Supplementary Table 2. Key equations of initial population at age computation and differences between operating models in case 0 and case 12 . In case 0 , the initial equilibrium recruitment $\left(R_{e q}\right)$ in the operating model is lowered from the unfished recruitment level as determined by an initial equilibrium fishing mortality. In case 12 , the initial condition was set to the unfished equilibrium population to match the approach used in the Assessment Model for Alaska. $\phi_{\mathrm{F}}=$ spawning biomass per recruit based on $F ; \phi_{0}=$ unfished spawning biomass per recruit; $R 0=$ unfished recruitment; $h=$ steepness.

Case 0

E3.4

$$
\left.R_{e q}=\frac{R 0 \times\left(4 \times h \times \phi_{\mathrm{F}}-(1-h) \phi_{0}\right)}{(5 \times h-1) \phi_{\mathrm{F}}}\right)
$$

ϕ_{F} is computed based on F in model year 1 , so $\phi_{\mathrm{F}}<\phi_{0}$ and $R_{e q}<R 0$

Case 12

E3.4_C12

$$
\begin{gathered}
\left.R_{e q}=\frac{R 0 \times\left(4 \times h \times \phi_{0}-(1-h) \phi_{0}\right)}{(5 \times h-1) \phi_{0}}\right) \\
R_{e q}=R 0
\end{gathered}
$$

