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The eastern rock lobster, Jasus ver-
reauxi, reportedly is the largest
spiny rock lobster in the world
(Philips et al., 1980). It occurs in
waters off the coast of New South
Wales (NSW), Australia, around the
coast of Tasmania, and as far west
as South Australia (Montgomery,
1995). It is also found off New
Zealand, predominantly around the
North Island (Kensler, 1967a).

Limited information on the life
history of J. verreauxi in waters off
NSW is available (McWilliam and
Philips, 1987; Montgomery, 1992,
1995; Montgomery and Kittaka,
1994; Montgomery1 ). Most informa-
tion comes from studies of the spe-
cies in waters off New Zealand
(Kensler 1967a, 1967b, 1967c;
Booth, 1984a, 1984b, 1986). How-
ever, comparisons of mitochondrial
DNA from juvenile rock lobsters
from NSW and New Zealand waters
have suggested that the populations
are genetically distinct (Brasher et
al., 1992).

The distribution of rock lobsters
across habitat is patchy. From the
puerulus to early juvenile stages of
their life cycle, lobsters are probably
asocial and thought to occur princi-
pally within the complex structure
of forests of macroalgae or within
beds of seagrass in waters from the
intertidal zone to 30 m. During the
older stages of the juvenile phase,
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Abstract.–Rock lobster, Jasus ver-
reauxi, have been fished off New South
Wales, Australia, since the late nine-
teenth century. Since 1994–95 (1 July
1994 to 30 June 1995) the fishery has
been managed under an output-control
scheme with an annual total allowable
catch (TAC) of 106 metric tons (t). Es-
timates of catch and catch per unit of
effort (CPUE) have been developed
from data collected from the commer-
cial fishery for the period 1903–1936
and the period from 1969–70 to 1993–
94. A production model was fitted to
these data by using a robust observa-
tion-error estimator that minimizes the
median of squared differences between
log-observed and predicted CPUEs. A
bootstrap resampling procedure was
incorporated into this robust estimation
method to estimate stock parameters
and their uncertainties. The virgin bio-
mass of the rock lobster was 4084 t (its
5th and 95th percentiles being 2553 and
6400 t). The stock biomass decreased
substantially until 1990–91. Since
1992–93, it has stabilized and has prob-
ably increased owing to the large de-
crease in the allowable catch after
1988–89. The stock biomass in year
1995–96 was likely to have been be-
tween 15% and 30% of the virgin biom-
ass (75% confidence interval). The im-
plications from using different estima-
tion methods on assessing this lobster
stock are discussed.

the animal may begin to aggregate
and migrate en masse to the habi-
tat of adults. Adult rock lobsters live
in aggregations from depths of
around 10 m to those of the conti-
nental slope (Montgomery, 1995;
Montgomery1). From the older ju-
venile stage onward, lobsters aggre-
gate by day, and at night they roam
alone. Information on the move-
ments of tagged rock lobsters off
New Zealand (Booth, 1984b) and
spatial patterns in the length com-
position of rock lobsters in waters
off NSW (Montgomery1) suggest
that for management purposes the
entire NSW population of rock lob-
sters should be considered as a unit
stock. These studies indicate that
older juveniles and adults move in
an inshore–offshore direction and
along the coast. The movement
along the coast is thought to be as-
sociated with breeding (Booth,
1984b).

Rock lobsters have been fished off
the east coast of Australia since the
late nineteenth century. It is an
important fishery in NSW, with an
annual output of over 5 million US
dollars. Since the 1994–95 fishing

1 Montgomery, S. S. 1990. Preliminary
study of the fishery for rock lobsters off the
coast of New South Wales. Final Report,
grant no. 86/64. Fisheries Research and
Development Corporation, Canberra, Aus-
tralia, 166 p.
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year (i.e. from July 1 1994 to June 30 1995), this fish-
ery has been managed under an output-control scheme
with an annual total allowable catch (TAC) of 106 t.
No attempt has been made previously to quantify
the dynamics of this fishery.

Abundance indices, catch per unit of effort (CPUE),
have been developed by Montgomery (1995) from data
collected in the commercial fishery for the period of
1903–36 and that from 1969–70 (i.e. 1 July 1969 to 30
June 1970) to 1993–94. Because data are mainly col-
lected and derived from the NSW commercial fishery,
large errors are likely to exist in the catch and CPUE
data, and there is a concern that the quality of the data
is perhaps not good for the purpose of modeling.

Production models are fitted to catch and CPUE
data by using an observation-error estimator that
minimizes the sum of squared differences between
log-observed and predicted CPUEs (Hilborn and
Walters, 1992). This estimator assumes that there
is only error in the observed abundance index and
that there are no observation errors in catch or pro-
cess errors in the dynamics of the stock biomass.
Because the least-squares method is sensitive to the
assumption on the error structure in the model
(Rousseeuw and Leroy, 1987), the unrealistic error
assumption associated with the observation-error
estimator tends to result in large errors in estimated
parameters when models are fitted to data (Schnute,
1989; Chen and Andrew, 1998).

A more realistic error structure should include
process error in the dynamics of the stock biomass
and observation errors in both CPUE and catch. In
our case, if the distribution of all error terms can be
fully defined, we can apply the Kalman filter to gen-
erate a likelihood function and then maximize this
likelihood function to yield parameter estimates
(Sullivan, 1992), or we can define an appropriate
variance-covariance matrix based on the defined er-
ror structure and then apply a generalized least-
squares method to estimate parameters in the model
(Paloheimo and Chen, 1996). However, the former
approach is rather complicated because the dynamic
model is nonlinear and there are two observation
models (i.e. one for CPUE and the other for catch;
Reed and Simons, 1996). The latter approach needs
information on process and observation errors
(Paloheimo and Chen, 1996). Such information is
probably nonexistent in most fisheries. Moreover, the
parametric assumption on error distribution (e.g.
normal, log-normal, etc) may not be true.

Because of all these difficulties with the error struc-
ture for production models, it is desirable to have an
estimation method that is robust with respect to as-
sumptions concerning model error structure. Least
median of squared errors (LMSE; Rousseeuw, 1984),

which minimizes the median of squared differences
between predicted and observed log CPUEs, is such
an estimator (Chen and Andrew, 1998). A bootstrap
procedure (Efron, 1979) was incorporated into the
LMSE estimator to estimate the parameters and
their uncertainties in this study. The probability of
short-term overexploitation, defined as a fishing
mortality rate higher than the selected biological
reference points, was estimated for the next fishing
season with different levels of TAC.

Production models

Production models are the simplest stock assessment
models that are commonly used in fisheries (Hilborn
and Walters, 1992). The input data for these models
are the time series of catch and associated abundance
index. Several variants of production models have
been proposed (e.g. Pella and Tomlinson, 1969;
Walters and Hilborn, 1976; Schnute, 1977, 1989;
Punt, 1993). Without considering the structure of
observation and process errors, the deterministic
production model that is most commonly used can
be written as

Bi+1 = Bi + gi – Ci, (1)

where Bi = the stock biomass;
Ci = the catch; and
gi = the growth of population in biomass, all

in year i.

The gi is often referred to as surplus production and
often described by the logistic or Schaefer function
written as g(Bi) = rBi(1 – Bi/K), where r is a para-
meter describing the intrinsic rate of population
growth in biomass and K is a parameter correspond-
ing to the unfished equilibrium stock size (often re-
ferred to as the carrying capacity or virgin biomass).
The stock biomass in year i is often assumed to be
directly related to a relative abundance index that
can be observed in fisheries. This assumption can be
written as

Ii = qBi,

where q = the catchability coefficient; and
Ii = the abundance index in year i (Hilborn

and Waters, 1992).

Methods for the parameter estimation

The use of an appropriate method to fit a production
model to the observed data has been shown to be as
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important in terms of the reliability of estimated
parameters as the specification of the algebraic form
of the underlying population dynamic model (Punt,
1988, 1993; Polacheck et al., 1993). Several ap-
proaches have been proposed to estimate parameters
in production models when only indices of abundance
and catch are available (Hilborn and Walters, 1992).
The four most commonly used approaches are equilib-
rium estimators (Gulland, 1961), effort-averaging es-
timators (Fox, 1975), process-error estimators (Walters
and Hilborn, 1976; Schnute, 1977), and observation-
error estimators (Butterworth and Andrew, 1984;
Ludwig and Walters, 1985). These approaches differ in
how observation and process errors are introduced into
the models that describe the dynamics of populations.

Recently, it has been suggested in some studies that
observation-error estimators tend to perform better
than others in parameter estimation (Punt, 1988,
1993; Hilborn and Walters, 1992; Polacheck et al.,
1993). These estimators are constructed by assum-
ing that the population dynamic equations are de-
terministic (thus there is no process error) and that
all of the error occurs in the relationship between
stock biomass and relative abundance index. This
assumption can be written as

log(Ii) = log(qBi) + ei.

With the assumption that the ei are independent,
normally distributed variates, the estimates of the
model parameters (Binitial, q, r, and K) are obtained
by maximizing the appropriate likelihood function
(Polacheck et al., 1993) or by minimizing the sum of
squared ei (Hilborn and Walters, 1992). The time
series of stock biomass are estimated by projecting
the biomass at the start of the catch series forward
by using the historical annual catches. Because the
estimation methods for observation-error estimators
are least-squares types, they are sensitive to the as-
sumption about the error structure of the model.
Thus, parameter estimates tend to be unreliable if
the specification of error structure (i.e. no process
error, no error in observed catch, and log-normal er-
ror in observed abundance index) is not correct. How-
ever, in practice, it is almost impossible to know the
true error structure. It is therefore desirable to use
an estimation approach that is robust to the assump-
tion about the model error structure for observation-
error estimators.

An observation-error estimator, which minimizes
the median of squared differences between observed
and predicted log CPUEs, has been found to be ro-
bust with respect to incorrect specification of error
structure (Chen and Andrew, 1998). This estimator
can be written as

It is an extension of the linear robust regression
method used by Chen and Paloheimo (1994) and
Chen et al.(1994) for nonlinear parameter estima-
tion. It should be noted that the algorithm developed
for the linear parameter estimation (Rousseeuw,
1984) can not be used for the above estimator. The
simplex method of Nelder and Mead (1965) was used
to conduct the nonlinear parameter estimation for
the above estimator (Press et al., 1992; Chen and
Andrew, 1998).

Estimation of stock parameters for eastern
rock lobster

Catch and CPUE data were available for two time
periods. The first period (hereafter referred to as
period I) was from 1903 to 1936, and the second (pe-
riod II) from 1969–70 to 1993–94. The fishery was
confined to grounds close to shore in period I, whereas
from the beginning of period II, the fishery expanded
to the continental slope. Therefore, it is highly likely
that large differences in catchability existed between
these two periods. Both the size and structure of the
rock lobster stock on the NSW coast may have
changed greatly over the two periods (Montgomery,
1995), and it is likely that the growth rate of the NSW
rock lobster stock differed between these two peri-
ods of time. Parameters r and q were thus assumed
to be different in these two time periods. Parameter
K was assumed to be the same for these two time
periods. This assumption was considered to be rea-
sonable because the harvesting on the expanded fish-
ing grounds at the beginning of period II was not
from an unexploited portion of the stock. It is thought
that eastern rock lobsters along the NSW coast dis-
play a movement that is typical of several other spe-
cies of rock lobster, moving between inshore and off-
shore grounds and along the coast (see Herrnkind et
al., 1994). Hence, lobsters on the grounds on the con-
tinental slope likely had been exposed to fishing on
more traditional shallower grounds at other times.

The LMSE method was applied to fit the model to
data observed in period I and estimate parameters
B1903, rI, qI, and KI, where subscript I refers to pe-
riod I. Because the year 1903 was early in the devel-
opment of the fishery, it is reasonable to assume that
B1903 is the same as KI in parameter estimation
(Hilborn and Walters, 1992). Thus, there are only
three parameters to be estimated with data observed
in the first time period.

An algorithm that incorporates a bootstrap ap-
proach into the LMSE method was developed to es-
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timate the sampling distribution for
model parameters. This approach is
referred to as the bootstrapped
LMSE method and its precedure fol-
lows:

1 estimate the model parameters
using the LMSE method;

2 calculate the predicted CPUEs
using the LMSE-estimated pa-
rameters;

3 calculate the residuals between
observed and predicted log
CPUEs;

4 randomly sample the residuals
with replacement to add to the
predicted logarithm CPUEs to
yield pseudo observed CPUEs;

5 apply the LMSE algorithm to the
pseudo observed CPUEs to esti-
mate bootstrapped estimates;

6 repeat steps 4 to 5 100 times to
simulate 100 sets of pseudo CPUE
data and to estimate subsequently
the corresponding 100 sets of boot-
strapped parameters; and

7 calculate the median value and
90% confidence intervals for each
parameter using the 100 boot-
strapped estimates.

Following Efron and Tibshirani (1985)
and Manly (1991), the median values
and 90% confidence intervals derived
from the 100 sets of bootstrapped pa-
rameters were used as the parameter
estimates and their associated uncer-
tainties. The 100 bootstrap runs were

( )
( )
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Figure 1
The landed catch of eastern rock lobsters in New South Wales (NSW), Austra-
lia, during the period of 1903–36, and from 1969–70 (i.e. 1 July 1969 to 30
June 1970) to 1993–94.

considered sufficient for the LMSE method in this study
because a preliminary analysis indicated that differ-
ences in the distributions of estimated parameters de-
rived from 100 and 2000 bootstrap runs were small.

Since KII was assumed to be the same as KI, there
were three parameters, rII, qII, and B69–70, to be esti-
mated in modelling CPUE and catch data observed
in period II. Although CPUE for period II was de-
rived from accurate records of catch and effort asso-
ciated with part of the commercial fishery, under-
reporting of total catch occurred to a significant ex-
tent during period II (Montgomery and Chen, 1996).
The extent of under-reporting in different fishing
seasons was estimated on the basis of a survey of
fishermen (Table 1; Montgomery1; Montgomery,
unpubl. data). Thus, catch in fishing year j was ad-
justed from the reported catch (Fig. 1) as

where adjustment coefficient = the proportion of un-
der-reporting estimated.

The seven-step procedure described above was
modified to include the uncertainties in KI in esti-
mating the parameters and associated uncertainties
in period II. The modification was accomplished by
using values of KI randomly sampled from the
bootstrapped samples generated in the bootstrapped
LMSE analysis for period I. Such a modification takes
into consideration the variation in KI (thus KII) when
estimating qII, rII, and B1969–70 and their variabilities.
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Table 1
Coefficients used to adjust reported catch data in the pe-
riod of 1969–70 to 1993–94.

Year Adjustment coefficient

1969–70 to 1979–80 0.5
1980–81 to 1989–90 0.7
1990–91 to 1991–92 0.45
1992–93 to 1993–94 0.15

Evaluation of probability of overexploitation for
next fishing season

The probability of short-term overexploitation (i.e.
the probability of the fishing mortality rate being
higher than defined biological reference points) was
defined with respect to different levels of catch for
the 1996–97 fishing season. The two biological refer-
ence points used in our study were f0.1 and fMSY. The
f0.1 is equivalent to the more commonly used F0.1
(Hilborn and Walters, 1992) and is defined by the
equation

where C(E) = the equilibrium yield corresponding to
effort E (Punt, 1993).

From the above equation and Equation 1, f0.1 can be
calculated as f0.1 = 0.45r. The TAC in year j based on
the f0.1 can be calculated as TAC0.1(j) = 0.45rBj, where
Bj is the estimate of stock biomass in year j. The rate
of fishing mortality (fMSY) producing maximum sus-
tainable yield (MSY) can be calculated as fMSY = 0.5r.
The TAC in year j, based on fMSY, can be calculated
as TACMSY (j) = 0.5rBj. It should be noted that the
TACMSY (j) calculated above changes with the cur-
rent stock biomass and is thus dynamic over time. It
differs from the commonly used equilibrium maxi-
mum sustainable yield (EMSY) calculated as rK/4
(Hilborn and Walters, 1992). The use of TACMSY (j)
is more robust with respect to interannual variabil-
ity in the biomass of the stock than is a TAC based
on the more commonly used EMSY.

Results

Parameters rI, qI, and KI estimated with the LMSE
method were 0.203, 1.76 × 10–6 (per vessel, and 3208 t,
respectively. This results in an EMSY of 163 t. The
predicted CPUEs tended to follow the CPUEs ob-

Table 2
Summary of the estimates of parameters with the
bootstrapped LMSE method from 100 runs of bootstrap
simulation for CPUE and catch data observed during 1903
to 1936.

Parameter

qI × 10–6

Statistic rI (per vessel) KI σ1

Median 0.155 1.20 4084 0.428
Mean 0.149 1.26 4269 0.497
CV 48.6% 28.0% 26.0% 53.1%
5th% 0.045 0.79 2554 0.187
95th% 0.292 1.94 6400 1.058

1 For each bootstrap run, σ is calculated as

where CPUE and CPUE are observed and predicted catch per
unit of effort, respectively, and n is the number of years.
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served in the majority of years in period I (Fig. 2).
However, CPUEs observed in the years 1904 and
1917–24 differed considerably from the LMSE-pre-
dicted values, indicating that they virtually were ig-
nored in the parameter estimation. The estimated
stock size in year 1936 was 37.6% of the virgin biom-
ass. The median value for KI from the 100 boot-
strapped LMSE estimates was 4084 t (Table 2), about
27% higher than the LMSE-estimated KI. The coef-
ficient of variation (CV) for the LMSE-estimated KI
was only 26%, indicating that the uncertainty asso-
ciated with the LMSE-estimated KI was small. The
median values of bootstrapped r and q were 0.155
and 1.2 × 10–6 (per vessel) (Table 2), about 24% and
32% lower than the LMSE-estimated r and q, respec-
tively. The higher CV for r, compared with the CVs
for q and KI, indicates that the estimate of r is more
uncertain than the estimates of q and KI. The distri-
butions of all three parameters tended to be posi-
tively skewed (Fig. 3). The estimated EMSY ranged
from 50 t to 200 t with the median value of 151 t
(Fig. 3).

By assuming KII to be the same as the median value
of KI estimated in the bootstrapped LMSE estimation,
we estimated parameters rII, qII, and B1969–70. The
LMSE-estimated B1969–70 was close to the value of KI
(4,365 t). The rII was 0.218, about 7% higher than the
LMSE-estimated rI. The LMSE-estimated qII was 0.15
× 10–6 (per trap-month). The model was fitted by means
of the LMSE method by ignoring the data observed in
the two fishing seasons 1971–72 and 1974–75 because
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Figure 2
Catch per unit of effort observed and predicted by the LMSE method for the
NSW eastern rock lobster fishery in the period of 1903 to 1936.

Figure 3
The distributions of the parameters estimated with the bootstrapped least median of squared errors (LMSE) for the period of
1903 to 1936.

CPUEs in these two fishing seasons
increased greatly and abruptly from
the previous years, followed by an
equally abrupt decrease (Fig. 4).

Distributions for parameters of
the model estimated with the
bootstrapped LMSE method for pe-
riod II are presented in Figure 5.
The median value of the stock bio-
mass in year 1969–70 was 3808 t,
13% lower than the corresponding
LMSE estimate. The estimated
median value of rII was 0.172
(Table 3), 22% lower than the
LMSE-estimated rII. The median
value of qII was only 10% of that
estimated for qI. This resulted
from different units of fishing ef-
forts used in calculating the abun-
dance index (CPUE) in the two
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Figure 4
Catch per unit of effort observed and predicted with the LMSE method for the NSW
eastern rock lobster fishery during the period of 1969–70 (i.e. 1 July 1969 to 30 June
1970) to 1993–94 (i.e. 1 July 1993 to 30 June 1994).

Table 3
Summary of the estimates of parameters using the LMSE
method from 100 runs of bootstrap simulation for CPUE
and catch data observed from 1969–70 to 1993–94.

Parameter

qII × 10–6 B1969–70
Statistic rII (trap × month)–1 (ton) σ1

Median 0.172 0.15 3808 0.237
Mean 0.177 0.15 3764 0.241
CV 19.4% 16.2% 11.5% 360%
5th% 0.132 0.11 3099 0.059
95th% 0.223 0.18 4418 1.098

1 For each bootstrap run, σ is calculated as

where CPUE and CPUE are observed and predicted catch per
unit of effort, respectively, and n is the number of years.
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the assumption that catches in 1994–95 and 1995-
96 were 106 t. The 90% confidence intervals tended
to increase from 1969–70 to 1994–95 (Fig. 6), indi-
cating that estimates of the stock biomass in recent
years were less precise than those in earlier years.
The median value of the biomass of stock in the 1995–
96 fishing year was 1420 t, and the 5th and 95th per-

centiles were 710 and 2719 t (Fig. 6). Median values
for the biomass of the stock fell until 1990–91 and
then started to increase from 1992–93. The plot of
the distribution of the ratio between biomass in year
1995–96 against the biomass of the virgin stock in-
dicated that there was more than 75% chance that
the biomass ranged between 15% and 30% of the vir-
gin biomass (Fig. 7).

The distribution of the biomass of the stock in
1996–97 is summarized in Figure 8. There was more
than a 70% chance that the biomass of the stock
ranged between 1000 to 1750 t. The probabilities of
short-term overharvest (i.e. exceeding the selected
biological reference points) were calculated for dif-
ferent levels of catch in 1996–97 on the basis of the
distribution estimated for the biomass of the stock
in 1996–97 (Fig. 9). For example, the TAC of 100 t
would have a 30% chance of exceeding the reference
point fMSY, and a 40% chance of exceeding f0.1 (Fig. 9).

Discussion

The model used in this study is one of the simplest
models commonly used in fish stock assessment
(Hilborn and Walters, 1992). An essential assump-
tion of this model, as with similar models, is that the
relationship between CPUE and the biomass of the
stock remains constant over time. Because of the use
of the robust estimator, this assumption becomes the
following: the proportional relationship between the

time periods (per vessel versus
per trap-month). The CVs and
90% confidence intervals for
the parameters were small
(Table 3), indicating that esti-
mates of parameters for period
II had small uncertainties.
The estimated EMSY ranged
from 80 t to over 200 t with a
median value of 120 t (Fig. 5).

The median and 5th and 95th

percentiles of the biomass of
the stock for each year in pe-
riod II are plotted in Figure 6.
The calculation of total catches
for 1994–95 and 1995–96 had
not been completed when this
study was conducted. How-
ever, the TAC of 106 t was
likely to have been fully real-
ized in each of these years.
Thus, the biomasses of the
stock for 1995–96 and 1996–
97 were projected based upon
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Figure 5
The distributions of the parameters estimated with the bootstrapped least median of squared errors (LMSE) for the period of
1969–70 to 1993–94.

stock biomass and CPUE is the same for the major-
ity of years.

Compared with traditional least-squares estima-
tion methods, the LMSE method tends to fit the
model to the majority of the data, and its estimates
of parameters are not affected by atypical data ob-
served in a few years (Chen et al., 1994). Thus, if
atypical observations arise, parameter estimation
with the LMSE will not be affected greatly. Because
the LMSE is not sensitive to atypical data, these data
tend to be far from the LMSE-estimated CPUEs
(Figs. 2 and 3) and thus are readily detected. How-
ever, it is important to determine why an observed
CPUE is far from the predicted CPUE. Such a prac-
tice requires extensive background information on
the fishery. Apart from exceptionally large observa-
tion errors, atypical observations may arise from
unusual environmental conditions and substantial
changes in fishing methods and locations. The na-
ture of atypical observations resulting from unusual

environmental conditions differs from those result-
ing from unusual observation errors. These atypical
data should be considered separately from those ob-
served under normal conditions in the stock assess-
ment process because such unusual conditions last
only for a short period of time in the development of
the fishery (Chen et al., 1994). For example, the ob-
served CPUE in 1971–72 was much higher than the
LMSE-estimated CPUE (Fig. 4). This might result
from the fishery being expanded in that year to in-
clude aggregations of lobsters on the previously
unexploited slopes of the continental shelf. This
would result in a high q for that year. Clearly, such a
high level of CPUE cannot be sustained for long and
should not be interpreted as an indicator of large
stock biomass for that year. CPUEs observed from
years 1917 to 1924 were much lower than the LMSE
predicted (Fig. 2). This finding may be related to large
observation errors in CPUEs. For this period, the
number of fishing boats (other than trawlers or Dan-
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Figure 6
The median and 90% confidence intervals of stock biomass predicted with the
bootstrapped LMSE method for the period of 1969–70 to 1995–96.

Figure 7
The distribution of the ratio between the biomass of the stock in 1995–96 (B1995–96)
and the biomass of the virgin stock (K) estimated with the bootstrapped LMSE
method.

ish seiners) that operated from
lobster producing ports and in
oceanic waters was used as an
index of fishing effort for the
lobster fishery. This was done
because it was impossible to
distinguish between vessels
that were used for fishing lob-
sters and vessels that were
used for fishing other species
in the same area (Montgomery,
1995). During this period, an-
nual landings of lobsters were
probably under-reported be-
cause only lobsters sold at the
main market centers were re-
corded. Such an over-estima-
tion of efforts and under-esti-
mation of catches would lead
to under-estimation of CPUE
for this period of time. It
should be realized, however,
that the above reasons for the
large deviation of observed
data from model estimates re-
main a working hypothesis.

Outliers can be identified in
linear regression analyses by
using criteria developed by
Rousseeuw and Leroy (1987).
However, the criteria devel-
oped through extensive simu-
lations based on a linear re-
gression model cannot be used
in nonlinear regression analy-
sis. An extensive simulation
study is needed to develop suit-
able criteria to identify outli-
ers in nonlinear regression
analyses. Before this can be
done, the LMSE-based re-
weighted least squares, which
has been shown to behave bet-
ter than the least median of
squares in linear regression
analyses (Chen et al., 1994;
Chen and Paloheimo, 1995),
cannot be used in nonlinear regression analyses.

The results presented in our paper were based on
catch data adjusted by using one set of adjustment
coefficients. To test the sensitivity of the results to
the adjustment coefficients, we also used two other
sets of adjustment coefficients in the analysis (Table
4). These two sets of coefficients have more extreme
values than the one presented in Table 1. The detailed

results for these two sets of data were reported in Mont-
gomery and Chen (1996). We plotted the stock biomass
estimated with these three sets of data (Fig. 10). Al-
though there are differences, they are rather small con-
sidering the large differences in adjustment coefficients.
This may indicate that the results presented in this
paper tend not to be sensitive to small changes in catch
adjustment coefficients used in period II.
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Figure 8
The distribution of stock biomass in 1996–97 estimated with the bootstrapped LMSE
method.

Figure 9
Probability of short-term overharvest (i.e. exceeding the selected reference points f0.1
and fMSY) for fishing year 1996–97.

It is clear that the size of the lobster stock off New
South Wales was low, with respect to its virgin bio-
mass, as was the 75% confidence. Recent stock bio-
mass (i.e. in 1995–96) has been between 15% and
slightly over 30% of the virgin biomass. However, it
seems that the decline in the biomass of the stock
has stopped in recent years, and that the stock is
perhaps in a period of recovery.

Data observed in the two periods of time were
modeled separately in our study. An alternative,
perhaps better approach is to combine these two
time periods with information on catches landed
within the intervening period. This approach will
be used in the next stock assessment when good
estimates of catches from 1939 to 1968–69 become
available.

Because the data were lim-
ited, the choice of models that
can be used to describe the
dynamics of lobster stock in
NSW is also limited. Two dis-
advantages of using the simple
production models are 1) an in-
adequate representation of the
fishery dynamics may result in
large biases in estimates of pa-
rameters and biomasses, and 2)
extra assumptions are needed
about fisheries (e.g. CPUE is a
good indicator of stock abun-
dance). However, these simple
models also have their advan-
tages. If the model fails, this fail-
ure can be seen easily. Because
of the simple mathematical
structure and lack of constraints
in the parameter estimation, es-
timates of parameters may not
necessarily be biologically rea-
sonable (e.g. as negative values),
an indication of the failure of
models or data (Hilborn and
Walters, 1992). It is now fash-
ionable to mimic biological and
fisheries realism by setting up
a model that is mathematically
and statistically complicated.
Although advantages are obvi-
ous, disadvantages associated
with this type of models may not
always be realized. In addition
to the requirement of extra in-
put data, such models tend to
have some undesirable attri-
butes in the estimation of pa-
rameters, such as overfitting
and high correlations among
estimates of parameters. Incor-
poration of different biological
and fisheries processes (e.g. fish-
ing and recruitment processes)
into one model for parameter
estimation can also create some
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Table 4
Coefficients used to test the sensitivity of the stock assess-
ment to adjustment coefficients used to adjust reported
catch data in the period from 1969–70 to 1993–94.

Adjustment coefficient

Year Case I Case II

1969–70 to 1979–80 0.4 0.6
1980–81 to 1989–90 0.6 0.7
1990–91 to 1991–92 0.3 0.5
1992–93 to 1993–94 0.1 0.2

Figure 10
The predicted median and 90% confidence intervals of stock biomass for three sets of adjustment coefficients for the period of
1969–70 to 1995–96.

2 Xiao, Y. 1997. A theoretical consideration of subtleties in, and
problems with, use of production models. Commonwealth Sci-
entific and Industrial Research Organization (CSIRO) Marine
Laboratory, Hobart, Australia. Unpubl. manuscript.

artificial links among parameters (e.g. between
catchability coefficient and recruitment). A large num-
ber of built-in constraints (e.g. parameter A must have
a value between A1 and A2) are often required to facili-
tate parameter estimation for such a model. This may
artificially result in parameters having biologically rea-
sonable estimates, even if the model fails. Such a fea-
ture also encourages the indiscriminate and uncritical
use of stock assessment models, which leads to the
misinterpretation of results. The extra biological or fish-
eries information (e.g. size structure, recruitment and
spatial distribution) often incorporated into a dynamic
model will certainly increase the accuracy and reliabil-
ity in the estimation of parameters if the information
is accurate. However, in practice, extra information is
likely to be subject to large errors. In this case, a com-
plicated model assimilating extra information will prob-
ably fail because its validation requires that each piece
of information be true (Xiao2).

It is well known that the current biomass for a
decreasing stock is often over-estimated when pro-

duction models are used in assessment with the least
squares method (e.g. Schnute, 1989; Hilborn and
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Figure 11
The predicted catch per unit of effort with the maximum likelihood (ML) and
least median of squared errors (LMSE) methods for the period of 1903 to 1936
and the period of 1969–70 to 1993–94.

Walters, 1992; Polacheck et al., 1993; Chen and An-
drew, 1998). In our study, when the maximum likeli-
hood (ML) method was used, the rI, qI, and KI had
values of 0.041, 0.40 × 10–6 (per vessel), and 8,667 t,
respectively. These are 20%, 23%, and 270% of the
LMSE-estimated parameters, and 26%, 33%, and
213% of the median values of the bootstrapped LMSE
estimates. According to the ML method, the eastern
rock lobster stock had a large biomass with a low
productivity rate. In contrast, the LMSE method
predicted a smaller stock with a relatively high pro-
ductivity rate. This difference arises from different
methods used to fit the model to CPUE data. The
ML was heavily influenced by the CPUEs observed
from 1916 through 1924, whereas the LMSE virtu-

ally ignored these observations and tended to follow
closely the CPUE in the majority of years (Fig. 11).
Because of the high likelihood of under-estimation
of CPUEs from 1916 through 1924, the LMSE method
is probably more suitable. The estimates of rII, qII,
and B1969–70 by the ML method were 0.17, 0.13 × 10–6

(per trap-month) and 7174 t, differing from those
estimated with the LMSE and bootstrapped LMSE
methods (Table 3). This difference may result from
different weightings of data for years 1971–72 and
1974–75. Fitting the model with the LMSE method
virtually ignored the data observed in these years,
which had much higher CPUEs than other years. How-
ever, fitting with the ML method was heavily influenced
by these two years of high CPUEs (Fig. 11). Because

of the patchy distribution of lobsters
in their habitat and the expansion
of fishing grounds out to the conti-
nental slope off the NSW coast dur-
ing the early 1970s, it is very likely
that these two years of exception-
ally high CPUEs resulted from high
fishing efficiency (i.e. high q values),
which should not be taken as an in-
dicator of high biomass.

We suggest using the bootstrapped
LMSE method as an alternative
approach to fitting production mod-
els to catch-effort data. The results
derived from such an analysis
should be evaluated carefully with
respect to the biology and ecology of
the targeted fish species and with
respect to how the catch-effort data
were collected. Such an evaluation
may shed some light on why some
observations differ from the major-
ity which the LMSE estimated line
tends to follow. A comparison of re-
sults between robust and traditional
least squares approaches may lead
to a better understanding of the dy-
namics of the studied fish stock and
identification of years in which
atypical data are observed.
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