Supplementary Table 1. Hierarchical structure analyses of molecular variance for polkadot skate (*Dipturus chinensis*) sampled during 2010–2017 from 6 populations around Japan in the East China Sea, Sea of Japan, and Pacific Ocean, based on the mitochondrial cytochrome *b* gene (931 base pairs) and 4 microsatellite loci. Isls.=Islands.

Groupings ^a	Source of variation	Sum of	Variance	Φ or R statistics	Percentage
		squares	components		of variation
Mitochondrial cytochrome b gene					_
All 6 populations	Among populations	703.56	8.6712	$\Phi_{\text{ST}}=0.8976 \ (P<0.001)$	89.76
	Within populations	205.78	0.9893		10.24
2 groups					
1. Clade A (Danjo Isls.–Goto Isls.–	Among groups	640.39	8.3197	$\Phi_{\text{CT}}=0.8529 \ (P=0.068)$	85.29
Kyoto-Niigata)	Among populations within groups	68.93	0.4588	Фsc=0.3199 (<i>P</i> <0.001)	4.70
2. Clade B (Kochi-Aomori)	Within populations	200.01	0.9757	$\Phi_{\text{ST}}=0.9000 \ (P<0.001)$	10.00
3 groups					
1. Clade A (Danjo Isls.–Goto Isls.–	Among groups	703.56	8.6555	Φ_{CT} =0.8964 (P =0.064)	89.64
Kyoto-Niigata)					
2. Clade B1 (Kochi)	Among populations within groups	5.76	0.0242	Φ_{SC} =0.0242 (P =0.072)	0.25
3. Clade B2 (Aomori)	Within populations	200.01	0.9757	$\Phi_{\text{ST}}=0.8990 \ (P<0.001)$	10.11
Microsatellite loci					
All 6 populations	Among populations	39.13	0.2251	R _{ST} =0.1409 (<i>P</i> <0.001)	14.09
	Within populations	572.25	1.3723		85.91
2 groups					
1. Clade A (Danjo IslsGoto Isls	Among groups	24.94	0.1351	$R_{\text{CT}} = 0.0868 \ (P = 0.067)$	8.68
Kyoto-Niigata)	Among populations within groups	21.27	0.0561	R _{SC} =0.0394 (<i>P</i> <0.001)	3.60

Groupings ^a	Source of variation	Sum of	Variance	Φ or R statistics	Percentage
		squares	components		of variation
2. Clade B (Kochi–Aomori)	Within populations	565.18	1.3652	R _{ST} =0.1228 (<i>P</i> <0.001)	87.72
3 groups					
1. Clade A (Danjo IslsGoto Isls	Among groups	39.13	0.2167	$R_{\text{CT}}=0.1359 \ (P=0.066)$	13.59
Kyoto-Niigata)					
2. Clade B1 (Kochi)	Among populations within groups	7.08	0.0128	R _{SC} =0.0093 (P<0.05)	0.80
3. Clade B2 (Aomori)	Within populations	565.18	1.3652	R _{ST} =0.1439 (<i>P</i> <0.001)	85.61

^a Partitioning of genetic variability among the geographic populations of Japan was performed by hierarchical AMOVA, which grouped them into alterative structures by maximizing Φ_{CT} or R_{CT} values