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Abstract.– Most growth models are
age-dependent only. Although their
modifications can be used to consider,
implicitly, the seasonal growth of ani-
mals and the effects of tagging, a gen-
eral framework is unavailable for ex-
plicitly incorporating time and time-
dependent factors (i.e. ambient tem-
perature and food availability) in age-
dependent growth models. In this pa-
per, I derived general age- and time-de-
pendent growth models for animals and
gave a comprehensive list of special
cases for age- and time-dependent
growth models of von Bertalanffy, lo-
gistic, and Gompertz types. Such mod-
els explicitly incorporate age, time, and
their dependent factors and are useful
for modeling growth at age and time
(e.g. from length-at-age data), incre-
mental growth at age and time incre-
ments (e.g. length increments at age
and time increments data from tagging
studies), the effects of tagging, and the
effects of many population character-
istics. I also examined their data re-
quirements, their independence of the
start of time and adjustment of esti-
mates of parameters essential for en-
suing applications, and concluded that
age- and time-dependent growth mod-
els are useful for subsequent applica-
tions, if and only if they are indepen-
dent of the start of time or time-homo-
geneous and if estimates of their pa-
rameters are properly adjusted. A
scheme for such an adjustment is pro-
posed and demonstrated. Finally, I used
nine special cases of these general mod-
els to analyze tagging data on a centro-
pomid perch (Lates calcarifer (Bloch)).
Such analyses suggested that tagging
is antagonistic to fish growth and leads
to a shrinkage of size and that L.
calcarifer exhibits a strong seasonality
in growth, namely its length grows fast-
est at the start of autumn, grows less
until a full stop in the middle of win-
ter, shrinks until the middle of spring,
and resumes a positive growth for an-
other cycle.

1 Pauly, D., and G. Gaschütz. 1979. A
simple method for fitting oscillating length
growth data, with a program for pocket cal-
culators. ICES Council Meeting 1979/
G:24, 26 p.

Most growth models relate an
animal’s size to its age alone, are
independent of time, and are meant
to be useful at all times. Some fac-
tors (e.g. ambient temperature and
food availability) that are known to
affect the growth of animals vary
with time, however. Consequently,
time has been incorporated in age-
dependent growth models implic-
itly, to consider seasonal (Pitcher
and Macdonald, 1973; Appeldoorn,
1987; Smith and McFarlane, 1990;
Pauly et al., 1992; Pauly and Ga-
schütz1) and biphasic (Soriano et al.,
1992) growth of animals, and the
effects of tagging (Xiao, 1994). Xiao’s
(1996, equations 3.0–4.2, p. 1676–
1677) deterministic extensions of
the classical von Bertalanffy (1938),
logistic (Verhulst, 1838), and Gom-
pertz (1825) growth models also
serve these purposes. Similarly,
Wang (1998) derived a set of age-
and time-dependent growth models
for a special case of the von Bertal-
anffy (1938) growth equation and
even constructed distribution-free
and consistent estimating functions
for estimating their parameters.
Although these implicit age- and
time-dependent growth models can
describe a set of data better than
age-dependent growth models, a
general framework is unavailable
for an explicit incorporation of time
and time-dependent factors.

However, an explicit entry of age,
time, and time-dependent factors
into growth models is essential for
studying the effects of many char-

acteristics of a population (e.g. its
age composition, size composition,
density, and size- or age-specific
mortalities) on the growth of its in-
dividuals (Moulton et al., 1992;
Walker et al., 1998). Indeed, much
insight can be gained by examining
density-dependent growth alone.
This is because density-dependent
growth can be effected by 1) com-
pensatory decreases in natural mor-
tality, which may result from a de-
crease in predation, cannibalism,
competition or diseases; 2) compen-
satory increases in fecundity when
food is more readily available or fe-
tal mortality decreases; and 3) com-
pensatory increases in growth
rate when more food induces ear-
lier maturity and greater fecundity
for each age class (Holden, 1973).
For these studies to be feasible,
equations for the sizes of individual
animals at age a at time t in a popu-
lation must be coupled with those
of their numbers at age a (or size)
at time t.

Just as an increase in dimension
can reveal new horizons, an explicit
incorporation of time and time-de-
pendent factors in age-dependent
growth models can be of great use
and promise. It also poses interest-
ing philosophical and practical
problems. Indeed, in general, time-
dependency makes age- and time-
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General age- and time-dependent growth models

Just as a formal derivation of age-dependent growth models necessitates use of ordinary differential equa-
tions, a formal derivation of age- and time-dependent growth models entails use of partial differential equa-
tions. This is because both age and time must be taken into explicit account. Readers unfamiliar with first
order partial differential equations may wish to skip immediately to Equations 6–6.3, 10–10.3, and 14–14.3,
with little loss of comprehension.

Now, let 0≤y(a,t)<∞, –∞<a0≤a<∞, 0≤t0≤t<∞, denote the size of an individual of a species of animal of age a at
time t, with an arbitrary reference age a0 and an arbitrary reference time t0. Suppose that the change in its
size at age a at time t in a small time interval of length ∆t is proportional to a function of y(a,t) and ∆t, such
that

y(a + ∆a,t +∆t) – y(a,t) = K(a,t)f(y(a,t))∆t,

where K(a,t) is its instantaneous rate of growth in size at age a and time t, and can capture the effects of age,
time, and their dependent factors. Dividing both sides of this equation by ∆t, Taylor series expansion of
y(a+∆a,t+∆t) in the neighbourhood of (a,t) as

passing to the limit ∆t→0, assuming that

and assuming further that

yield a first order partial differential equation

∂
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To solve this equation, I use the following approach. Suppose that the solution of y(a,t) is known. Let a=t+c,
or c=a–t, then

wc(t) = y(t+c,t) t ≥ tc = max(t0,a0–c)

dependent growth models depend on the start of time
and thereby renders them useless, unless the start
of time is known. Of course, the start of time (if it
did start at all) is unknown (although some may settle
for the Big Bang) and remains a subject of philosophi-
cal debate. It is obvious, then, that, for practical pur-
poses, workable age- and time-dependent growth
models must be independent of the start of time. But,
under what conditions are they so? How should esti-
mates of their parameters be adjusted to make these
models useful for subsequent applications at all
times? To answer these questions, both age and time
must enter a growth equation, explicitly.

In this paper, I derive general age- and time-de-
pendent growth models for animals and give a com-
prehensive list of special cases for age- and time-de-

pendent von Bertalanffy (1938), logistic (Verhulst,
1838), and Gompertz (1825) growth models. Such
models explicitly incorporate age, time, and their
dependent factors and are useful for modeling growth
at age and time (e.g. from length-at-age data), incre-
mental growth at age and time increments (e.g. from
length increments at age and time increments from
tagging studies), the effects of tagging, and the ef-
fects of population characteristics. I also examine their
data requirements, their independence of the start of
time, and adjustment of estimates of their parameters
for ensuing applications. Finally, I use nine special cases
of these general models to analyze data on length in-
crements at age and time increments from a tagging
study of a centropomid perch (Lates calcarifer (Bloch))
in the Northern Territory, Australia.
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for a fixed value of c∈ R. Because y(a,t) satisfies Equation 1, we obtain

(2)

Equations 1 and 2 are too general to be solved analytically. Now, I examined three of their special cases for
f(y(a,t)). For each of these special cases, Table 1 describes where to find equations corresponding to various
quantities of interest, and Table 2 describes where to find equations corresponding to various special cases of
the solution for y(a,t).

Age- and time-dependent growth models of von Bertalanffy (1938) type I

If f(y(a,t))=ymax(a,t)–y(a,t), Equations 1 and 2 become, respectively,

∂
∂

+ ∂
∂

= −[ ]y a t
a

y a t
t

K a t y a t y a t
( , ) ( , )

( , ) ( , ) ( , )max (3)

(4)

Of its many interpretations, ymax(a,t) can represent the asymptotic size of an average individual as age ap-
proaches infinity.

Solution of Equation 4 as an initial value problem with wc(t)|t=tc = wc(tc) yields

(5)

If a–a0<t, then c<0, –c>0, then tc=a0–c=t–a+a0; if a–a0≥t, then c≥0, –c≤0, then tc=t0. In other words,

If ymax(s+a-t,s)=ymax=constant in Equation 6, then

Table 1
Equations corresponding to various quantities of interest for von Bertalanffy (type I) (VB type I), von Bertalanffy (type II) (VB
type II), and Gompertz growth equations.

Quantity VB type I VB type II Gompertz

Partial derivative of y(a,t) Equation 3 Equation 7 Equation 11
Derivative of wc(t) Equation 4 Equation 8 Equation 12
Solution for wc(t) Equation 5 Equation 9 Equation 13
Solution for y(a,t) Equation 6 Equation 10 Equation 14
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Table 2
Equations corresponding to various special cases of the solution for y(a,t) for von Bertalanffy (type I) (VB type I), von Bertalanffy
(type II) (VB type II), and Gompertz growth equations.

Assumption about ymax(a,t) Assumption about K(a,t) VB type I VB type II Gompertz

none none 6 10 14
ymax(a,t)=constant none 6.0 10.0 14.0
ymax(a,t)=constant K(a,t)=constant 6.1 10.1 14.1
ymax(a,t)=constant 6.2 10.2 14.2
ymax(a,t)=constant K(a,t)=Kmax–(Kmax–Kmin)e–(a–a0)/a if a–a0<t; 6.3 10.3 14.3

K(a,t)=Kmax–(Kmax–Kmin)e–(t–t0)/a if a–a0≥t
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If K(s+a-t,s)=K0=constant in equation 6.0, then
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which is the age- and time-dependent von Bertalanffy (1938) growth model, or (if a–a0 or t–t0 is interpreted as
time at liberty) Fabens (1965) growth model, with parameters K0 and ymax.

Since many factors (e.g. ambient water temperature and food availability) vary seasonally, the instanta-
neous rate of growth of many animals K(a,t) fluctuates seasonally. If data are available on K(a,t) as a function
of these factors, their relationships can be hypothesized. In reality, however, few such data are available.
Nonetheless, one can still hypothesize about a temporal trend in K(a,t) and attribute it to the combined effects
of all responsible factors. For example, as a first approximation, K(a,t) is seasonal because of seasonal changes in
ambient water temperature and food availability and can be approximated by a sine or cosine curve. Thus, if
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T
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in Equation 6.0, an application of the trigonometric function-difference relation
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where K0, ymax, A, T, and tφ are model parameters to be estimated or specified.
Many species of animals are tagged for a variety of purposes. Tagging can affect the growth of some animals

positively, neutrally, or negatively. Indeed, some animals may slow down their growth, cease their growth, or
even shrink in size after tagging. A proper functional form of K(a,t) is needed to infer these consequences of
tagging. If K(s+a–t,s)=Kmax–(Kmax–Kmin)e-(s–t+a–a0)/α if a–a0<t and K(s+a–t,s)=Kmax–(Kmax–Kmin)e–(s–t0)/α if a–a0≥t
in Equation 6.0, then (note that t–a+a0-t0=0, or t–t0=a–a0)

.

.

,
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where Kmax, Kmin, ymax, and α are model parameters to be estimated or specified. Clearly, the functional form
of K(a,t) serves its purpose well. This is because Kmax<Kmin, Kmax=Kmin, and Kmax>Kmin indicate, respectively,
positive, no, and negative effects of tagging on the growth of animals; and Kmin<0, Kmin=0, and Kmin>0 suggest,
respectively, a shrinkage, cessation of growth, and a slower growth of tagged animals immediately after tagging.

Age- and time-dependent growth models of von Bertalanffy (1938) type II
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Solution of Equation 8 (a Bernoulli’s equation) as an initial value problem with wc(t)|t=tc = wc(tc) yields
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If a–a0<t, then c<0, –c>0, then tc=a0–c=t-a+a0; if a–a0≥t, then c≥0, -c≤0, then tc=t0. In other words,
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If p=1, Equations 7–10 and their special cases are reduced to age- and time-dependent growth models of
logistic (Verhulst, 1838) type.

If ymax(s+a-t,s)=ymax=constant in Equation 10, then

y a t

y y y a t a a
e a a t

y y y t a t t
e

p p p

K s a t s ds

p

p p p

K s a t

t a a

t

( , )

( , )

( , )

max max

( , )

/

max max

(

=

− −
− +























− <

− −
+ −







− + −

−

− + −

− +
∫1 1 1

1 1 1

0 0

1

0

0 0

0

,, )

/

s ds

p

t

t

a a t0

1

0

∫















− ≥

















− (10.0)

,

dw t
dt

K t c t
w t

p
w t

y t c t
t tc c c

p

c
( )

( , )
( ) ( )

( , )
.

max

= + −
+



















≥1 .

.

.

–

. t ≥ tc



695Xiao: General age- and time-dependent growth models for animals

If K(s+a-t,s)=K0=constant in Equation 10.0, then
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with parameters K0 and ymax.
If
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where K0, ymax, A, T, and tφ are model parameters to be estimated or specified.
If K(s+a–t,s)=Kmax–(Kmax-Kmin)e–(s–t+a–a0)/α, if a–a0<t and K(s+a–t,s)=Kmax–(Kmax–Kmin)e–(s–t0)/α, if a–a0≥t in

Equation 10.0, then (note that t–a+a0–t0=0, or t–t0=a–a0)
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where Kmax, Kmin, ymax, and α are model parameters to be estimated or specified.

Age- and time-dependent growth models of Gompertz (1825) type
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Thus, to obtain equations under the assumption corresponding to Equations 7–10.3, one can either take limits
of equations 7–10.3 for p→0 or solve Equation 12 directly. I chose the latter, without resort to applying the
L’Hôpital’s rule to log-transformed quantities to evaluate these limits. Solution of Equation 12 as an initial
value problem with wc(t)|t=tc =wc(tc) yields

(13)

If a–a0<t, then c<0, –c>0, then tc=a0–c=t-a+a0; if a–a0≥t, then c≥0, –c≤0, then tc=t0. In other words,
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If ymax(s+a–t,s)=ymax=constant in Equation 14, then
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(14.0)

If K(s+a–t,s)=K0=constant in Equation 14.0, then
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which is the age- and time-dependent Gompertz (1825) growth model, with parameters K0 and ymax.
If
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T
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in Equation 14.0, then
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where K0, ymax, A, T, and tφ are model parameters to be estimated or specified.
If K(s+a–t,s)=Kmax–(Kmax–Kmin)e–(s–t+a–a0)/α if a–a0<t and K(s+a–t,s)=Kmax–(Kmax–Kmin)e–(s–t0)/α if a–a0≥t in

Equation 14.0, then (note that t–a+a0-t0=0, or t–t0=a–a0)
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where Kmax, Kmin, ymax, and α are model parameters to be estimated or specified.

Data requirements for parameter estimation

Equations 6, 10, and 14, and their special cases are
segmented functions; they provide flexibility in the
analysis of growth data. Thus, by appropriately
choosing time t (which is a relative quantity), one
can use either segment (a–a0<t or a–a0≥t) for an in-
dividual animal or for a group of individuals, or use
both segments (a–a0<t and a–a0≥t) for a group of in-
dividuals. It is, however, more convenient to use only
one segment in a single analysis. Indeed, although
growth parameters can be estimated by use of either
segment of any of Equations 6.1, 6.2, 6.3; 10.1, 10.2,
10.3; 14.1, 14.2, 14.3, it is easier to use the segment for
a-a0<t, by letting time t start before the animals, whose
growth is to be modeled, are born, unless time is al-
lowed to take negative values. Use of the other seg-
ment, i.e., that for a–a0≥t, gives identical results, but it
is tortuous and requires first calculating y(t0+a–t,t0).

Data requirement for estimation of parameters in
a growth model is a function of the generality of that
model: the more general it is, the more data it gener-
ally requires. Equations 6, 6.0, 10, 10.0, 14, and 14.0
generally require knowledge of two ages a0 and a,
time t, and two sizes y(a0,t–a+a0) and y(a,t) if a–a0<t;
or knowledge of two times t0 and t, age a, and two
sizes y(t0+a–t,t0) and y(a,t) if a–a0≥t.

By contrast, use of Equations 6.1, 10.1, and 14.1
only requires knowledge of the difference between
two ages a–a0, and two sizes y(a0,t–a+a0) and y(a,t);
or of the difference between two times t–t0, and two
sizes y(t0+a–t,t0) and y(a,t). Equation 6.1 has been
widely used to model tagging data, where a0 or t0 is
interpreted as time at release, a or t as time at re-
capture, a–a0 or t–t0 as time at liberty, y(a0,t–a+a0)
or y(t0+a–t,t0) as size at release, and y(a,t) as size at
recapture. It has also been used extensively to model
size at age data (obtained, say, by ageing animals by
reading marks in their hard parts), where a0 or t0 is
interpreted as age at birth, a or t as age, y(a0,t–a+a0)
or y(t0+a–t,t0) as size at birth, and y(a,t) as size at

age. However, it is rare to know an animal’s two ages
and their corresponding sizes; what are commonly
measured are one age and its corresponding size.
Consequently, it is common practice to fit Equation
6.1 into such size-at-age data to estimate age at birth
a0 or t0, as well as the growth parameters, thereby
implicitly assuming, for all animals concerned, that
the size at birth y(a0,t–a+a0) or y(t0+a–t,t0) is zero
and that the age at birth a0 or t0 is the same. Exactly
the same argument applies to Equations 6.2, 6.3,
10.1, 10.2, 10.3, 14.1, 14.2, and 14.3.

Data analysis

Barramundi L. calcarifer is a protandrous fish found
in estuaries and other coastal areas of the Indo-West
Pacific (Griffin, 1987). Between August 1977 and
June 1980, 4933 barramundi with a body total-length
range of about 10–100 cm were captured by a combi-
nation of lure fishing, tidal trap, seine, and gill net.
They were measured to the nearest centimeter,
tagged with the then commonly used, but apparently
physically and physiologically damaging, Floy FT-2
dart tags for fish >35 cm and FD-67 anchor tags for
fish <35 cm, and released in rivers flowing into the
Van Diemen Gulf and the Gulf of Carpentaria of
northern Australia (Davis and Reid, 1982). Of those
tagged, 312 fish of a total length of 23–92 cm
(mean=60 cm, SE=13 cm) were recaptured, but only
308 are used in the analysis below owing to incom-
plete recapture information. The time at liberty
ranged from zero to 932 d, with a mean of 219 d
(SE=211 d), and the length increment from –21 to 35
cm, with a mean of 6 cm (SE=8 cm). Negative incre-
ments in length are often observed in a tagging ex-
periment because tagged animals can shrink in size
immediately after tagging.

Let a0 or t0 denote time at release, a or t, time at
recapture, a–a0 or t–t0, time at liberty, y(a0,t–a+a0)
or y(t0+a–t,t0), the length of a fish at release, y(a,t),

,
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its length at recapture, and ymax, its maximum length.
The segments of Equations 6.1, 10.1, 14.1; Equations
6.2 (p=1), 10.2 (p=1), 14.2 (p=1); and Equations 6.3,
10.3, 14.3, all for a–a0<t, were fitted into the tagging
data, by using the nonlinear least squares method,
under the assumptions that T=365.25 d, time started
(i.e. time t=0) on 1 January 1960 (see below for its
significance), and errors in y(a,t) follow independent
normal distributions, with a mean of ŷ (a,t) and a
constant variance of σ2 (Table 3). A likelihood ratio
test suggests that Equation 6.1 is significantly dif-
ferent from Equation 6.2 (F2,304=48.6892, P<0.0001)
or from Equation 6.3 (F2,304=4.1238, P=0.0171); Equa-
tion 10.1 (p=1) is significantly different from Equa-
tion 10.2 (p=1) (F2,304=45.3460, P<0.0001) or from
Equation 10.3 (p=1) (F2,304=3.3241, P=0.0373); and
Equation 14.1 is significantly different from Equa-
tion 14.2 (F2,304=46.8516, P<0.0001) or from Equa-
tion 14.3 (F2,304=3.5345, P=0.0304). Thus, Equations
6.2, 6.3; Equations 10.2 (p=1), 10.3 (p=1); and Equa-
tions 14.2, 14.3, and their associated estimates of pa-
rameters seem adequate for describing the tagging
data. Selection between equations 6.2 and 6.3, between
Equations 10.2 and 10.3, and between Equations 14.2
and 14.3 by developing more general models of K(a,t)
was not successful because of a lack of data.

Are equations 6.1, 6.2, 6.3; 10.1, 10.2, 10.3;
14.1, 14.2, 14.3 independent of the start of time?

An age- and time-dependent growth model is useful,
if and only if it is independent of the start of time or
if it is time-homogeneous. The reason for this is that

Table 3
Estimates and (in parentheses) standard errors of parameters by fitting Equations 6.1, 6.2, 6.3; 10.1 (p=1), 10.2 (p=1), 10.3 (p=1);
and 14.1, 14.2, 14.3 to the barramundi tagging data using the least squares method under the assumptions that T=365.25 d, time
started (i.e. time t=0) on 1 January 1960, and errors in y(a,t) follow independent normal distributions, with a mean of ŷ (a,t) and
a constant variance of σ2. P<0.0001; n=308; — = not applicable.

Equa-
tion ŷ max (a,t) (cm) K̂0 or K̂max (.d

–1) Âor K̂min (.d–1) t̂φ or α̂ (d) df1, df2, F σ̂ 2 (cm2) R2

6.1 113.4724 (9.6232) 0.00065 (0.00013) — — 2,306,30965.9769 22.8923 0.9951
6.2 114.4452 (8.6686) 0.00061 (0.00011) 0.00088 (0.00018) 62.7197 (06.8279) 4,304,20333.2870 17.4525 0.9963
6.3 110.1152 (8.5316) 0.00078 (0.00017) –0.00028 (0.00121) 28.7594 (41.6473) 4,304,15801.1643 22.4343 0.9952

10.1 94.7255 (3.2775) 0.00161 (0.00014) — — 2,306,30895.5263 22.9443 0.9951
10.2 96.2908 (3.0613) 0.00148 (0.00012) 0.00217 (0.00028) 63.5155 (06.7582) 4,304,19947.8597 17.7884 0.9962
10.3 94.4251 (3.1934) 0.00182 (0.00020) –0.00012 (0.00250) 37.3267 (63.1348) 4,304,15684.0774 22.6010 0.9952
14.1 100.5592 (4.8653) 0.00114 (0.00014) — — 2,306,31051.6220 22.8295 0.9951
14.2 102.1717 (4.5198) 0.00104 (0.00011) 0.00153 (0.00022) 63.2525 (06.7674) 4,304,20202.0707 17.5654 0.9963
14.3 99.6456 (4.6446) 0.00129 (0.00018) –0.00028 (0.00203) 31.6268 (51.7115) 4,304,15784.7666 22.4575 0.9952

start of time is unknown. For Equations 6.0, 10.0
and 14.0 to be useful,

K s a t s ds
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+ −
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∫
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if a–a0≥t must be independent of the start of time t.
Obviously, Equations 6.1, 6.2, 6.3; 10.1, 10.2, 10.3;
14.1, 14.2, and 14.3 all are independent of the start
of time, where time t appears as time differences t–
t0 or t–tφ.

However, interesting differences exist among them.
Equations 6.1, 6.3, 10.1, 10.3, 14.1, and 14.3 apply
on any time scales, without any adjustment of esti-
mates of their parameters in subsequent applications
because they depend on time difference t–t0 or age
difference a–a0 only. By contrast, Equations 6.2, 10.2
and 14.2 and estimates of their parameters must be
properly adjusted for this purpose. Specifically, the
estimate of parameter tφ in Equations 6.2, 10.2, and
14.2 must be correctly adjusted before their subse-
quent applications. To make such an adjustment,
suppose that all growth parameters are estimated
from tagging data by using one segment of Equation
6.2, 10.2, or 14.2 on one time scale (regression time
scale, Fig. 1), with time t, parameter tφ (estimated),
and a reference time tr (known). Now, Equation 6.2,
10.2, or 14.2 is to be applied in a future fish stock
assessment on another time scale (application time
scale, Fig. 1), with time t', parameter tφ' (unknown,

if a – a0 < t or
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Figure 1
Relation among regression, application, and projection time
scales for adjusting estimates of parameters in Equations
6.2, 10.2, and 14.2 for subsequent applications.

to be calculated), and a reference time tr' (known).
Both reference times must be chosen properly, such
that tr=tc on tr’s scale and tr'=tc on tr'’s scale, where tc
is an arbitrarily chosen time. For example, tr=0 on
tr’s scale; tr'=0 on tr'’s scale. Projection of both tr=tc
on tr’s scale and tr'= tc on tr'’s scale onto a third time
scale (projection time scale, Fig. 1) to find their time
difference on the third time scale τr'–τr. It is this time
difference that is to be used to calculate tφ'. To do so,
let tr–tφ=tr'–tφ', or tφ'=tφ+tr'–tr=tφ+τr'–τr, t–tφ=t'–tφ'=t'–
tφ–tr'+tr=t'–tφ–τr'+τr. Therefore, in Equations 6.2, 10.2,
and 14.2, replacement of t–tφ with t'–tφ–τr'+τr, of a–

Figure 2
Growth rate K(a,t)=Kmax–(Kmax–Kmin)e–(a–a0)/α if a–a0<t and K(a,t)=
Kmax–(Kmax–Kmin)e–(t–t0)/α if a–a0≥t as a function of age difference a-a0
or time difference t-t0 in Equations 6.3 (•••), 10.3 (—) and 14.3 (---),
with estimates of parameters Kmax, Kmin, and α in Table 1 for L. calcarifer.

a0 with a'–a0', and of t–t0 with t'–t0' will give
the correct growth models for the future fish
stock assessment on the required time scale
(application scale). For the barramundi
growth described by equation 6.2, t̂φ=
62.7197 d, tr=0 corresponds to τr=1 Janu-
ary 1960 (row 2, Table 3), tr'=0 corresponds
to τr'=1 January 1999, then tφ'= t̂φ+τr'–
tr=62.7197+(1 January 1999)–(January 1,
1960)=62.7197+14245=14307.7197 d.
Therefore, replacement of t–tφ with t'–
14307.7197, of a–a0 with a'–a0', and of t–t0
with t'–t0' in the model concerned will give
the correct growth models for the future
(when time starts on 1 January 1999) bar-
ramundi stock assessment on the required
time scale (application scale). In this ex-
ample, the third time scale (projection time
scale) is, of course, calendar time.

Discussion

This work presents general age- and time-
dependent models for the growth of animals
and a comprehensive list of their useful special cases,
forming a basis for obtaining quantitative informa-
tion on the growth of animals experiencing changes
in age, time, and age- and time-varying factors. These
models have many applications. An obvious one
would be to examine both the short- and long-term
effects of tagging on the growth of animals by use of
Equations 6.3, 10.3, and 14.3; Kmax<Kmin, Kmax=Kmin,
and Kmax>Kmin indicate, respectively, positive, no, and
negative effects of tagging on the growth of animals.
Similarly, Kmin<0, Kmin=0, and Kmin>0 suggest, re-
spectively, a shrinkage, cessation of growth, and a
slower growth of tagged animals immediately after
tagging. In the case of the L. calcarifer (Fig. 2), tag-
ging seems to have been antagonistic to its growth
(Kmax>Kmin) and led to a shrinkage of its size (Kmin<0).
This conclusion is tentative, however, because of the
large standard error of α̂ .

Another application would be to study how age-
and time-dependent factors other than age and time
affect the growth of animals. For example, one can
hypothesize about the functional forms of K(a,t), such
as K(a,t)=αT(t–tr)

β, where T(t) is ambient tempera-
ture, availability of food, or pH value; tr (a time lag
or lead), and α and β are all parameters to be esti-
mated or specified. Such a model is ideal for analyz-
ing data on the length or weight of an individual
animal at age and time, which may be available, say,
from aquaculture operations. It might also be useful
for analyzing data from mark-recapture experiments,
where ambient temperature or food availability of a
tagged animal is measured continuously from the
time of its tagging to the time of its recapture. In-
deed, if L. calcarifer had been tagged with a “smart”
tag that could record ambient temperature or food
availability, analysis would have been made of their

'

'

(d)

'
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lengths at release and recapture and at times at lib-
erty in the above application. It should be noted,
however, that the information from a tagging experi-
ment is limited. It might not be possible to estimate
all the parameters in the model reliably, as in the case
of the L. calcarifer data. Such a limitation also applies
to extracting environmental signals from growth data.

More importantly, all the above models can be used
to study the population dynamics of some species of
animals, simply by letting y(a,t) denote the number
of individuals of a species of animals of age a at time
t. Indeed, similar models in studies of population
dynamics also lead to partial differential equations
(e.g. Nisbet and Gurney, 1982).

It is interesting that L. calcarifer is a tropical and
subtropical species of fish and yet exhibits a strong
seasonal growth. For all three models (Equations 6.2,
10.2, or 14.2), its growth rate K(a,t) reaches its maxi-
mum on 3 or 4 March (i.e. at the start of autumn),
slows down to zero on 17 July (i.e. in the middle of
winter), reaches its minimum on 2 or 3 September
(i.e. at the start of spring), returns to zero on 19 or
20 October (i.e. in the middle of spring), and comes
back to its maximum rate on 3 or 4 March (i.e. at the
start of autumn) (Fig. 3). Thus, its length grows fast-
est on 3 or 4 March (i.e. at the start of autumn), grows
less until a full stop on 17 July (i.e. in the middle of
winter), shrinks until 19 or 20 October (i.e. in the
middle of spring), and resumes a positive growth for
another cycle. Thus, L. calcarifer does not grow in
length for three months in a year, from 17 July (i.e.
in the middle of winter) to 19 or 20 October (i.e. in
the middle of spring). Such a strong seasonality in
growth seems related to the seasonal availability of
food and seasonal changes in water temperature.

Figure 3
Growth rate K(a,t)=K0+A cos  (t–tφ) as a function of time t in equa-
tions 6.2 (•••), 10.2 (—) and 14.2 (---), with estimates of parameters
K0, A, and tφ in Table 1 for L. calcarifer, and T=365.25 d.

Finally, notice my use of the length at
recapture rather than length increment of
a tagged individual as the independent
variable in relevant models and in the data
analysis. This was to avoid error propaga-
tion. The variance of the length increment
is

V L L V L V L

L L V L V L

( ) ( ) ( )

( , ) ( ) ( )

2 1 2 1

1 2 1 22

− = + −

ρ

where ρ(L1, L2) is the correlation coefficient
between lengths L1 and L2.

A higher value of noise to signal ratio is
expected if length increments are used; the
higher value of noise to signal ratio helps
mask patterns in the data and makes their
analysis difficult.
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