	S (‰)	σ _t	02 (ml/l)
50 24.43 36.16 24.41 3.73 75 23.65 36.48 24.88 3.98 100 22.71 36.72 25.34 4.13 00 22.71 36.72 25.34 4.13	0 10 20 30 50 75 100	24.47 24.46 24.46 24.46 24.43 23.65 22.71	36.18 36.13 36.12 36.12 36.16 36.48 36.72	24.41 24.36 24.37 24.37 24.41 24.88 25.34 25.34	4.81 4.65 4.63 4.55 3.73 3.98 4.13

INTERPOLATED AND CALCULATED

		000011			
DEPTH	TOTAL P $(ug at / 1)$	$PO_{4} - P$	$NO_3 - NO_2$	ARABINOSE	TYROSINE
(111)	(µg at/1)	(µg at/1)	(µg at/1)	(mg/1)	(mg/L)
1 10 29 49 98 195 293 391		0.1 0.1 0.1 0.1 0.4 0.5 0.2 0.5	1.5 0.0 0.0 2.5 2.5 -	8.5 1.0 0.0 - 0.3 1.3	0.0 0.2 0.8 0.3 1.7 0.5 0.9
488	-	0.6	2.5	1.1	0.4

OBSERVED

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	PO ₄ -P (µg at/l)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)
0	-	0.1	1.5	8.5	0.0
10	-	0.1	0.0	1.0	0.2
20	-	0.1	0.0	0.5	0.5
30	-	0.1	0.0	0.0	0.8
50	-	0.1	0.0	0.1	• 0.3
75	-	0.3	1.5	0.2	0.9
100	-	0.4	2.5	0.3	1.5
150	-	0.4	2.5	0.6	1.0
200	-	0.5	2.5	0.8	0.5
250	-	0.3	5.0	1.0	0.7
300	-	0.2	7.5	1.3	0.9
400	-	0.5	12.5	1.2	0.6

DATE Feb. 27, 1953	LAT. <u>31°38'</u> N.	LONG. <u>78°45'</u> W.	TIME <u>23</u>
DEPTH 475 WIND 4,	<u>27</u> BAR AI	R TEMP: dry°C,	wet°C
HUMIDITY% WEATHER	02_CLOUDS:type	,amt SEA:dir	,amt2
SWELL:dir,amt	VIS WATER	TRANS	

		OBSERVED		
DEPTH	T	S	۳ _t	0 ₂
(m)	(°C)	(‰)		(ml/1)
1	24.63	35.93	24.18	4.50
9	24.62	35.84	24.11	4.25
17	24.63	36.17	24.36	4.50
43	24.49	36.29	24.49	3.68
65	24.08	36.64	24.88	3.58
87*	24.60	36.18	24.37	3.84
174	19.98	36.73	26.10	3.68
261	18.25	36.51	26.38	4.39
348	16.97	36.44	26.64	4.07

4

* Questionable

DEPTH (m)	T (°C)	S (‰)	σ _t	0 ₂ (ml/1)
0 10 20 30 - 50 75 100 150 200 250 300	24.63 24.62 24.63 24.61 24.36 23.88 23.20 21.30 19.42 18.44 17.62	35.93 35.89 36.17 36.19 36.49 36.40 36.40 36.31 36.66 36.65 36.53 36.46	24.18 24.15 24.36 24.38 24.68 24.68 24.76 24.89 25.69 26.19 26.35 26.50	4.50 4.29 4.37 3.99 3.61 3.59 3.60 3.64 3.86 4.28 4.28

INTERPOLATED AND CALCULATED

DEPTH TOTAL P PO_{4} -P NO_{3} -NO ₂ ARAE (m) (ug at/l) (ug at/l) (ug at/l) (m	INOSE TYROSINE
	\lg/l (mg/l)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

ODCEDITED

INTERPOLATED

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.6 .6 .8 .0 .1 .5 .4

93

DATE_	Feb.	28, 1	<u>1953</u>	_ LAT.		<u>47'</u>	N. LOI	NG	79	16	<u>-</u> W.	TIME	_05	
DEPTH_	154	WIND	7	, 22	BAR	A	IR TEI	MP:	dry_	-	°C,	wet_	-	°C
HUMIDI	[TY	% WEA	THER	<u>02</u> CI	OUDS:	type_	<u> </u> ,am	t	_ SE	A:di	.r	<u> </u>	amt.	3
SWELL:	dir	,	amt	- VIS	·	WATER	TRAN	s						

		OBSERVED		
DEPTH (m)	Т (°С)	S (‰)	حر	O_2 (ml/1)
1 10 20 29 49 74 99	17.16 17.09 17.14 17.11 17.11 15.61 15.92*	36.22 36.22 36.00 36.22 36.22 36.09 36.27	26.43 26.45 26.27 26.44 26.44 26.69 26.76	4.95 5.36 5.24 5.19 4.09 3.68

* Value questionable

Г

INTERPOLATED A	AND CALCULATED
----------------	----------------

DEPTH	Т	S	σ _t	0 ₂
(m)	(°С)	(‰)		(ml/1)
0 10 20 30 50 75	17.16 17.09 17.14 17.11 17.02 15.59	36.22 36.22 36.00 36.22 36.21 36.09	26.43 26.45 26.27 26.44 26.46 26.70	4.95 5.36 5.24 5.13 4.06

DEPTH	TOTAL P	PO4-P	NO3-NO2	ARABINOSE	TYROSINE					
(m)	(µg at/1)	$(\mu g at/1)$	(µg at/1)	(mg/l)	(mg/l)					
1	0.6	-	-	-	-					
10	0.5	-	-	-	-					
20	-	-	-	-	-					
29	0.4	-	-	-	-					
49	-	-	-	-	-					
74	0.5	-	- '	-	-					
99	0.6	-	-	-	-					

OBSERVED

.

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	PO ₄ -P (µg at/l)	$\frac{NO_3 - NO_2}{(\mu g at/1)}$	ARABINOSE (mg/l)	TYROSINE (mg/l)
0	0.6	_	_	-	_
10	0.5	-	-	-	-
20	0.5	-	-	-	-
30	0.4	-	-	-	-
50	0.5	-	-	-	-
75	0.5	-	-	-	-
100	0.6	-	-	-	-

DATE	Feb.	28,	1953	_ LAT	. <u>32</u> °	<u>12'</u> N.	LONG.	<u>79</u> °	<u>32'</u> W.	TIME_	09
DEPTH_	36	WIN	p_7_	, 22	BAR	AII	R TEMP:	dry	<u> </u> °C,	wet	°C
HUMIDI	TY	% WE	ATHER	<u>02</u> C1	LOUDS:t	ype	,amt	SEA	A:dir	<u> </u>	mt. <u>4</u>
SWELL:	dir		, amt	VIS	5. <u> </u> W	ATER	TRANS				

		OBSERVED		
DEPTH	Т	S	۳ _t	0 ₂
(m)	(°С)	(‰)		(ml/1)
1	16.55	36.29	26.63	5.32
10	16.50	36.27	26.62	5.32
20	16.54	36.22	26.58	5.32

DEPTH	DEPTH T		حt	0 ₂	
_(m)	-(m) (°C)			(ml/1)	
0	16.55	36.29	26.63	5.32	
10	16.50	36.27	26.62	5.32	

DEPTH (m)	TOTAL P (µg at/l)	PO ₄ -P (µg at/1)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)						
1 10	0.3	0.2 0.1	0.0	2.6	1.3 0.2						
20	0.6	0.2	8.0	_	0.6						

OBSERVED

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	РО _Ц -Р (µg at/l)	$\frac{NO_3 - NO_2}{(\mu g at/1)}$	ARABINOSE (mg/1)	TYROSINE (mg/l)
0	0.3	0.2	0.0	2.6	1.3
20	0.6	0.2	8.0	-	0.2

DATE <u>Feb. 28, 1953</u> I	AT. <u>32° 25'</u> N.	LONG. <u>79° 50'</u> W.	TIME <u>13</u>
DEPTH <u>16</u> WIND <u>7</u> ,2	2_ BAR AIR	TEMP: dry°C,	wet°C
HUMIDITY - % WEATHER 02	CLOUDS:type,	,amt. <u>-</u> SEA:dir	<u></u> ,amt2
SWELL:dir,amt	VIS WATER TH	RANS	

OBSERVED				
DEPTH	Т	S	σ _t	0 ₂
(m)	(°С)	(‰)		(ml/1)
1	13.39	34•92	26.27	6.01
10	13.40	34•99	26.32	5.98

INTERPOLATED	AND	CALCU	LATED
--------------	-----	-------	-------

DEPTH	T	S	حt	0 ₂
(m)	(°C)	(‰)		(ml/l)
0	13.39	·34.92	26.27	6.01
10	13.40	34.99	26.32	5.98

OBSERVED

DEPTH	TOTAL P	Ρ0 ₄ -Ρ	NO ₃ -NO ₂	ARABINOSE (mg/l)	TYROSINE
(m)	(µg at/l)	(μg at/1)	(µg at/1)		(mg/l)
1	0.3	0.2	0.0	0.6	-
10	0.5	0.1		0.3	0.9

INTERPOLATED DEPTH TOTAL P РО₄-Р (µg at/1) $NO_3 - NO_2$ (µg at/1) ARABINOSE TYROS INE (m) ($\mu g at/1$) (mg/l)(mg/l)0 10 0.3 0.5 0.2 0.1 0.6 0.3 0.0 0.9 _

DATE <u>Feb. 28. 1953</u>	LAT. <u>32° 40'</u> N.	LONG. <u>79°32'</u> W.	TIME <u>16</u>
DEPTH 15 WIND 4,	<u>34</u> BAR AIR	TEMP: dry°C,	wet°C
HUMIDITY - % WEATHER (<u>)2</u> CLOUDS:type -	,amt. <u>-</u> SEA:dir	,amt. <u>l</u>
SWELL:dir. <u>-</u> ,amt. <u>-</u>	VIS WATER T	RANS	

OBSERVED					
DEPTH	Т	S	۳ _t	0 ₂	
(m)	(°С)	(‰)		(ml/1)	
1	13.50**	33.64	25.26	5.47	
10	13.48	34.69	26.07	5.91	

** From BT

INTERPOLATED AND CALCULATED

DEPTH	Т	S	σ _t	0 ₂
(m)	(°С)	(‰)		(ml/1)
0	13.50	33.64	25.26	5.47
10	13.48	34.69	26.07	5.91

OBSERVED

DEPTH (m)	TOTAL P (µg at/l)	РО ₄ -Р (µg at/l)	$\frac{\mathrm{NO}_{3}-\mathrm{NO}_{2}}{(\mathrm{\mu g} \mathrm{at}/1)}$	ARABINOSE (mg/l)	$\frac{\text{TYROSINE}}{(\text{mg}/1)}$
1 10	0.7	0.4	0.5	- -	0.8

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	PO ₄ -P (µg at/l)	$NO_3 - NO_2$ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)
0	0.7	0.4	0.5	-	0.8
10	-	0.0	0.0	-	0.2

DATE Feb. 28, 1953	_ LAT. <u>32° 51'</u> N.	LONG. <u>79° 18'</u> W.	TIME <u>18</u>
DEPTH <u>9</u> WIND 2	, <u>04</u> BAR AIF	TEMP: dry°C,	wet°C
HUMIDITY% WEATHER_	02 CLOUDS:type -	,amt SEA:dir	,amt1
SWELL:dir,amt	VIS WATER 7	TRANS	

OBSERVED				
DEPTH	T	S	۳ _t	0 ₂
(m)	(°C)	(‰)		(ml/l)
1	13.30	33.82	25.44	6.03
10	13.16	34.22	25.78	5.91

INTERPOLATED AND CALCULATED

DEPTH	Т	S	۳ _t	0 ₂	
(m)	(°С)	(‰)		(ml/1)	
0	13.30	33.82	25.44	6.03	
10	13.16	34.22	25.78	5.91	
		OBSEF	(VED		
--------------	----------------------	---------------------------------	---	---------------------	--------------------
DEPTH (m)	TOTAL P (µg at/l)	PO ₄ -P (µg at/l)	$\frac{\mathrm{NO}_{3}-\mathrm{NO}_{2}}{(\mu \mathrm{g} \mathrm{at}/\mathrm{l})}$	ARABINOSE (mg/l)	TYROSINE (mg/l)
1	0.3	0.3	0.0	-	0.3
10	0.4	0.0	0.0	-	0.3

.

۹,

INTERPOLATED РО₄-Р (µg at/1) $(\mu g at/1)$ TOTAL P ARABINOSE DEPTH TYROS INE $(\mu g at/l)$ (m) (mg/l)(mg/1)0.0 0.3 0.3 0.3 0.4 0.3 0.0 0 10 -

DATE	Feb.	28,	1953	LAT.	<u>32</u> °	<u>40'</u> N	. LONG.	79 °	<u>00'</u> W.	TIME	21	_
DEPTH_	24	WINI) 2	, 04	BAR	AI	R TEMP:	dry	<u> </u> °C,	wet	<u> </u>	С
HUMIDI	TY -	% WEA	THER	<u>03</u> CI	LOUDS:t	ype	,amt	SE/	A:dir	<u>-</u> ,a	mt	1_
SWELL:	dir	,	amt.	- VIS	. <u> </u>	ATER	TRANS	-				

		OBSERVED		
DEPTH	T	S	σ _t	0 ₂
(m)	(°C)	(‰)		(ml/l)
1	16.80**	36.27	26.55	5.71
10	16.74	36.26	26.56	5.66
20	16.74	36.26	26.56	5.60

** From BT

INTERPOLATED AND CALCULATED

DEPTH	T	S	σ _t	0 ₂
(m)	(°C)	(‰)		(ml/l)
0	16.80	36.27	26.55	5.71
10	16.74	36.26	26.56	5.66
20	16.74	36.26	26.56	5.60

		OBSEF	VED		
DEP T H (m)	TOTAL P $(\mu g \text{ at/l})$	^{РО} ц-Р (µg at/1)	$NO_3 - NO_2$ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)
1 10 20	0.5 0.5 0.5	0.2 0.1 0.2	<0.5 0.0 <0.5	4.2	0.4 0.1 0.2

-

<u>a</u>_

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	PO ₄ -P (µg at/l)	NO3-NO2 (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)
0 10	0.5	0.2	< 0.5	- 4.2	0.4 0.1
20	0.5	0.2	<0.5	-	0.2

DATE	March	1 1, 1 9	53 1	LAT	<u>32°</u> 24	<u>'</u> N.	LONG.	78°	<u>43'</u> W.	TIME_	01	
DEPTH_	219	WIND_	4,	<u>04</u> BA	R	AIR	TEMP:	dry	<u> </u> °C,	wet	°C	
HUMIDI	TY	% WEAT	TER_03	_ CLOU	DS:typ	e <u> </u> ,	amt	_ SEA	dir	<u>-</u> ,a	mt. <u>l</u>	_
SWELL:	dir	, ar	nt. <u>-</u>	VIS	- WAT	ER TI	RANS					

		OBSERVED		
DEPTH	Т	S	σ _t	0 ₂
(m)	(°С)	(‰)		(ml/1)
1	19.71	36.22	25.79	5.46
10	19.61	36.20	25.80	5.34
20	19.66	36.18	25.77	5.38
30	18.64	36.20	26.05	4.97
50	16.88	36.15	26.44	4.23
75	13.62	35.81	26.91	3.37
100	11.04*	35.62	27.27	3.28
200	10.69	35.30	27.08	3.12

* Value questionable

INTERPOLATED AND CALCULATED

DEPTH (m)	T (°C)	S (‰)	σ _t	0 ₂ (ml/l)
0	19.71	36.22	25.19	5.46
10	19.61	36.20	25.80	5.34
20	19.66	36.18	25.77	5.38
30	18.64	36.20	26.05	4.97
50	16.88	36.15	26.44	4.23
75	13.62	35.81	26.91	3.37
100	12.25	35.62	27.04	3.28
150	11.18	35.37	27.05	3.16
200	10.69	35.30	27.08	3.12

		ODOLL	14111		
DEPTH	TOTAL P	PO ₁₄ -P	NO3-NO2	ARABINOSE	TYROSINE
(m)	$(\mu g at/1)$	$(\mu g at/1)$	$(\mu g at/1)$	(mg/l)	(mg/l)
1	0.2	<0.1	0.5	-	0.6
10	0.5	0.0	< 0.5	-	0.4
20	0.3	0.2	2.0	3.3	
30	-	0.2	<0.5	7.5	0.4
50	0.6	0.6	8.5		1.3
75	-	0.9	9.5	1.7	0.4
100	-	1.0	5.0	_	1.1
200	-	1.5	7.0	-	0.2
	DEPTH (m) 10 20 30 50 75 100 200	DEPTH TOTAL P (m) (μg at/1) 1 0.2 10 0.5 20 0.3 30 - 50 0.6 75 - 100 - 200 -	$\begin{array}{c ccccccc} \hline DEPTH & TOTAL P & PO_{4}-P \\ \hline (m) & (\mu g at/1) & (\mu g at/1) \\ \hline 1 & 0.2 & \swarrow 0.1 \\ 10 & 0.5 & 0.0 \\ 20 & 0.3 & 0.2 \\ 30 & - & 0.2 \\ 30 & - & 0.2 \\ 50 & 0.6 & 0.6 \\ 75 & - & 0.9 \\ 100 & - & 1.0 \\ 200 & - & 1.5 \\ \end{array}$	$\begin{array}{c cccc} \hline DEPTH & TOTAL P & PO_{l_4}-P & NO_3-NO_2 \\ \hline (m) & (\mu g at/1) & (\mu g at/1) & (\mu g at/1) \\ \hline 1 & 0.2 & <0.1 & 0.5 \\ 10 & 0.5 & 0.0 & <0.5 \\ 20 & 0.3 & 0.2 & 2.0 \\ 30 & - & 0.2 & <0.5 \\ 50 & 0.6 & 0.6 & 8.5 \\ 75 & - & 0.9 & 9.5 \\ 100 & - & 1.0 & 5.0 \\ 200 & - & 1.5 & 7.0 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Q.

•

OBSERVED

INTERPOLATED

DEPTH	TOTAL P	PO ₄ -P	$\frac{NO_3 - NO_2}{(\mu g at/1)}$	ARABINOSE	TYROSINE
(m)	(µg at/l)	(µg at/l)		(mg/l)	(mg/1)
0 10 20 30 50 75 100 150 200	0.2 0.5 0.3 0.4 0.6 - -	<0.1 0.0 0.2 0.2 0.6 0.9 1.0 1.3 1.5	0.5 <0.5 2.0 <0.5 8.5 9.5 5.0 6.0 7.0	3.3 7.5 4.7 1.7 -	0.6 0.4 0.4 1.3 0.4 1.1 0.6 0.2

DATE <u>March 1, 1953</u>	LAT. <u>32° 11'</u> N.	LONG. $78^{\circ} 25^{\circ} W$.	TIME
DEPTH 430 WIND 4	, <u>04</u> BAR AIR	TEMP: dry°C,	wet°C
HUMIDITY% WEATHER_	02 CLOUDS:type -	,amt. <u>-</u> SEA:dir	,amt2
SWELL:dir,amt	- VIS WATER T	RANS	

OBSERVED						
DEPTH	т	S	۳ _t	0 ₂		
(m)	(°С)	(‰)		(ml/l)		
1	23.64	36.27	24.73	4.80		
7	23.61	36.24	24.71	4.76		
14	23.49	36.22	24.74	4.93		
36	19.87	36.00	25.58	4.60		
54	18.08	35.95	26.00	4.21		
71	17.89*	36.11*	26.17	4.79*		
143	18.59*	35.88	25.82	3.61		
216	11.47	35.44	27.05	2.69		
288	8.39	35.16	27.36	3.12		

* Value questionable

INTERPOLATED AND CALCULATED

DEPTH (m)	Т (°С)	S (‰)	۳ _t	0 ₂ (ml/1)
0	23.64	36.27	24.73	4.80
10	23.59	36.23	24.71	4.85
20	22.35	36.14	25.00	4.86
30	20.70	36.04	25.39	4.71
50	18.34	35.95	25.93	4.28
75	17.81	35.95	26.06	4.05
100	17.30	35.94	26.18	3.90
150	15.23	35.83	26.58	3.46
200	12.45	35.52	26.92	2.77
250	9.78	35.29	27.24	2.73

DEPTH (m)	TOTAL P (µg at/l)	РО _Ц -Р (µg at/l)	$\frac{NO_3 - NO_2}{(\mu g at/1)}$	ARABINOSE (mg/l)	TYROSINE (mg/l)	
			•			
l	0.3	0.2	0.5	-	-	
7	0.3	0.1	1.0	-	1.3	
14	0.4	0.1	1.5	1.8	0.1	
36	-	0.4	1.5	1.9	1.1	
54	0.5	0.4	3.5	-	-	
71	0.6	0.4	2.0	-	-	
143	2.3	0.9	16.0	-	0.6	
216	2.5	1.1	5.0	2.7	0.1	
288	2.9	1.4	5.0	-	0.6	

OBSERVED

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	РО ₄ -Р (µg at/l)	$\frac{NO_3 - NO_2}{(\mu g at/1)}$	ARABINOSE (mg/l)	TYROSINE (mg/1)
0 10 20 30 50 75 100	0.3 0.3 0.4 0.3 0.4 0.7 1.3 2.2	0.2 0.1 0.2 0.3 0.4 0.4 0.4 0.6	0.5 1.0 1.5 1.5 3.5 2.0 7.0	1.8 1.9 -	0.7 0.3 0.8 1.0 0.9 0.8 0.6
200 250	2.5 2.7	1.1 1.2	7.5	2.6	0.2

DATE <u>March 1, 1953</u>	LAT. <u>31° 57′</u> N.	LONG. 78° 09'W.	TIME <u>07</u>
DEPTH 677 WIND 2,	<u>11</u> BAR AIR	TEMP: dry°C,	wet°C
HUMIDITY - % WEATHER O	CLOUDS:type,	amt SEA:dir	,amt1
SWELL:dir,amt	_ VIS WATER TH	RANS	

opant

		OBSERVED		
DEPTH	т	S	۳ _t	0 ₂
(m)	(°С)	(‰)		(ml/l)
1	24.20**	36.22	24.52	4.60
9	24.14	36.17	24.50	4.43
45	24.19	36.18	24.50	4.56
91	23.86	36.44	24.79	3.80
181	19.21	36.73	26.31	3.56
271	16.20	36.27	26.69	3.45
362	13.96	35.81	26.84	3.10
452	12.09	35.57	27.03	2.96
543	10.12	35.32	27.20	2.83

** From BT

INTERPOLA	TED	AND	CAL	CUL	ATED
-----------	-----	-----	-----	-----	------

DEPTH (m)	Т (°С)	S (‰)	ም _ቲ	0 ₂ (ml/1)
0	24.20	36.22	24.52	4.60
10	24.15	36.17	24.50	4.44
20	24.18	36.17	24.49	4.53
30	24.19	36.18	24.50	4.58
50	24.15	36.21	24.53	4.45
75	24.01	36.35	24.68	4.01
100	23.32	36.50	25.00	3.77
150	20.63	36.71	25.91	3.62
200	18.51	36.63	26.41	3.55
250	16.83	36.37	26.62	3.49
300	15.45	36.09	26.73	3.31
400	13.18	35.70	26.92	3.03
500	11.06	35.43	27.12	2.88

	ODDI1(41D						
DEPTH (m)	TOTAL P (µg at/1)	^{РО} ₄ -Р (µg at/l)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)		
1 9 45 91 181 271 362 452 543	0.2 1.4 - 2.9 3.0 - 3.5	0.2 0.0 0.1 0.5 0.3 0.6 1.0 0.9 1.6	0.0 1.5 1.0 0.5 2.5 2.0 4.0 5.0 5.0	- 1.2 1.6 -	0.6 - 3.6 0.4 - 0.2 0.3 0.5 0.9		

OBSERVED

INTERPOLATED

DEPTH	TOTAL P	PO4-P	NO3-NO2	ARABINOSE	TYROS INE
(m)	$(\mu g at/l)$	$(\mu g at/1)$	$(\mu g t/1)$	(mg/l)	(mg/l)
0	0.2	0.2	0.0	-	0.6
10	1.4	0.0	1.5	-	1.2
20	-	<0.1	1.5	-	1.8
30	-	0.1	1.0	-	2.6
50	-	0.2	1.0	-	3.2
75	-	0.4	0.5	-	1.0
100	-	0.5	1.0	1.2	0.4
150	-	0.4	2.0	1.3	0.3
200	-	0.4	2.5	1.5	0.3
250	-	0.5	2.0	1.6	0.2
300	3.0	0.7	2.5	-	0.2
400	3.1	1.0	4.5	-	0.4
500	3.3	1.3	5.0	-	0.7

ODG REDUCED

DATE <u>March 1, 1953</u>	LAT. <u>32° 18'</u> N.	LONG. $77^{\circ} 30^{\circ} W$.	TIME 12
DEPTH 585 WIND 2,	<u>ll</u> BAR AIR	TEMP: dry°C,	wet°C
HUMIDITY - % WEATHER_	03 CLOUDS:type - ,	amt SEA:dir	,amt. <u>l</u>
SWELL: dir, amt	VIS WATER TF	RANS	

		ODOFILATO		
DEPTH	Т	S	σ _t	0 ₂
(m)	(°С)	(‰)		(ml/l)
1	24.03	36.24	24.59	4.56
8	23.90	36.33	24.70	4.47
39	23.96	36.27	24.63	4.47
115*	17.47	36.42	26.51	4.45
116	18.35	36.60	26.43	4.40
144	16.50	36.22	26.59	4.30
174	-	36.02	-	4.10
232	13.56	35.77	26.89	4.00
293	13.56 *	35.70	26.84	3.95

* Value questionable

DEPTH (m)	Т (°С)	S (‰)	σ _t	02 (ml/1)
0		26 24	2)1 50	4 56
10	23.91	36.32	24.69	4.47
20	23.93	36.30	24.67	4.47
30	23.96	36.28	24.64 24.79	4.47
75	21.90	36.42	25.34	4.43
100	19.90	36.55	25.99	4.41
150	16.19	36.18	26.63	4.25
200	14.23	35.89	26.84	4.05
250	-	37.(3	-	5.90

INTERPOLATED AND CALCULATED

	OCCENTED					
DEPTH (m)	TOTAL P (µg at/l)	PO _μ -P (μg at/1)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)	
1 8 39 116 144 174 232 293	1.5 1.6 1.3 1.6 - 2.5 4.3	0.1 0.2 0.1 0.2 0.4 0.8 0.9 1.0	<0.5 0.0 0.0 4.5 3.5 13.5 1.5* 9.0	3.8 4.4 3.0 0.3 2.1	0.1 0.9 0.7 0.6 0.7 1.6 0.3 0.0	

OBSERVED

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	PO ₄ -P (µg at/1)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)
0	1.5	0.1	<0.5	-	0.1
10	1.6	0.2	0.0	3.8	0.9
20	1.5	0.2	0.0	3.9	0.8
30	1.4	0.2	0.0	3.9	0.8
50	1.3	0.1	0.5	4.0	0.7
75	1.5	0.2	2.0	4.2	0.7
100	1.5	0.2	3.5	4.3	0.6
150	1.8	0.5	3.5	2.3	0.9
200	2.3	0.8	12.5	1.1	1.0
250	3.0	0.9	10.5	_	0.2
300	. 4.3	1.0	9.0	_	0.0

* Value questionable

DATE <u>March 1, 1953</u>	LAT. <u>32°47'</u> N.	LONG. $77^{\circ} 37^{\circ} W$.	TIME <u>16</u>
DEPTH <u>384</u> WIND 4,	<u> 18</u> bar. <u>-</u> Air	TEMP: dry°C,	wet°C
HUMIDITY% WEATHER(3 CLOUDS:type -	,amt. <u>-</u> SEA:dir	,amtl
SWELL:dir,amt	_ VIS WATER T	RANS	

		OBSERVED		
DEPTH (m)	Т (°С)	S (‰)	۳ _t	0 ₂ (ml/l)
1 10 28 47 71 95 189 284	19.12 18.94 18.95 18.57 15.52 13.40 - 10.03 9.07	36.11 36.11 36.11 35.97 35.75 35.61 35.61 35.32 35.14	25.86 25.90 25.90 25.89 26.45 26.80 - 27.22 27.24	5.46 5.42 5.34 5.09 3.82 3.37 3.11 2.91 2.96

INTERPOLATED AND CALCULATED

DEPTH (m)	Т (°С)	S (‰)	σ _t	0 ₂ (ml/1)
0	19.12	36.11	25.86	5.46
10	18.94	36.11	25.90	5.42
20	18.94	36.09	25.89	5.32
30	18.19	35.94	25.96	4.92
50	15.23	35.72	26.49	3.75
75	13.25	35.61	26.83	3.32
100	12.35	35.59	27.00	3.09
150	10.88	35.43	27.15	2.96
200	9.84	35.29	27.22	2.92
250	9.38	35.19	27.22	2.94

	OBSERVED					
DEPTH	TOTAL P	Р0 ₄ -Р	NO3-NO2	ARABINOSE	TYROSINE	
(m)	(µg at/l)	$(\mu g at/1)$	$(\mu g at/1)$	(mg/l)	(mg/l)	
1	-	0.2	0.5	-	0.7	
10	1.5	0.3	1.0	-	-	
19	1.9	0.1	1.0	2.2	0.3	
28	0.3	0.2	1.0	-	0.9	
47	2.1	1.0	9.0	-	1.0	
71	-	1.3	16.0	-	0.5	
95	-	1.2	3.5*	-	1.0	
189	-	1.2	22.0	2.0	2.0	
284	-	1.8	11.5	1.2	0.5	

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	РО ₄ -Р (µg at/1)	$\frac{NO_3 - NO_2}{(\mu g at/1)}$	ARABINOSE (mg/l)	TYROSINE (mg/l)
0	-	0.2	0.5	-	0.7
10	1.5	0.3	1.0	-	0.5
20	1.9	0.1	1.0	2.2	0.3
30	0.5	0.3	1.5	-	0.9
50	2.1	1.0	9.0		0.9
75	-	1.3	16.0	-	0.6
100	-	1.2	17.5	-	1.1
150	-	1.2	20.0	-	1.6
200	-	1.3	20.5	2.0	1.8
250	-	1.6	15.0	1.5	1.0

* Value questionable

DATE <u>March 1, 1953</u>	LAT. <u>32° 48'</u> N.	LONG. <u>78° 04'</u> W.	TIME 20
DEPTH 183 WIND 2 ,	<u>18</u> bar Air	TEMP: dry°C,	wet°C
HUMIDITY - % WEATHER C	3 CLOUDS:type -	,amt. <u>-</u> SEA:dir	,amt. <u>l</u>
SWELL:dir,amt	_ VIS WATER T	RANS	

_		OBSERVED		
DEPTH (m)	Т (°С)	S (‰)	۳ _t	0 ₂ (ml/l)
1 20 30 50 75 100 150	20.18 20.08 19.73 18.04 17.18 14.73 12.23* 11.14	36.20 36.18 36.15 36.11 36.08 35.84 35.79 35.44	25.65 25.66 25.73 26.13 26.32 26.70 27.18 27.11	4.04 4.04 3.63 3.37 3.33 3.29 3.20

* Value questionable

INTERPOLATED AND CALCULATED

DEPTH	T	S	۳ _t	0 ₂
(m)	(°C)	(‰)		(ml/l)
0 10 20 30 50 75 100	20.18 20.08 19.73 18.04 17.18 14.73 13.25	36.20 36.18 36.15 36.11 36.08 35.84 35.79	25.65 25.66 25.73 26.13 26.32 26.70 26.97 27.11	4.04 4.04 3.63 3.37 3.33 3.29 3.20

OBSERVED

DEPTH	TOTAL P	PO ₄ -P	NO ₃ -NO ₂	ARABINOSE	TYROSINE
(m)	(µg at/l)	(µg at/l)	(µg at/1)	(mg/l)	(mg/l)
1 20 30 50 75 100 150	1.4 2.8 1.4 1.7 1.1	0.2 0.8 0.2 0.6 0.7 1.1 1.1 1.1	0.0 <0.5 1.0 5.5 5.5 3.0 4.5 8.0	- 2.2 - - 1.7	0.2 1.5 - 0.4 0.1 0.1 1.4

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	PO ₄ -P (µg at/l)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)
0	1.4	0.2	0.0	-	0.2
10	2.8	0.8	<0.5	-	1.5
20	1.4	0.2	1.0	2.2	1.2
30	1.7	0.6	5.5	-	0.9
50	1.1	0.7	5.5	-	0.4
75	-	l.ļ	3.0	-	0.1
100	-	1.1	4.5	-	0.1
150	-	1.4	8.0	1.7	1.4

DATE <u>March 2,1953</u>	LAT. <u>33°0</u> 2	<u>2'</u> N. LONG. <u>7</u>	<u>8° 21'</u> W. TI	[ME <u>24</u>
DEPTH 29 WIND 7,	<u>04</u> BAR	AIR TEMP: dry	r°C, we	et°C
HUMIDITY - % WEATHER	00 CLOUDS:typ	e <u>-</u> ,amt. <u>-</u> 9	SEA:dir	_,amt. <u>2</u>
SWELL:dir,amt	_ VIS WAT	er Trans		

		ODSFLAFD		
DEPTH	Т	S	σ _t	0 ₂
(m)	(°С)	(‰)		(ml/1)
1	14.12	33.93*	25.36	6.08
10	15.55	36.13	26.74	5.42
20	15.62	36.11	26.71	5.44

ODG EIDUTED

* Value questionable

DEPTH	Т	S	σ ₊	02		
(m)	(°C)	(‰)	,	(ml/l)		
0	14.12	-	-	6.08		
10	15.55	36.13	26.74	5.42		
20	15.62	36.11	26.71	5.44		

INTERPOLATED AND CALCULATED

DEPTH (m)	TOTAL P (µg at/l)	РО ₄ -Р (µg at/1)	$\frac{\mathrm{NO}_{3}-\mathrm{NO}_{2}}{(\mathrm{\mu g} \mathrm{at}/\mathrm{l})}$	ARABINOSE (mg/l)	TYROSINE (mg/l)
1 10 20	0.9	0.1 0.2	0.0 0.0 1.0	0.5	1.1 1.4 0.3

OBSERVED

Þ

.

INTERPOLATED

.

DEPTH (m)	TOTAL P (µg at/l)	PO ₄ -P (µg at/l)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)
0	0.9	-	0.0	0.5	1.1
10	1.2	0.1	0.0	0.3	1.4
20	1.6	0.2	1.0	0.0	0.3

DATE <u>March 3, 1953</u>	LAT. <u>33° 12'</u> N.	LONG. $78^{\circ}38^{\circ}W$.	TIME
DEPTH 20 WIND 7,	<u>04</u> BAR. – AIR	TEMP: dry°C,	wet°C
HUMIDITY% WEATHER	00_CLOUDS:type	,amt. <u>-</u> SEA:dir	,amt
SWELL:dir,amt	VIS WATER T	RANS	

DEPTH (m)	T (°C)	S (‰)	۳ _t	0 ₂ (ml/1)		
1 10	13.35 13.29	-	-	5.89 5.88		

OBSERVED

INTERCOLATED AND CAROLATED						
DEPTH (m)	Т (°С)	S (‰)	σ _t	0 ₂ (ml/1)		
0 10	13.35 13.29	-	-	5.89 5.88		

INTERPOLATED AND CALCULATED

		000011			
DEPTH (m)	TOTAL P (µg at/l)	PO _μ -P (μg at/l)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)
1 10	-	0.2 0.1	0.5	0.8	1.4 0.4

OBSERVED

INTERPOLATED

DEPTH	TOTAL P	PO ₄ -P	NO ₃ -NO ₂	ARABINOSE	TYROSINE
(m)	(µg at/l)	(µg at/l)	(µg at/1)	(mg/l)	(mg/l)
0 10	-	0.2 0.1	0.5	0.8	1.4 0.4

DATE <u>March 3, 1953</u>	LAT. <u>33° 32'</u> N.	LONG. 78° 55'W.	TIME _ 05
DEPTH 9 WIND 6,	04 BAR AIR	TEMP: dry°C,	wet_ ° C
HUMIDITY - % WEATHER 00	CLOUDS:type,	amt SEA:dir	,amt2
SWELL:dir,amt	VIS WATER TH	RANS	

		OBSERVED		
DEPTH (m)	Т (°С)	S (‰)	σ _t	0 ₂ (ml/l)
1	_	34.13	-	6.07

INTERPOLATED AND CALC

DEPTH	Т	S	σ _t	0 ₂
(m)	(°С)	(‰)		(ml/1)
0	_	.34.13	-	6.07

OBSERVED

DEPTH	TOTAL P	^{РО} ц-Р	NO ₃ -NO ₂	ARABINÓSE	TYROSINE (mg/l)
(m)	(µg at/l)	(µg at/1)	(µg at/1)	(mg/l)	
l	1.0	0.2	<0.5	-	-

....

ed.

INTERPOLATED

DEPTH	TOTAL P	PO _l -P	NO ₃ -NO ₂	ARABINOSE	TYROSINE
(m)	(µg at/l)	(µg at/l)	(µg at/1)	(mg/l)	(mg/l)
0	1.0	0.2	<0.5	_	_

DATE	March	3,1	953	LAT.	<u>33</u> °	<u>34'</u> N	. LONG.	78	24	W.	TIME _	09	_
DEPTH_	20	WIND_	7_,	<u>04</u> E	AR	AI	R TEMP:	dry_	°	с,	wet	°(C
HUMIDI	[TY <u></u> 9	6 WEAT	THER	O CLC	UDS:t	ype <u>-</u>	_,amt	<u> </u>	A:dir	•	<u>-</u> ,a	mt	2
SWELL:	dir	<u> </u>	amt. <u>-</u>	_ VIS.	W	ATER	TRANS						

		ODOMINE		
DEPTH	Т	S	σ _t	0 ₂
(m)	(°С)	(‰)		(ml/l)
1	12.10**	35.90	27.29	5.79
10	14.14	35.95	26.91	5.75

OBSERVED

** From BT

INTERPOLATED	AND	CALCULATED
--------------	-----	------------

DEPTH	Т	S	σ _t	0 ₂
(m)	(°С)	(‰)		(ml/1)
0	12.10	35.90	27.29	5•79
10	14.14	35.95	26.91	5•75

TOTAL P PO₄-P (µg at/l) $\frac{NO_3 - NO_2}{(\mu g at/1)}$ DEPTH ARABINOSE TYROSINE ($\mu g at/l$) (m) (mg/l)(mg/l)0.1 1.5 1.9 2.0 < 0.5 0.4 1 10 -0.2 _

OBSERVED

INTERPOLATED

•

DEPTH	TOTAL P	РО ₄ -Р	$NO_3 - NO_2$	ARABINOSE	TYROSINE
(m)	(µg at/l)	(µg at/l)	(µg at/1)	(mg/l)	(mg/l)
0	1.5	0.1	2.0	-	0.4

DATE <u>March 3, 1953</u>	LAT. <u>33°</u>	<u>36'</u> N. LONG	<u>77 54 </u> W.	TIME <u>13</u>
DEPTH 18 WIND 7,	<u>04</u> BAR	AIR TEMP:	dry°C,	wet°C
HUMIDITY - % WEATHER 50	CLOUDS:t	ype,amt	SEA:dir	,amt2
SWELL:dir,amt	W	ATER TRANS		

		OBSERVED		
DEPTH	Т	S	۳ _t	0 ₂
(m)	(°С)	(‰)		(ml/l)
1	12.67	34.18	25.84	5.92
10	12.81	34.61	26.15	5.89

OBSERVED	

INTERIOLATED AND CAROLATED						
DEPTH	т	S	σ _t	0 ₂		
(m)	(°С)	(‰)		(ml/l)		
0	12.67	34.18	25.84	5.92		
10	12.81	34.61	26.15	5.89		

INTERPOLATED AND CALCULATED

a

OBSERVED					
DEPTH (m)	TOTAL P	$PO_{\mu} - P$	$NO_3 - NO_2$	ARABINOSE	TYROSINE (mg/l)
				(116/ -)	
	2.0	0.4	<0.5	-	0.3

INTERPOLATED						
DEPTH	TOTAL P	PO ₄ -P	$\frac{NO_3 - NO_2}{(\mu g at/1)}$	ARABINOSE	TYROSINE	
(m)	(µg at/l)	(µg at/l)		(mg/l)	(mg/l)	
0	2.8	0.4	0.0	-	0.2	
10	1.6	0.3	<0.5		0.3	

DATE March 3, 1953	LAT. <u>33° 22'</u> N. 1	LONG. $77^{\circ} 36^{\circ} W$.	TIME <u>16</u>
DEPTH 24 WIND 7,	<u>07</u> BAR AIR '	TEMP: dry°C,	wet°C
HUMIDITY - % WEATHER (<u>)1</u> CLOUDS:type,	amt. <u>-</u> SEA:dir	,amt. <u>2</u>
SWELL:dir,amt	VIS WATER TR	ANS7	

.

		OBSERVED		
DEPTH	T	S	σ _t	02
(m)	(°C)	(‰)	L	(ml/l)
1 10 20	18.10** 18.21 18.22	36.17 36.20 36.18	26.16 26.16 26.14	5.32 5.34 5.40

** From BT

INTERPOLATED AND CALCULATED

DEPTH	Т	S	ح _t	0 ₂
(m)	(°С)	(‰)		(ml/1)
0	18.10	36.17	26.16	5.32
10	18.21	36.20	26.16	5.34
20	18.22	36.18	26.14	5.40

ODJEVAED					
DEPTH (m)	TOTAL P (µg at/l)	PO ₄ -P (µg at/l)	$NO_3 - NO_2$ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)
1	1.9	0.2	1.0	-	0.6
20	0.5	0.2	L.5 0.0	1.) -	0.3

OBSERVED

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	РО _Ц -Р (µg at/l)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)
0	۰ د	0.0	1 0		0.6
10	1.0	0.2	1.5	1.5	1.4
20	0.5	0.2	0.0	-	0.3

DATE March 3, 1953	LAT. <u>33° 08'</u> N.	LONG. $77^{\circ} 20^{\circ} W$.	TIME _ 20_
DEPTH 219 WIND 4,	<u>ll</u> BAR AIR	TEMP: dry°C,	wet°C
HUMIDITY% WEATHER_	<u>01</u> CLOUDS:type,	amt SEA:dir	,amt.2
SWELL:dir,amt	VIS WATER TH	RANS. 12	

OBSERVED					
DEPTH (m)	Т (°С)	S (‰)	σ _t	0 ₂ (ml/1)	
1 10 20 30 49 74 98 137 183*	20.38 20.24 19.99 19.88 17.42 16.74 14.34 15.51	35.99 35.97 35.97 36.09 36.24 36.02* 35.73 36.00	25.43 25.46 25.52 25.57 26.27 26.54 - 26.70 26.65	5.17 5.34 5.05 5.01 3.98 3.65 3.45 3.24 3.33	

* Questionable

DEPTH	Т	S	σ _t	0 ₂
(m)	(°С)	(‰)		(ml/1)
0	20.38	35.99	25.43	5.17
10	20.24	35.97	25.46	5.34
20	19.99	35.97	25.52	5.05
30	19.88	35.99	25.57	5.01
50	17.40	36.10	26.28	3.96
75	16.71	36.22	26.54	3.64

	ODSERVED					
DEPTH (m)	TOTAL P (µg at/l)	РО ₄ -Р (µg at/1)	$\frac{\mathrm{NO}_{3}-\mathrm{NO}_{2}}{(\mathrm{\mu g} \mathrm{at}/1)}$	ARABINOSE (mg/l)	TYROSINE (mg/l)	
1 10 20 30 49 74 98 137 183	1.2 1.9 0.6 1.1 1.1 1.1 - 1.6 5.0	0.2 0.2 0.3 0.2 0.4 0.7 0.9 1.0 0.9	<0.5 1.0 0.5 1.5 8.0 10.0 7.5 12.0 1.0*	0.2 0.7 2.3 - 0.0 6.2	<0.1 0.1 1.1 0.3 1.2 0.2 0.1 1.4 0.9	

OBSERVED

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	ΡΟ _μ -Ρ (μg at/1)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)
0	1.2	0.2	<0.5	0.2	<0.1
10	1.9	0.2	1.0	0.5	0.1
20	0.6	0.3	0.5	0.7	1.1
30	1.1	0.2	1.5	2.3	0.3
50	1.1	0.4	8.0	-	1.2
75	1.4	0.7	10.0	-	0.2
100	1.6	0.9	7.5	0.0	0.2
150	5.0	1.0	12.0	6.2	1.2

* Value questionable

DATE <u>March 3, 1953</u>	LAT. <u>32° 54'</u> N.	LONG. <u>77°03'</u> W.	TIME _ 22
DEPTH 388 WIND 4,	<u>14</u> BAR AIR	TEMP: dry°C,	wet°C
HUMIDITY% WEATHER (02 CLOUDS:type -	,amt. <u>-</u> SEA:dir	,amt2
SWELL:dir,amt	_ VIS WATER T	RANS. 12	

		ODDIANED	-	
DEPTH (m)	Т (°С)	S (‰)	σ _t	0 ₂ (ml/1)
1 10 20 29 49 98 148 197 295	20.17 20.10 19.36 19.22 17.87 16.77 12.87 11.35 8.14	36.06 36.06 36.02 35.97 35.91 35.57 35.48 3 ⁴ .97	25.54 25.56 25.76 26.06 26.28 26.88 27.10 27.25	5.30 5.34 5.21 5.13 4.76 4.52 3.24 3.12 3.12

OBSERVED

INTERPOLATED AND CALCULATED

DEPTH (m)	Т (°С)	S (‰)	σ _t	0 ₂ (ml/l)
0	20 17	36.06	25.54	5.30
10	20.10	36.06	25.56	5.34
20	19.36	36.06	25.76	5.21
30	19.14	36.02	25.78	5.11
50	17.87	35.97	26.06	4.75
75	17.30	35.97	26.20	4.62
100	16.57	35.89	26.32	4.45
150	12.81	35.57	26.89	3.23
200	11.26	35.47	27.11	3.12
250	9.64	35.26	27.24	3.12

•

OBSERVED					
DEPTH	TOTAL P	Р0 ₄ -Р	NO3-NO2	ARABINOSE	TYROSINE
(m)	$(\mu g at/1)$	$(\mu g at/1)$	(µg [~] at/l)	(mg/l)	(mg/l)
l	0.1	0.1	1.0	-	1.5
10	0.3	0.1	1.5	-	0.5
20	-	0.1	-	0.9	4.6
29	0.4	0.1	0.5	-	0.4
49	-	0.5	0.0	-	3.7
98	1.6	0.4	2.5	3.4	<0.1
148	-	1.4	9.0	3.4	1.5
197	-	1.3	6.5	-	1.0
295	5.4	1.7	11.5	-	1.6

INTERPOLATED

DEPTH	TOTAL P	PO _l -P	NO ₃ -NO ₂	ARABINOSE	TYROSINE (mg/l)
(m)	(µg at/l)	(µg at/l)	(µg at/1)	(mg/l)	
0 10 20 30 50 75 100 150 200 250 300	0.1 0.3 0.4 0.4 0.7 1.2 1.6 2.6 3.6 4.5 5.4	0.1 0.1 0.1 0.5 0.5 0.4 1.4 1.3 1.5 1.7	1.0 1.5 1.0 0.5 0.0 1.5 2.5 9.0 6.5 9.0 11.5	0.9 1.2 1.9 2.7 3.4 3.4	1.5 0.5 4.6 0.4 3.7 1.9 0.2 1.5 1.0 1.3 1.6

DATE <u>March 4, 1953</u>	LAT. <u>32° 41'</u> N.	LONG. <u>76°45'</u> W.	TIME <u>02</u>
DEPTH 713 WIND 7,	<u>18</u> BAR AIR	TEMP: dry°C,	wet°C
HUMIDITY - % WEATHER (02 CLOUDS:type -,	amt SEA:dir	,amt2
SWELL:dir,amt	VIS WATER TH	ANS	

OBSERVED						
DEPTH	Т	S	۳ _t	0 ₂		
(m)	(°С)	(‰)		(ml/l)		
1	24.16	36.17	24.50	4.76		
9	24.14	36.27	24.58	4.68		
19	24.15	36.20	24.52	4.60		
47	24.13	36.20	24.53	4.52		
94	23.66	36.58	24.96	4.02		
188	19.76	36.67	26.12	3.69		
282	19.19*	36.45	26.10	3.69		
470	14.02	35.86	26.86	3.12		
658	8.08	35.07	27.34	3.04		

* Value questionable

DEPTH	Т	S	σ _t	02
(m)	(°C)	(‰)		(ml/l)
0	24.16	36.17	24.50	4.76
10	24.14	36.26	24.57	4.67
20	24.15	36.20	24.52	4.60
30	24.14	36.20	24.53	4.59
50	24.13	36.23	24.55	4.48
75	23.97	36.45	24.77	4.20
100	23.31	36.60	25.08	3.99
150	21.50	36.67	25.65	3.78
200	19.55	36.64	26.15	3.69
250	18.55	36.53	26.32	3.69
300	17.67	36.40	26.44	3.61
400	15.75	36.10	26.67	3.27
500	13.12	35.75	26.97	3.07
600	9,99	35.34	27.24	3.05

INTERPOLATED AND CALCULATED

OBSERVED					
DEPTH	TOTAL P	PO _{Ji} -P	NO2-NO2	ARABINOSE	TYROSINE
(m)	(µg at/l)	$(\mu g at/1)$	$(\mu g^{3}at/1)$	(mg/l)	(mg/l)
l	-	0.1	0.5	-	0.8
9	<0.1	0.0	1.0	2.8	0.8
19	0.8	0.0	0.5	-	-
47	0.1	0.0	0.0	0.5	1.0
94	1.3	-	2.0	1.4	1.3
188	-	0.3	4.0	-	0.4
282	-	0.4	6.0	1.2	1.1
470	-	1.2	13.0	-	
658	-	1.5	3.0	2.2	0.6

00000000

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	PO ₄ -P (µg at/l)	$\frac{NO_3 - NO_2}{(\mu g at/1)}$	ARABINOSE (mg/l)	TYROSINE (mg/l)
0	_	0.1	0.5	_	0.8
10	<0.1	0.0	1.0	2.8	0.8
20	0.8	0.0	0.5	2.2	0.9
30	. 0.6	0.0	<0.5	1.6	0.9
50	0.2	0.0	<0.5	0.6	1.0
75	0.8	<0.1	1.0	1.0	1.2
100	1.3	0.1	2.0	1.4	1.2
150	-	0.2	3.0	1.3	0.7
200	-	0.3	4.5	1.3	0.5
250	-	0.4	5.5	1.2	0.9
300	-	0.5	7.0	1.2	1.1
400	-	0.9	10.5	1.5	0.9
500	-	1.2	10.5	1.8	0.8
600	-	1.4	6.0	2.0	0.7

DATE_	March	6, 1953	LAT	34° 32'	N. LONG.	<u>76° 49'</u> V	√. TIME <u>13</u>	
DEPTH	18	WIND	<u> </u>	AR A	IR TEMP:	dry°(C, wet <u>-</u> °C	
HUMIDI	[TY <u>-</u> 9	WEATHER	02_CLO	UDS:type_	<u>-</u> ,amt. <u>-</u>	SEA:dir	,amt	
SWELL:	dir	,amt.	- VIS.	- WATEF	TRANS	-		

OBSERVED						
DEP T H	Т	S	حر	0 ₂		
(m)	(°С)	(‰)		(ml/l)		
1	13.64	35.01	25.29	5.89		
10	13.56	35.1 ⁴	26.41	5.91		

INTERPOLATED	AND	CALCUI	LATED
--------------	-----	--------	-------

DEPTH	Т	S	σ _t	0 ₂
(m)	(°С)	(‰)		(ml/1)
0	13.64	35.01	26.29	5.89
10	13.56	35.14	26.41	5.91

		OBSER	VED	ARABINOSE	TYROSINE
DEPTH (m)	TOTAL P (µg at/l)	РО ₄ -Р (µg at/l)	$(\mu g at/1)$	(mg/1)	(mg/l)
1	-	0.1 0.0	<0.5 <0.5	-	0.2 0.4

		INTERPO	LATED		
DEPTH	TOTAL P	$PO_{\mu} - P$	NO3-NO2 (µg at/1)	ARABINOSE (mg/l)	TYROSINE $(mg/1)$
(m) 0	(µg at/1)	о.1 0.0	<0.5 <0.5	-	0.2 0.4

137

DATE <u>March 6, 1953</u>	LAT. <u>34° 18'</u> N. I	LONG. <u>76°32'</u> W.	TIME <u>16</u>
DEPTH <u> 27 </u> WIND <u> </u> ,	BAR AIR 1	TEMP: dry°C,	wet°C
HUMIDITY% WEATHER_	02_CLOUDS:type,a	amt. <u>-</u> SEA:dir	,amt0
SWELL:dir,amt	VIS WATER TRA	NS. <u>16</u>	

DEPTH	Т	S	σ _t	02			
(m)	(°C)	(‰)		(ml/l)			
1 10 20	15.90** 14.04* 14.54	35.81 35.93 35.88	26.41 26.91 26.77	5.61 5.62 5.69			

•

OBSERVED

* Value questionable

** From BT

DEPTH	T	S	σ _t	02
(m)	(°C)	(‰)		(ml/1)
0	15.90	35.81	26.41	5.61
10	15.20	35.93	26.66	5.62
20	14.54	35.88	26.77	5.69

INTERPOLATED AND CALCULATED
DEPTH (m)	TOTAL P (µg at/l)	^{РО} ц-Р (µg at/l)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)			
1 10 20		0.0 0.0 <0.1	0.5 0.0 <0.5	3.0 0.0	0.0 0.2 1.7			

OBSERVED

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	PO ₄ -P (µg at/l)	$\frac{NO_3 - NO_2}{(\mu g at/1)}$	ARABINOSE (mg/l)	TYROSINE (mg/l)
		0.0		2.0	0.0
0	-	0.0	0.5	3.0	0.0
10	-	0.0	0.0	0.0	0.2
20	-	<0.1	<0.5	-	1.7

DATE_	March	6,1	953	_ LAT.	34	<u>031</u>	N.	LONG.	76	, 15	<u> </u> W.	TIME	<u> </u>	9
DEPTH	77	WIND_	2	<u>, 22</u>	BAR	A	IR	TEMP:	dry_	-	°C,	wet_	-	°C
HUMID	LTY9	WEA!	THER_	<u>02</u> CI	LOUDS :	type_	;	, amt	SE	A:di	ir	,	amt.	1
SWELL:	dir	,;	amt	VIS		WATER	T	RANS	20					

OBSERVED								
DEP TH	т	S	σ _t	0 ₂				
(m)	(°С)	(‰)		(m1/1)				
1	20.81	36.17	25.45	5.03				
10	20.37	36.11	25.53	5.05				
20	20.00	36.11	25.63	5.00				
30	19.74	35.97	25.59	4.97				

INTERPOLA	TED	AND	CALCUI	ATED
-----------	------------	-----	--------	------

DEPTH	Т	S	σ _t	0 ₂
(m)	(°С)	(‰)		(ml/l)
0	20.81	36.17	25.45	5.03
10	20.37	36.11	25.53	5.05
20	20.00	36.11	25.63	5.00
30	19.74	35.97	25.59	4.97

DEPTH (m)	TOTAL P (µg at/l)	ΡΟ ₄ -Ρ (μg at/l)	$NO_3 - NO_2$ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)			
1 10 20 30	0.6 - -	<0.1 0.1 0.6 0.1	0.5 0.0 2.0 0.5	- - -	1.4 1.1 0.5 0.9			

OBSERVED

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	PO ₄ -P (µg at/l)	$\frac{NO_3 - NO_2}{(\mu g at/1)}$	ARABINOSE (mg/l)	TYROSINE (mg/l)
0	0.6	<0.1	0.5	-	1.4
10 20	-	0.1 0.6	0.0 2.0	-	1.1 0.5
30	-	0.1	0.5	-	0.9

DATE	March	6, 1953	_ LAT	<u>33° 5</u>	<u>0'</u> N.	LONG		<u>9'</u> ₩.	TIME_	22
DEPTH_	658	WIND 4	<u>, 22</u> B	AR	AIR	TEMP:	dry <u>-</u>	_°C,	wet	°C
HUMIDI	TY9	6 WEATHER_	02 CLO	UDS:typ	e,	, amt	SEA:	iir	<u>-</u> ,a	mt. <u>l</u>
SWELL:	dir	, amt	<u>-</u> VIS.	WAT	ER TI	RANS	20			

	OESERVED							
DEPTH	Т	S	σ _t	0 ₂				
(m)	(°С)	(‰)		(ml/l)				
1	24.15	36.44	24.71	4.49				
9	24.12	36.27	24.59	4.49				
18	24.12	36.27	24.59	4.49				
45	24.05	36.29	24.62	4.41				
90	22.94	36.82	25.35	3.68				
136	21.32	36.67	25.69	3.60				
181	17.70*	36.13	26.23	3.52				
362	15.72	35.70	26.23	3.56				
543	12.15	35.50	26.97	2.96				

DEPTH	Т	S	σ _t	0 ₂
(m)	(°С)	(‰)		(ml/l)
0	24.15	36.44	24.71	4.49
10	24.12	36.27	24.59	4.49
20	24.11	36.27	24.59	4.49
30	24.08	36.28	24.61	4.49
50	23.95	36.38	24.72	4.30
75 100	23.36 22.64 20.72	36.72 36.82	25.15 25.44	3.85 3.66
200	19.03	36.07	25.85	3.57
250	17.85	35.94	26.05	3.54
300 400 500	16.84 15.00 13.14	35.82 35.64 35.53	26.20 26.48	3.55

OBSERVED						
DEPTH (m)	TOTAL P (µg at/l)	PO _{l4} -P (µg at/l)	$NO_3 - NO_2$ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)	
1 9 18 45 90 136 181 362 543	0.1 - - - 0.5 -	0.1 0.0 <0.1 0.1 <0.1 0.2 0.4 0.8	0.0 1.0 1.5 1.5 1.0 5.5 4.0 2.5	2.6 - 0.6 - - 1.6	0.1 0.2 0.6 0.4 0.3 1.0 0.2 1.2	

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	РО _ц -Р (µg at/l)	$\frac{NO_3 - NO_2}{(\mu g at/1)}$	ARABINOSE (mg/l)	TYROSINE (mg/l)
0	0.1	0.1	0.0	2.6	-
10	-	0.1	1.0	2.2	0.1
20	-	<0.1	1.0	1.8	0.2
30	-	<0.1	1.0	1.4	0.4
50	-	<0.1	1.5	0.6	0.6
75	-	0.1	1.5	-	0.5
100	-	0.1	1.5	-	0.4
150	-	0.1	2.5	-	0.5
200	0.5	0.2	5.5	-	0.9
250	-	0.3	5.0	-	0.7
300	-	0.3	4.5	-	0.5
400	-	0.4	3.5	-	0.4
500	-	0.7	3.0	1.6	1.0

DATE <u>March 7, 1953</u>	LAT. <u>34° 25'</u> N.	LONG. <u>75° 26'</u> W.	TIME <u>08</u>
DEPTH <u>1463</u> WIND <u>4</u> ,	32_ BAR AIF	R TEMP: dry°C,	wet°C
HUMIDITY - % WEATHER (2 CLOUDS:type -	,amt SEA:dir	,amt2
SWELL:dir,amt	_ VIS WATER T	TRANS	

		ODSERVED		
DEPTH (m)	Т (°С)	S (‰)	σ _t	0 ₂ (ml/1)
1 6 12 18 30 60 90 121 154	23.44 - 23.58 - 23.40 23.04 23.69* 19.26 16.90	36.36 36.27 36.27 36.23 36.29 36.27 36.26 36.38 36.18	24.86 24.75 24.81 24.90 24.71 26.03 26.46	4.66 4.58 4.12 4.46 4.52 4.78 4.62 3.93 3.49

DEPTH	т	S	σ _t	0 ₂
(m)	(°С)	(‰)		(ml/l)
0 10 20 30 50 75 100	23.44 23.57 23.50 23.40 23.15 22.45 20.85	36.36 36.28 36.29 36.28 36.29 36.28 36.27 36.27	24.86 24.77 24.78 24.81 24.88 25.07 25.57	4.66 4.18 4.47 4.52 4.74 4.74 4.76 4.37

INTERPOLATED AND CALCULATED

ODSERVED						
DEPTH	TOTAL P	PO ₄ -P	NO3-NO2	ARABINOSE	TYROSINE	
(m)	$(\mu g at/1)$	$(\mu g at/l)$	$(\mu g at/1)$	(mg/l)	(mg/l)	
1	1.1	0.0	0.0	0.4	1.1	
6	_	<0.1	0.5	1.5	0.7	
12	-	<0.1	<0.5	-	0.2	
18	-	0.1	<0.5	5.7	0.2	
30	0.3	0.2	0.5	-	0.8	
60	-	0.1	<0.5	-	-	
90	-	0.1	-	2.9	0.2	
121	1.2	0.5	3.0	-	0.4	
154	-	0.8	8.0	2.8	-	

OBSERVED

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	PO ₄ -P (µg at/l)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/1)	TYROSINE (mg/l)
	~		0.0		
0	⊥.⊥	0.0	0.0	0.4	⊥.⊥
10	-	<0.1	<0.5	2.8	0.4
20	-	0.1	< 0.5	5.5	0.3
30	0.3	0.2	0.5	4.8	0.8
50	-	0.1	<0.5	4.5	0.6
75	-	0.1	1.0	3.6	0.3
100	1.2	0.2	2.0	2.9	0.2
150	-	0.8	8.0	2.8	-

DATE <u>March 7, 1953</u>	LAT. <u>34° 38'</u> N.	LONG. 75° 51'W.	TIME <u>14</u>
DEPTH 37 WIND 7,	32 BAR AIR	TEMP: dry - °C,	wet°C
HUMIDITY% WEATHER_C	2_CLOUDS:type,	amt SEA:dir	,amt2
SWELL:dir,amt	_ VIS WATER TH	RANS. <u>13</u>	

		OBSERVED		
DEPTH (m)	T S (°C) (‰)		σ _t	0 ₂ (m1/1)
1 10 20	16.87 17.15	35.35 35.35 35.35	25.83	5.60 5.51 5.51

INTERPOLATED	AND	CALCULATED
--------------	-----	------------

DEPTH	Т	S	σ _t	0 ₂
(m)	(°С)	(‰)		(ml/1)
0	16.87	35.35	25.83	5.60
10	16.94	35.35	25.81	5.51
20	17.15	35.35	25.76	5.51

	OTOTIVED.						
•	DEPTH (m)	TOTAL P (ug at/l)	PO ₄ -P (ug at/l)	NO ₃ -NO ₂ (ug at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)	
					(0) - /	(
	l	-	0.1	0.5	0.9	-	
	10	-	0.4	<0.5	-	0.9	
	20	2.3	0.1	0.0	1.9	0.0	

OBSERVED

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	PO ₄ -P (µg at/l)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)
0	-	0.1	0.5	0.9	-
10 20	2.3	0.4 0.1	<0.5 0.0	1.4 1.9	0.9

DATE <u>March 7, 1953</u>	LAT. <u>35° 01'</u> N.	LONG. <u>75° 45'</u> W.	TIME <u>18</u>
DEPTH 21 WIND,	BAR AIR	TEMP: dry°C,	wet°C
HUMIDITY% WEATHER	CLOUDS:type	,amt. <u>-</u> SEA:dir	,amt
SWELL:dir,amt	_ VIS WATER T	RANS	

OBSERVED						
DEPTH	T	S	حر	0 ₂		
(m)	(°C)	(‰)		(ml/l)		
1	14.65	33.01	34.54	6.08		
10		33.86	-	6.00		

INTERFOLATED AND CAROLATED						
DEPTH	Т	S	σ _t	0 ₂		
(m)	(°С)	(‰)		(ml/l)		
0	14.65	33.01	24.54	6.08		
10		33.86	-	6.00		

DEPTH (m)	TOTAL P $(\mu g at/1)$	^{РО} ₄ -Р (µg at/1)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)	
1 10	-	0.2 0.1	0.5	-	0.2 0.8	

OBSERVED

INTERPOLATED

DEPTH	TOTAL P	РО ₄ -Р	$\frac{\text{NO}_3 - \text{NO}_2}{(\mu \text{g at}/1)}$	ARABINOSE	TYROSINE
(m)	(µg at/l)	(µg at/l)		(mg/l)	(mg/l)
0 10	Ξ	0.2 0.1	0.5 1.5	Ξ	0.2 0.8

DATE Feb. 12, 1953	LAT. <u>26° 21'</u> N.	LONG. 76° 44'W.	TIME 23
DEPTH 4206 WIND 4,	20 BAR. 15 AIR	TEMP: dry 22.8°C,	wet <u>20.0</u> °C
HUMIDITY 5% WEATHER	1_CLOUDS:type <u>8</u>	,amt. <u>2</u> SEA:dir	,amt2
SWELL:dir,amt	VIS. 8 WATER T	RANS	

OBSERVED						
DEPTH (m)	T (°C)	S (‰)	σ _t	0 ₂ (ml/1)		
1 9 27 44 88 223 361 457 555 654	22.91 22.86 22.93 23.90* 22.80 18.80 17.39 17.80* 14.34 12.58	36.65 36.65 36.62 36.64 36.62 36.56 36.35 36.17 35.90 35.61	25.23 25.24 25.20 24.93 25.24 26.28 26.47 26.23 26.83 26.83 26.97			

* Value questionable

DEPTH	Т	S	σ.	02
()	(00)	(0)	τ	(-1/1)
(m)		(/00)		(m1/1)
0	22.91	36.65	25.23	_
10	22.86	36.65	25.25	_
20	22.87	36.63	25.23	_
30	22.92	36.62	25.20	_
50	22,88	36.64	25.23	_
75	22.83	36.63	25.24	_
100	22.34	36.62	25.37	_
150	20.64	36.61	25.84	-
200	19.30	36.58	26.17	
250	18.49	36.52	26.33	_
300	18.02	36.45	26.39	
400	16.92	36.29	26.54	_
500	15.25	36.05	26.74	_
600	13 61	35 77	26.88	_
600	T.)•OT	32.11	20.00	-

DATE <u>Feb</u> ,	<u>13, 1953</u>	LAT. 26°	<u>24'</u> N. LONG	. <u>76° 42'</u> W.	TIME 02
DEPTH <u>4206</u>	WIND <u>4</u> ,	20 BAR.]	5 AIR TEMP	: dry <u>22.8</u> °C,	wet_20,3°C
HUMIDITY <u>59</u>	WEATHER 0	CLOUDS:t	ype <u>8</u> ,amt.	2 SEA:dir	,amt2
SWELL:dir	,amt	VIS. <u>8</u> W	ATER TRANS.		

OBSERVED						
DEPTH	T	S	حt	0 ₂		
(m)	(°C)	(‰)		(ml/l)		
1	22.80**	36.65	25.26	4.54		
9	22.84	36.60	25.21	4.45		
28	22.88	36.65	25.24	4.34		
46	24.60*	36.64	24.72	4.19		
92	22.80	36.69	25.29	4.29		
230	18.82	36.58	26.29	4.36		
369	17.47	36.44	. 26.52	4.18		

** From BT

* Value questionable

DEPTH	Т	S	σ _t	0 ₂
(m)	(°С)	(‰)		(ml/l)
0	22.80	36.65	25.26	4.54
10	22.84	36.60	25.21	4.45
20	22.86	36.63	25.23	4.40
30	22.88	36.65	25.24	4.30
50	22.85	36.65	25.25	4.19
75	22.82	36.67	25.27	4.25
100	22.50	36.69	25.38	4.30
150	20.81	36.64	25.81	4.35
200	19.46	36.60	26.14	4.36
250	18.46	36.54	26.35	4.35

-

DATE <u>Feb. 13, 1953</u> LAT. <u>26° 25'</u>N. LONG. <u>76° 42'W.</u> TIME <u>05</u> DEPTH <u>4343</u> WIND <u>7</u>, <u>20</u> BAR. <u>-</u> AIR TEMP: dry <u>22.8</u>°C, wet <u>20.6</u>°C HUMIDITY <u>72%</u> WEATHER <u>01</u> CLOUDS:type <u>08</u>, amt. <u>2</u> SEA:dir. <u>-</u>, amt. <u>3</u> SWELL:dir. <u>-</u>, amt. <u>-</u> VIS. <u>8</u> WATER TRANS. <u>-</u>

		OBSERVED		
DEPTH (m)	Т (°С)	S (‰)	σ _t	0 ₂ (ml/l)
1 9 28 47 95 238 381 477 573 670	22.80*** 22.87 24.62* 22.49 18.92 17.35 12.49* 15.76 14.56	36.67 36.67 36.67 36.64 36.44 36.42 36.38 36.22 35.96	25.28 25.26 25.26 24.74 25.34 26.16 26.54 26.54 26.76 26.83	

** From BT

INTERPOLATED	AND	CALCULATED	

DEPTH (m)	Т (°С)	S (‰)	σ _t	0 ₂ (ml/1)
0	22.80	36.67	25.28	-
10	22.87	36.67	25.26	-
20	22.87	36.67	25.26	-
30	22.86	36.67	25.26	-
50	22.75	36.67	25.29	-
75	22.60	36.65	25.32	-
1.00	22.33	36.63	25.38	-
150	20.88	36.54	25.72	-
200	19.67	36.48	26.00	-
250	18.76	36.44	26.20	-
300	18.30	36.44	26.32	-
400	17.19	36.42	26.58	-
500	16.40	36.35	26.71	-
600	15.50	36.16	26.77	-

DATE_	Feb.	13,	<u>1953</u>	LAT.	26° 25	<u>'</u> N. 1	LONG	76° 4	. <u>0'</u> W.	TIME _	09	
DEPTH	4370	WINI)_7,	<u>20</u> BA		AIR	TEMP:	dry	°C,	wet	°C	
HUMID	ITY <u>-</u> 9	6 WEA	THER O	<u>l</u> CLOU	DS:type	<u>8</u> ,	amt. <u>2</u>	SEA:d	ir	<u> </u>	mt. <u>3</u>	_
SWELL	dir	,	amt	VIS.	8 WATE	R TR	ANS					

OBSERVED							
DEPTH (m)	Т (°С)	S (‰)	حر	0 ₂ (ml/l)			
1 10 29 48 95 237	22.83 22.90 23.83* 22.63 18.95	36.69 36.62 36.67 36.67 36.69 36.64	- 25.23 25.25 24.98 25.34 26.30	3.73 3.79 4.01 3.79 4.63 4.41			

INTERPOLATED AND CALCULATED

DEPTH (m)	Т (°С)	S (‰)	σ _t	0 ₂ (ml/l)
0 10 20 30 50 75 100	22.83 22.87 22.90 22.82 22.71 22.50	36.69 36.62 36.65 36.67 36.67 36.68 36.68	25.23 25.24 25.25 25.27 25.31 25.38	3.73 3.79 3.95 3.90 3.81 4.44 4.63
100 150 200	22.50 21.21	36.69 36.68	25.38 25.73 26.07	4.63 4.55

DATE	Feb.	13, 1	.953	LAT	<u>26° 2</u>	<u>5'</u> N.	LONG	<u> 76° 40 '</u> W	. TIN	Е <u>12</u>	_
DEPTH	4370	WIND_	,	<u>22</u> BA	R. <u>14</u>	AIR	TEMP:	dry <u>22.8</u> °C	, wet	<u>21.1</u> °	'C
HUMID	ITY <u>72</u> 9	6 WEAT	HER_01	_ CLOU	DS:typ	e <u>8</u> ,	, amt	SEA:dir.		,amt	3
SWELL	dir	<u> </u>		VIS.	8 WAT	ER TH	RANS				

		OBSERVED		
DEPTH (m)	Т (°С)	S (‰)	σ _t	0 ₂ (ml/l)
1 28 47 95 239 384 580 678	22.80 22.81 23.74* 22.82 22.74 18.85 - 14.02 12.14	36.67 36.65 36.64 36.65 36.64 36.60 36.49* 35.97 35.59	25.28 25.26 24.99 25.26 25.27 26.30 - 26.95 27.04	

* Value questionable

DEPTH (m)	т (°С)	S (‰)	حر	0 ₂ (ml/1)
0	22.80	36.67	25.28	-
10	22.81	36.65	25.26	-
20	22.81	36.64	25.25	-
30	22.82	36.64	25.25	-
50	22.82	36.65	25.26	-
75	22.80	36.64	25.25	-
100	22.59	36.64	25.31	-
150	21.12	36.63	25.72	-
200	19.79	36.62	26.07	-
250	18.74	36.60	26.33	-
300	18.03	36.54	26.46	-
400	16.58	36.36	26.68	-
500	15.18	36.14	26.83	-
600	13.65	35.90	26.97	-

DATEFeb.	13, 1953	LAT. 26°	<u>25'</u> N. LON	3. <u>76° 43'</u> W.	TIME <u>17</u>
DEPTH <u>4389</u>	WIND 4,	22 BAR. 1	5 AIR TEM	P: dry 23.9°C,	wet <u>22.2</u> °C
HUMIDITY_73	WEATHER 2	0_ CLOUDS:t	ype <u>0</u> ,amt	. <u>6</u> SEA:dir	<u>,amt. 2</u>
SWELL:dir	,amt	_ VIS. <u>6</u> W	ATER TRANS		

OBSERVED						
DEPTH (m)	Т (°С)	S (‰)	۳ _t	0 ₂ (ml/1)		
1 9 27 45 91 230 375 572 672	22.91 22.91 21.62* 22.81 22.51 19.04 - 14.28 12.03	36.67 36.65 36.65 36.60 36.60 36.42 35.90 35.57	25.25 25.23 25.60 25.26 25.31 26.25 - 26.84 27.04	5.19 4.56 4.75 4.69 4.60 4.35 4.03 3.70 3.36		

* Value questionable

DEPTH	Т	S	حt	0 ₂
(m)	(°С)	(‰)		(ml/l)
(m) 0 10 20 30 50 75 100 150 200 250 300	(°C) 22.91 22.91 22.88 22.85 22.80 22.66 22.26 20.93 19.71 18.89 17.95	(%) 36.67 36.65 36.65 36.65 36.64 36.61 36.60 36.60 36.60 36.59 36.53	25.25 25.23 25.24 25.25 25.25 25.27 25.38 25.75 26.08 26.28 26.47	(m1/1) 5.19 4.56 4.71 4.75 4.68 4.63 4.58 4.58 4.50 4.41 4.31 4.20
400	16.61	36.36	26.67	3.99
500	15.29	36.11	26.78	3.82
600	13.69	35.81	26.90	3.62

DEP T H (m)	TOTAL P (µg at/l)	PO _μ -P (μg at/l)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)
	, ,		, , ,		
1 9 45 91 230 375 572	0.3 0.4 0.4 0.2 - 1.2 0.9 3.4	- 0.2 <0.1 0.2 0.3 0.3 0.9	<0.5 <0.5 0.0 0.5 0.0 6.5 2.5	- - 0.0 0.0 1.1	0.1 1.3 0.3 0.9 0.2 0.2 0.2 0.2

OBSERVED

INTERPOLATED

DEPTH (m)	TOTAL P (µg at/l)	РО _ц -Р (µg at/l)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)
0	0.3		<0.5	-	0.1
10	0.4	0.2	<0.5	-	1.3
20	0.4	0.2	<0.5	-	0.9
30	0.4	0.2	0.0	-	0.5
50	0.2	0.1	<0.5	-	0.8
75	-	0.1	0.5	-	0.5
100		0.2	0.5	0.0	0.2
150	-	0.2	0.5	0.0	0.2
200	-	0.3	< 0.5	0.0	0.2
250	-	0.3	1.0	0.2	0.3
300	-	0.3	3.0	0.5	0.3
400	1.2	0.4	6.0	-	0.5
500	1.0	0.7	4.0	-	0.4
600	1.6	1.0	7.0	_	0.3

DATE	Feb.	15,	1953	LAT.	26° 21	<u>'</u> N.	LONG		<u>4'</u> W.	TIME _	06
DEPTH_	4389	WIND	,	<u>18</u> BA	R. <u>15</u>	AIR	TEMP:	dry_22_	<u>8</u> °C,	wet_2	<u>1.1</u> °C
HUMIDI	TY_729	6 WEA	THER O	2_ CLOU	DS:type	<u> </u>	amt(SEA:	lir	<u> </u>	nt. <u>4</u>
SWELL:	dir	,	amt	_ VIS	8 WATE	R TR	ANS	-			

DEP TH	T	S	حر	0 ₂
(m)	(°C)	(‰)		(ml/1)
1 29 49 99 247 394 592 690	22.90** 22.90** 22.73 22.56 21.48 18.58 16.95 13.09 10.77	36.69 36.65 36.62 36.69 36.69 36.42 35.75 35.41	25.26 25.23 25.26 25.38 25.67 26.41 26.63 26.97 27.16	4.94 4.99 4.96 4.96 4.71 4.56 4.24 3.69 3.31

OBSERVED

** From BT

INTERPOLATED	AND	CALCULATED
THITTH OTHERD	THILD.	OUROOTHURD

DEPTH	Т	S	σ ₊	02
(m)	(°C)	(‰)	5	(ml/l)
0	22.90	36.69	25.26	4.94
10	22.90	36.65	25.23	4.99
20	22.81	36.62	25.24	4.98
30	22.73	36.63	25.27	4.96
50	22.54	36.71	25.38	4.96
75	21.99	36.70	25.53	4.82
100	21.46	36.69	25.67	4.71
150	20.34	36.68	25.97	4.65
200	19.36	36.66	26.21	4.61
250	18.56	36.65	26.41	4.55
300	18.11	36.59	26.48	4.45
400	16.85	36.40	26.64	4.23
500	15.02	36.06	26.80	3.97
600	12.91	35.72	26.99	3.63

.

DEPTH (m)	TOTAL P (µg at/l)	РО ₄ -Р (µg at/l)	NO ₃ -NO ₂ (µg at/1)	ARABINOSE (mg/l)	TYROSINE (mg/l)
1 29 49 99 247 394 592 690	0.4 0.4 4.1 0.4 0.6 0.4 0.6 1.5	0.0 0.1 0.1 0.0 0.2 0.0 0.4 0.8 1.2	0.0 <0.5 - 0.0 0.5 - 3.0 9.0 8.5	3.8 0.8 3.2 - 3.3 0.8	0.1 1.0 1.5 0.5 1.8 1.6 0.0 0.2 0.7

OBSERVED

INTERPOLATED

DEPTH (m)	TOTAL P (ug at/1)	$PO_{\mu} - P$ (ug at/1)	$\frac{\text{NO}_3 - \text{NO}_2}{(\text{ug at}/1)}$	ARABINOSE	TYROSINE
				((
0	0.4	0.0	0.0	-	0.1
10	0.4	0.1	<0.5	3.8	1.0
20	2.3	0.1	<0.5	3.0	1.3
30	4.1	0.1	0.0	2.2	1.5
50	0.4	0.0	0.0	0.9	0.5
75	0.5	0.1	<0.5	2.1	1.2
100	0.6	0.2	0.5	3.2	1.8
150	0.5	0.1	1.0	3.2	1.8
200	0.5	0.1	1.5	3.2	1.7
250	0.4	<0.1	2.0	3.2	1.5
300	0.5	0.1	2.0	3.2	1.0
400	0.6	0.4	3.0	3.2	0.0
500	1.1	0.6	6.0	2.0	0.1
600	1.5	0.8	9.0	0.8	0.3
700	-	1.2	8.5	-	0.7

158

r

DATE	Feb.	15,	1953	LAT.	26° 2.	<u>l'</u> N.	LONG.	76° 4	<u>6'</u> W.	TIME_	09	_
DEPTH_	4389	WIND	,_	<u>18</u> ba	R. 14	AIR	TEMP:	dry <u>22</u>	<u>.8</u> °C,	wet_2	<u>1.1</u> °(2
HUMIDI	TY 729	WEA!	THER 01	CLOU	DS:type	<u> </u>	amt)SEA:d	lir	<u> </u>	mt	4
SWELL:	dir	<u> </u>	amt	VIS.	7 WATE	ER TH	RANS					

		020201020		
DEPTH (m)	Т (°С)	S (‰)	ኖ _t	0 ₂ (ml/1)
1 29 49 98 246 394 594 693	22.85 22.72 22.84 22.80 22.62 18.84 17.30 13.90 11.90	36.76 36.78 36.85 36.83 36.83 36.67 36.62 36.02 35.64	25.33 25.38 25.40 25.40 25.45 26.36 26.70 27.01 27.12	

.

OBSERVED

ſ

INTERPOLATED AND CALCULATED

DEPTH (m)	T (°C)	S (‰)	σ _t	0 ₂ (ml/l)
0	22.85	36.76	25.33	-
10	22.72	36.78	25.38	-
20	22.80	36.83	25.40	-
30	22.84	36.85	25.40	-
50	22.80	36.83	25.40	-
75	22.77	36.83	25.41	-
100	22.55	36.83	25.47	-
150	21.04	36.76	25.84	-
200	19.77	36.71	26.14	-
250	18.81	36.67	26.36	-
300	18.37	36.65	26.46	-
400	17.21	36.61	25.72	-
500	15.60	36.33	26.88	-
600	13.78	36.00	27.02	-

DATE Feb. 15, 1953	_ LAT. <u>26° 21'</u> N.	LONG. <u>76° 46'</u> W.	TIME <u>12</u>
DEPTH 4389 WIND 7	, <u>18</u> bar. <u>14</u> air	TEMP: dry <u>23.3</u> °C,	wet <u>21.7</u> °C
HUMIDITY <u>86</u> % WEATHER	<u>03</u> CLOUDS:type <u>6</u>	,amt. <u>6</u> SEA:dir	,amt3_
SWELL:dir,amt	VIS. <u>8</u> WATER T	RANS	

OBSERVED						
DEPTH	т	S	۳ _t	0 ₂		
(m)	(°С)	(‰)		(ml/1)		
1	22.89	36.67	25.25	4.86		
10	21.78*	36.65	25.55	4.86		
30	22.87	36.64	25.26	4.85		
50	22.86	36.64	25.24	5.20		
100	22.57	36.62	25.31	5.18		
250	18.67	36.56	26.31	-		
400	17.24	36.36	26.52	4.18		
600	13.57	35.79	26.91	4.89		
700	11.43	35.48	27.09	3.35		

INTERPOLATED AND	CALCULATED
------------------	------------

DEPTH	T	S	σ _t	0 ₂
(m)	(°C)	(‰)		(m1/1)
0 10 20 30 50 75 100 150 200 250 300 400 500 600	22.89 22.88 22.87 22.87 22.86 22.78 22.57 21.00 19.70 18.67 18.32 17.24 15.51 13.57	36.67 36.65 36.67 36.64 36.63 36.62 36.62 36.62 36.60 36.56 36.51 36.36 36.08 35.79	25.25 25.24 25.26 25.26 25.24 25.25 25.31 25.74 26.08 26.31 26.31 26.37 26.52 26.71 26.91 26.91	4.86 4.86 4.85 5.20 5.19 5.18 5.03 4.83 4.66 4.50 4.18 4.24 4.89 3.35

